Xun Gao FOCS Quantum Learning Workshop JILA and Department of Physics at CU Boulder Oct 27, 2024

No-go theorem of hidden variable theory and quantum machine learning

Outline

- Quantum contextuality and no-go theorem of hidden variable theory
- Applications of quantum contextuality:
	- Expressive power separation between quantum and classical neural networks
	- Performance on real-world data
- **Outlook**
	- Solid foundations? Sheaf cohomology?
	- Relation with Non-negative matrix factorization and communication complexity
	- Experimental challenge and other approaches

Quantum Contextuality & No-go theorem of hidden variable theory

Hidden variable theory

hidden variable h_t

• What are hidden variable models? Just hidden Markov models

time direction

 $p(\cdots y_t \cdots | \cdots x_t \cdots) = \sum_{l} \cdots p(y_{t-1}, h_t | x_{t-1}, h_{t-1}) \cdot p(y_t, h_{t+1} | x_t, h_t) \cdots$ $\cdots h_t \cdots$

Hidden variable theory

• Quantum mechanics described by hidden variable models? We don't know. Bohm's mechanics (hydrodynamics-like equation, however, non-local, contextual) Even more extremely, h_t is the full description of the quantum state or the whole history

• No-go theorem of hidden variable theory? Need further constraints e.g., locality, non-contextuality, bounded memory ($\dim h_t$ is limited)

• non-contextual hidden variable theory

IV. non-contextual hidden variable models: a global joint distribution $p(\cdots\cdots\,|\,A,B,C,L,M)$

-
-
-
-
-
- the marginal conditional distribution for A are the same, given by $p(\mathrel{\;\cdot\;} \mid\! A)$
	-
	-

I. contexts (commuting sets of observables): $\{A, B, C\}$ and $\{A, L, M\}$ $\{B, C$ not commute with L, M **II.** well-defined joint measurement results: $p(\cdots | A,B,C)$ and $p(\cdots | A,L,M)$ (data from experiments) **III.** non-contextual condition (how to glue the data together):

• non-contextual hidden variable theory

Why reasonable? Measurement does not rely on the context. Imagining measure A first. Nature is not conspiring (what if we measure A in the final?)

> Cavalcanti E G. Classical causal models for Bell and Kochen-Specker inequality violations require fine-tuning. Physical Review X

Nature is not "intentionally manipulating" the experiment

"physics does not exist" — Ye Wenjie (a character in Three-Body Problems, a recent Sci-Fi show in Netflix, physics experiments are manipulated by alien civilization to prevent human-being to develop science)

• Bell-Kochen-Specker theorem

1954

Recent

Accepted

Kochen-Specker contextuality

Costantino Budroni, Adán Cabello, Otfried Gühne, Matthias Kleinmann, and Jan-Åke Larsson Rev. Mod. Phys. 94, 045007 - Published 19 December 2022

Non-contextual hidden variable models contradicts with the prediction of quantum mechanics

REVIEWS OF MODERN PHYSICS

suppose a distribution over hidden variable *λ* $\lambda(O)$: measurement result of O on the state λ

• Mermin-Pere's magic square

Contradiction!

 O is an observable, $\lambda(O)$ is the outcome when measure O on the state described by λ writing $\lambda(O)$ means condition **III**

• Mermin's pentagon

G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt & C. F. Roos¹

Nature 460, 494-497 (2009) Cite this article

REVIEWS OF MODERN PHYSICS

Hidden variables and the two theorems of John Bell

N. David Mermin

Rev. Mod. Phys. 65, 803 - Published 1 July 1993; Errata Rev. Mod. Phys. 85, 919 (2013); Rev. Mod. Phys. 88, 039902 (2016); Rev. Mod. Phys. 89, 049901 (2017)

Both are **state-independent contextuality**

Letter | Published: 23 July 2009

State-independent experimental test of quantum contextuality

From contextuality to nonlocality

• Bell theorem on GHZ state and Mermin pentagon

non-contextuality can be replaced by locality: measurements on different space-like location cannot influence each other

- single qubit Pauli measurement is local
- how about three qubit Pauli? non-local measurement! use GHZ state to fix them (their common eigenstate); then no need to measure them
	- **non-locality** also **state-dependent contextuality**

