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In the beginning...

Nature and Nature’s laws,

Lay hidden in night,
God said, let Hilbert space be!
-yet still, not enough light.
(Alexander Pope, ChatGPT)

3 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

In the beginning...

Nature and Nature’s laws,
Lay hidden in night,

God said, let Hilbert space be!
-yet still, not enough light.
(Alexander Pope, ChatGPT)

3 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

In the beginning...

Nature and Nature’s laws,
Lay hidden in night,

God said, let Hilbert space be!

-yet still, not enough light.
(Alexander Pope, ChatGPT)

3 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

In the beginning...

Nature and Nature’s laws,
Lay hidden in night,

God said, let Hilbert space be!
-yet still, not enough light.

(Alexander Pope, ChatGPT)

3 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

In the beginning...

Nature and Nature’s laws,
Lay hidden in night,

God said, let Hilbert space be!
-yet still, not enough light.
(Alexander Pope, ChatGPT)

3 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

The physical corner of Hilbert space

• Quantum formalism says that a system of n particles is
described by a Hilbert space of dimension exp n.

• However, physical systems live in a much smaller “corner”,
where the locality of natural laws prevails.

• This has a major impact on our understanding of the
‘learnability’ of physical systems.
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General quantum state learning problem
• A collection of quantum states on n qubits, Cn.

ρ ∈ Cn
Physical system

ρ⊗S

ρ′ such that ρ′ ≈ ρ

Goal is to minimize the sample complexity S under further
specifications:

• Type of approximation
• Whether ρ′ should be in Cn or not
• Time-efficient quantum measurements?
• Quantum measurements that only correlate a few qubits?
• ...
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Physical quantum states

• When Cn = the set of all quantum states, each quantum state
is specified by ≈ 22n parameters. The sample complexity of
learning an unknown general quantum state scales as ≈ 22n

([O’Donnell, Wright 2016], [Haah, Harrow, Ji, Wu, Yu, 2016]).

• In physical settings, the number of relevant parameters turn
out to be poly(n). Two sources:

• Experiments can only probe poly(n) parameters.
• Locality in physical systems.

6 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

Physical quantum states

• When Cn = the set of all quantum states, each quantum state
is specified by ≈ 22n parameters. The sample complexity of
learning an unknown general quantum state scales as ≈ 22n

([O’Donnell, Wright 2016], [Haah, Harrow, Ji, Wu, Yu, 2016]).
• In physical settings, the number of relevant parameters turn
out to be poly(n). Two sources:

• Experiments can only probe poly(n) parameters.
• Locality in physical systems.

6 / 29



Motivation and goals Learning Gibbs state Shallow quantum states Tensor network states

Quantum many-body systems

• A fundamental way locality arises in quantum many-body
systems is via interaction between qubits, described by a local
Hamiltonian H(µ) =

∑
i µiEi (where, Ei are a basis of

operators, such as Pauli operators).

• The local nature of interactions also forces that elementary
quantum gates act locally.
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Widely studied quantum many-body systems

Gibbs state (specified by the
Hamiltonian’s coefficients µ)

ρβ(µ) =
e−βH(µ)

Zβ(µ)
.

A quantum circuit of depth t
(specified by O(nt) local
unitaries)

A tensor network state (specified
by local tensors of dimension
d × D × D . . .)
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Our plan

• Discuss sample efficient algorithm (with local measurements),
followed by time efficient algorithm.

• Focus on main challenges:
• How to operationally use the ‘virtual’ locality in these states?
• How to handle the redundancy in representations?

• Why these 3 classes of states?
• They capture all three range in our understanding: fairly well

understood, mildly well understood, very unclear.
• Fundamental quantum many-body ansatz in the regime of low

entanglement.
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Learning unknown Hamiltonian from Gibbs state

µ

Physical system

ρβ(µ)
⊗S

µ′ such that ∀i , |µ′i − µi | ≤ ε

Recall: H(µ) =
∑

i µiEi .
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Main open question

Is there a polynomial time learning algorithm that achieves this
task with sample complexity

O
(
poly log(m) · exp(O(β)) · poly1

ε

)
?

Highly desirable to perform ‘local measurements’ - only entangle a
few neighbouring qubits.

The known lower bound is

Ω

(
log(m) · exp(O(β)) · 1

ε2

)
.
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Polynomial sample complexity

• Suppose we collect local data from quantum Gibbs samples. If
we have enough time, is it possible to recover the
Hamiltonian?

• We may have enough time to go over all Hamiltonians
H ′ =

∑
i µ

′
iEi , and find one that agrees with all the local data.

• (A., Arunachalam, Kuwahara, Soleimanifar 2020) -
non-negligible changes in local data force the Hamiltonians to
be different. A O(poly(n)epoly(β)/ε2) sample complexity can
be obtained.

