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In the beginning...

Nature and Nature's laws,
Lay hidden in night,
God said, let Hilbert space be!
-yet still, not enough light.
(Alexander Pope, ChatGPT)
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The physical corner of Hilbert space

® Quantum formalism says that a system of n particles is
described by a Hilbert space of dimension exp n.
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The physical corner of Hilbert space

® Quantum formalism says that a system of n particles is
described by a Hilbert space of dimension exp n.

® However, physical systems live in a much smaller “corner”,
where the locality of natural laws prevails.

® This has a major impact on our understanding of the
‘learnability’ of physical systems.
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® A collection of quantum states on n qubits, Cp,.

p € Cp

Physical system

p

®S

|

p' such that p’ ~ p
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Goal is to minimize the sample complexity S under further
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e Whether p’ should be in C, or not
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Physical quantum states

® When C, = the set of all quantum states, each quantum state
is specified by ~ 22" parameters. The sample complexity of
learning an unknown general quantum state scales as ~ 22"
([O'Donnell, Wright 2016], [Haah, Harrow, Ji, Wu, Yu, 2016]).
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Physical quantum states

® When C, = the set of all quantum states, each quantum state
is specified by ~ 22" parameters. The sample complexity of
learning an unknown general quantum state scales as ~ 22"
([O'Donnell, Wright 2016], [Haah, Harrow, Ji, Wu, Yu, 2016]).

® In physical settings, the number of relevant parameters turn
out to be poly(n). Two sources:

® Experiments can only probe poly(n) parameters.
® [ocality in physical systems.
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Quantum many-body systems

® A fundamental way locality arises in quantum many-body
systems is via interaction between qubits, described by a local
Hamiltonian H(p) = > ; uiEi (where, E; are a basis of
operators, such as Pauli operators).
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Quantum many-body systems

® A fundamental way locality arises in quantum many-body
systems is via interaction between qubits, described by a local
Hamiltonian H(p) = > ; uiEi (where, E; are a basis of
operators, such as Pauli operators).

® The local nature of interactions also forces that elementary
quantum gates act locally.
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quantum states

Widely studied quantum many-body systems

Gibbs state (specified by the e—BH(1)

Hamiltonian's coefficients p) ps(i) = Zs(p)

A quantum circuit of depth t g g g g
(specified by O(nt) local # I#I #I = b
unitaries) =

A tensor network state (specified

by local tensors of dimension
dxDxD...)
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Our plan

¢ Discuss sample efficient algorithm (with local measurements),
followed by time efficient algorithm.
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Our plan

¢ Discuss sample efficient algorithm (with local measurements),
followed by time efficient algorithm.
® Focus on main challenges:

® How to operationally use the ‘virtual’ locality in these states?
® How to handle the redundancy in representations?

® Why these 3 classes of states?

® They capture all three range in our understanding: fairly well
understood, mildly well understood, very unclear.

® Fundamental quantum many-body ansatz in the regime of low
entanglement.
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Learning unknown Hamiltonian from Gibbs state

. pa(n)®°

Physical system

J

w' such that Vi, |} — pi| <e
Recall: H(p) =>; niEi.
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Main open question

Is there a polynomial time learning algorithm that achieves this
task with sample complexity

0 (poly log(m) - exp(O(5)) - polyi) ?
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Main open question

Is there a polynomial time learning algorithm that achieves this
task with sample complexity

0 (poly log(m) - exp(O(5)) - polyi) ?

Highly desirable to perform ‘local measurements’ - only entangle a
few neighbouring qubits.

The known lower bound is

2 (log(m) - x0(0(5) - ;).
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Polynomial sample complexity

® Suppose we collect local data from quantum Gibbs samples. If
we have enough time, is it possible to recover the
Hamiltonian?
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H" =", (;Ej, and find one that agrees with all the local data.

¢ (A., Arunachalam, Kuwahara, Soleimanifar 2020) -
non-negligible changes in local data force the Hamiltonians to
be different. A O(poly(n)eP°™(%) /c2) sample complexity can
be obtained.
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Polynomial sample complexity

Suppose we collect local data from quantum Gibbs samples. If
we have enough time, is it possible to recover the
Hamiltonian?

We may have enough time to go over all Hamiltonians
H" =", (;Ej, and find one that agrees with all the local data.

(A., Arunachalam, Kuwahara, Soleimanifar 2020) -
non-negligible changes in local data force the Hamiltonians to
be different. A O(poly(n)eP°™(%) /c2) sample complexity can
be obtained.

Main technical ingredient: strong convexity of quantum
partition function. Variance lower bound on extensive
observables.
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Time efficient algorithm

(Bakshi, Liu, Moitra, Tang, 2024): O(poly(n)eepdy(ﬁ)/sz)
sample and time complexity.

Entangling measurements act on eP°(%) qubits.
Recent improvement: eP°(%) — poly ().

New locality property of the imaginary time evolution operator
ePH Ae=PH.

Sum-of-squares techniques play a crucial role.
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Known results

® Optimal algorithms known for

® (Haah, Kothari, Tang, 2023): High temperature case (5 < 8.).
® (A, Arunachalam, Kuwahara, Soleimanifar, 2021):
Commuting case.

® | earning Gibbs states in quantum Wasserstein distance is also
considered in (Rouze, Franca, Quantum 2024) and (Palma,
Marvian, Trevisan, Lloyd, 2021).
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Open directions

¢ Improving poly(n) sample complexity to poly log n sample
complexity.
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Open directions

¢ Improving poly(n) sample complexity to poly log n sample
complexity.

® |earning the structure of the interaction graph, with sparsity
the only guarantee (already open for the commuting case).
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Shallow quantum states
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Learning shallow quantum states

® Quantum states of the form [¢y) = U|0"), where U is a
quantum circuit of depth t, have emerged as important ansatz
in approximating low energy quantum states.

U i

Physical system

|

W such that ||W |0™) — |vy) |junk) ||1 < €
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Sample efficient learning

Local data: marginals 9y ; of the g
qubits in the ‘light cones’ L; (set ‘ P h
of qubits that can influence the Tt
o =1 = =] ]
qubit 7). T T 1T
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e Search over all unitaries U’ of depth t, compute the marginals
of ¥y and see if they are close.
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Sample efficient learning

Local data: marginals 9y ; of the
qubits in the ‘light cones’ L; (set
of qubits that can influence the
qubit 7).

15
15
15
18-

-
i
4|:|4

In
in
in
T

e Search over all unitaries U’ of depth t, compute the marginals
of ¥y and see if they are close.

o If Yy E’A/“Jn Yu,i, then Py ~ Py

® Thus, sample complexity is 2O(t)”—§.

m
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Known results

® (Huang, Liu, Broughton, Kim, A., Landau, McClean, STOC
24) show a poly(n) time algorithm to learn such states for 2D
geometrically local circuits.

® W has depth O(t).
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Known results

® (Huang, Liu, Broughton, Kim, A., Landau, McClean, STOC
24) show a poly(n) time algorithm to learn such states for 2D
geometrically local circuits.

® W has depth O(t).

¢ (Liu, Landau, 24) developed an algorithm that works in higher
dimensions.

® (Huang, Liu, Broughton, Kim, A., Landau, McClean, STOC
24) also solve the problem with "circuit” access - given a

blackbox that implements U, output a W that's close to to U
in diamond norm.

® W has depth O(t) on finite dimensional lattices. Depth is
20(8) on general graphs.
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Known results

® These algorithms work by finding "local inversions” to the
circuit and then developing schemes to join them together.

® The measurements act on qubits roughly the size of the
‘lightcone’.

® Technical contribution goes in resolving the following issue -
local inversions may not be consistent with each other.
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Open directions

® (Can shallow state learning be achieved on general graphs?