• Main technical ingredient: strong convexity of quantum
partition function. Variance lower bound on extensive
observables.
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Time efficient algorithm

• (Bakshi, Liu, Moitra, Tang, 2024): O(poly(n)ee
poly(β)

/ε2)
sample and time complexity.

• Entangling measurements act on epoly(β) qubits.

• Recent improvement: epoly(β) → poly(β).

• New locality property of the imaginary time evolution operator
eβHAe−βH .

• Sum-of-squares techniques play a crucial role.
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Known results

• Optimal algorithms known for
• (Haah, Kothari, Tang, 2023): High temperature case (β < βc).
• (A., Arunachalam, Kuwahara, Soleimanifar, 2021):

Commuting case.

• Learning Gibbs states in quantum Wasserstein distance is also
considered in (Rouze, Franca, Quantum 2024) and (Palma,
Marvian, Trevisan, Lloyd, 2021).
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Open directions

• Improving poly(n) sample complexity to poly log n sample
complexity.

• Learning the structure of the interaction graph, with sparsity
the only guarantee (already open for the commuting case).
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Learning shallow quantum states

• Quantum states of the form |ψU⟩ = U |0n⟩, where U is a
quantum circuit of depth t, have emerged as important ansatz
in approximating low energy quantum states.

U

Physical system

ψ⊗S
U

W such that ∥W |0m⟩ − |ψU⟩ |junk⟩ ∥1 ≤ ε
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Sample efficient learning

Local data: marginals ψU,i of the
qubits in the ‘light cones’ Li (set
of qubits that can influence the
qubit i).

• Search over all unitaries U ′ of depth t, compute the marginals
of ψU′ and see if they are close.

• If ψU′,i

ε/n
≈ ψU,i , then ψU′

ε
≈ ψU .

• Thus, sample complexity is 2O(t) n2

ε2
.
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Known results

• (Huang, Liu, Broughton, Kim, A., Landau, McClean, STOC
24) show a poly(n) time algorithm to learn such states for 2D
geometrically local circuits.

• W has depth O(t).

• (Liu, Landau, 24) developed an algorithm that works in higher
dimensions.

• (Huang, Liu, Broughton, Kim, A., Landau, McClean, STOC
24) also solve the problem with ”circuit” access - given a
blackbox that implements U, output a W that’s close to to U
in diamond norm.

• W has depth O(t) on finite dimensional lattices. Depth is
2O(t) on general graphs.
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Known results

• These algorithms work by finding ”local inversions” to the
circuit and then developing schemes to join them together.

• The measurements act on qubits roughly the size of the
‘lightcone’.

• Technical contribution goes in resolving the following issue -
local inversions may not be consistent with each other.
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Open directions

• Can shallow state learning be achieved on general graphs?

• Can the depth of output circuit in circuit learning be
optimized to O(t) on general graphs?

• Can the sample complexity be significantly improved in the
presence of noise?
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Learning tensor network states

A⃗

Physical system

ψ⊗S

A⃗

A⃗′ such that ∥
∣∣ψ

A⃗′

〉
−

∣∣ψ
A⃗

〉
∥1 ≤ ε
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Are tensor network states locally learnable?

• Consider the CAT states:

|CAT±⟩ =
1√
2
(|0 . . . 0⟩ ± |1 . . . 1⟩) .

• These can be written as 1D Tensor Network States (Matrix
Product States)

A1 A2 A3 A4 A5

• However, they look the same locally! Thus, they can’t be
learned locally in general.
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Learning Matrix Product States
• Matrix product states (with matrices of dimension D) can be
written as a sequential circuit: |ψ⟩ = U1U2 . . .Un−1 |0n⟩.

A1 A2 A3 A4 A5

• Algorithm in [Cramer, Plenio, Flammia, Somma, Gross,
Bartlett, Landon-Cardinal, Poulin, Liu, Nat Comm 2010]
learned and inverted the sequential circuit.

• Measurements efficient, but acted globally.
• Does not work for general tensor networks.
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Locally learning classes of Matrix Product States

• Main open question - obtain efficient learning algorithm using
local measurements, which outputs an MPS of bond
dimension O(D).

• Assuming certain ”invertability condition”.

• Progress in [Fanizza, Galke, Lumbreras, Rouze, Winter, 2023],
which learns a Matrix Product Operator of bond dimension
D2 that is close to the MPS.
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Learning invertible tensor network states?

• For invertible tensor network states in general, similar scheme
can give a sample efficient algorithm (by searching the space
of all tensor networks).

• However, no time efficient method is known.

• Technical question that might help - for a tensor network with
gapped parent Hamiltonian, is it possible to reconstruct the
tensor network ground state?
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Outlook

• Learning theory of quantum many-body systems has emerged
as a highly successful new field, showing remarkable new
locality properties of physical states.

• This talk covered a “corner” of known results; important
other developments include learning Hamiltonian from time
evolution, learning phases of matter, verification of states,
practical learning algorithms, learning stabilizer states,
learning continuous variable states, learning Pauli noise, .

• Thanks for your attention!
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