® Can the depth of output circuit in circuit learning be
optimized to O(t) on general graphs?

® Can the sample complexity be significantly improved in the
presence of noise?
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Learning tensor network states

W

RS
A U

Physical system

J

A such that || Wz — vzl <e
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Are tensor network states locally learnable?

e Consider the CAT states:

ICATy) = —— (]0...0) £ [1...1)).

1
V2
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Are tensor network states locally learnable?

® Consider the CAT states:

|CATi>:%(|O...O>i|1...1)).

® These can be written as 1D Tensor Network States (Matrix
Product States)

©®00060

® However, they look the same locally! Thus, they can’t be
learned locally in general.
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Learning Matrix Product States

® Matrix product states (with matrices of dimension D) can be
written as a sequential circuit: [¢p) = UiUs ... Up—1]07).

]
| |

.
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Learning Matrix Product States

® Matrix product states (with matrices of dimension D) can be
written as a sequential circuit: [¢p) = UiUs ... Up—1]07).

]
| |
|
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e Algorithm in [Cramer, Plenio, Flammia, Somma, Gross,
Bartlett, Landon-Cardinal, Poulin, Liu, Nat Comm 2010]
learned and inverted the sequential circuit.
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e Algorithm in [Cramer, Plenio, Flammia, Somma, Gross,
Bartlett, Landon-Cardinal, Poulin, Liu, Nat Comm 2010]
learned and inverted the sequential circuit.

® Measurements efficient, but acted globally.
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Learning Matrix Product States
® Matrix product states (with matrices of dimension D) can be
written as a sequential circuit: [¢p) = UiUs ... Up—1]07).
]
| |
|

00006

e Algorithm in [Cramer, Plenio, Flammia, Somma, Gross,
Bartlett, Landon-Cardinal, Poulin, Liu, Nat Comm 2010]
learned and inverted the sequential circuit.

® Measurements efficient, but acted globally.

® Does not work for general tensor networks.
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Locally learning classes of Matrix Product States

® Main open question - obtain efficient learning algorithm using
local measurements, which outputs an MPS of bond
dimension O(D).
® Assuming certain "invertability condition”.
® Progress in [Fanizza, Galke, Lumbreras, Rouze, Winter, 2023],
which learns a Matrix Product Operator of bond dimension
D? that is close to the MPS.
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Learning invertible tensor network states?

® For invertible tensor network states in general, similar scheme
can give a sample efficient algorithm (by searching the space
of all tensor networks).

28/29



Tensor network states

Learning Gibbs state Shallow quantum states
0O0000e0

Motivation and goals
0000000 000000

00000000

Learning invertible tensor network states?

® For invertible tensor network states in general, similar scheme
can give a sample efficient algorithm (by searching the space

of all tensor networks).
® However, no time efficient method is known.
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Learning invertible tensor network states?

® For invertible tensor network states in general, similar scheme
can give a sample efficient algorithm (by searching the space
of all tensor networks).

® However, no time efficient method is known.

® Technical question that might help - for a tensor network with
gapped parent Hamiltonian, is it possible to reconstruct the
tensor network ground state?
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Outlook

® | earning theory of quantum many-body systems has emerged
as a highly successful new field, showing remarkable new
locality properties of physical states.
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® This talk covered a “corner” of known results; important
other developments include learning Hamiltonian from time
evolution, learning phases of matter, verification of states,
practical learning algorithms, learning stabilizer states,
learning continuous variable states, learning Pauli noise, .
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Outlook

® | earning theory of quantum many-body systems has emerged
as a highly successful new field, showing remarkable new
locality properties of physical states.

® This talk covered a “corner” of known results; important
other developments include learning Hamiltonian from time
evolution, learning phases of matter, verification of states,
practical learning algorithms, learning stabilizer states,
learning continuous variable states, learning Pauli noise, .

® Thanks for your attention!
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