Revisit Bell theorem on GHZ state

just a different way to interpret "Bell's theorem without inequalities"

non-local game: referee send $a, a \oplus b, b$ to player 1,2,3 respectively player 1,2,3 return m_1 , m_2 , m_3 they win if $m_1 \oplus m_2 \oplus m_3 = f(a, b)$

- 0.0 $X \otimes X \otimes X$ | GHZ $\rangle = +$ | GHZ \rangle
- $0,1$ X ⊗ Y ⊗ Y $|$ GHZ \rangle = $|$ GHZ \rangle
- 1,1 $Y \otimes X \otimes Y$ GHZ $\rangle = -$ GHZ \rangle
- 1,0 Y ⊗ Y ⊗ X | GHZ \rangle = − | GHZ \rangle

 $a,a\oplus b,b\ =0$ to measure X $= 1$ to measure Y

measurement result is (−1) *mi*

For f is XOR, winning prop: Classical at most 75% Quantum 1

always
$$
(-1)^{m_1+m_2+m_3} = (-1)^{OF}
$$

a, *b*

Extending to measurement-based quantum computing

PHYSICAL REVIEW LETTERS

Computational Power of Correlations

Janet Anders^{*} and Dan E. Browne[†]

linear computation

either classical or quantum (either entangled or not)

to use the computational power of the whole system to detect the property of the resource PHYSICAL REVIEW A 88, 022322 (2013)

Contextuality in measurement-based quantum computation

Robert Raussendorf^{*}

Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada (Received 1 May 2013; revised manuscript received 11 July 2013; published 19 August 2013)

Deterministic computation of non-linear function on \mathbb{Z}_2 **implies no non-contextual hidden variable theory to explain all the measurement results during the computation**

Contextuality is the resource to compute non-linear function in the MBQC model

> Nonlinearity (e.g. deviation from linear test? Fourier transformation?) <==> metric of contextuality ?

A Quantum Neural Network Enhanced by Contextuality

High level idea of Quantum Contextuality

similar to **linguistic contextuality** in language problems

(from Wikipedia) the measurement result (assumed pre-existing) of a quantum observable is dependent upon which other commuting observables are within the same measurement set.

In order to predict measurement results correctly, contextuality requires more memory to memorize the "context"

Video game: Monument Valley inspired from M.C.Esher's "Waterfall" **More generally, locally "consistent", globally "inconsistent"**

 $p(\cdots y_t \cdots | \cdots x_t)$

$$
F_{t} \cdots) = \sum_{h_{t} \cdots} \cdots p(y_{t-1}, h_{t} | x_{t-1}, h_{t-1}) \cdot p(y_{t}, h_{t+1} | x_{t}, h_{t}) \cdots
$$

Quantum vs. Linguistic Contextuality

• Sheaf-cohomology

Quantum Contextuality: Abramsky, Samson, and Adam Brandenburger. "The sheaf-theoretic structure of non-locality and contextuality." *New Journal of Physics* (2011)

Natural Language: Lo, Kin Ian, Mehrnoosh Sadrzadeh, and Shane Mansfield. "Developments in Sheaf-Theoretic Models of Natural Language Ambiguities." *arXiv:2402.04505* (2024).

• Analogy

• Recurrent Neural Networks (sequencial models, translation-invariant on time)

$$
\begin{aligned} a_t &= W_{hh} \cdot h_{t-1} + W_{hx} \cdot x_t + b_h \\ h_t &= \tanh(a_t) \end{aligned}
$$

Recurrent Neural Networks Deterministic HHM with continuous variables

a special case of hidden Markov models

time direction

The Quantum Neural Networks

- word2vec such that x (y) encode the original (translated) word; the gaussian unitary has training parameters
- ̂
- If measure $(\hat{x}_1 \hat{p}_1 + \hat{p}_1 \hat{x}_1) \otimes (\hat{x}_2 \hat{p}_2 + \hat{p}_2 \hat{x}_2) \otimes \cdots$, Gaussian BosonSampling ̂ **T The Contract of Contract o** ̂

• If measure $x_1\hat{x}_1 + x_2\hat{p}_1 + x_3\hat{x}_2 + x_4\hat{p}_2 + \cdots$ (homodyne measurement), Gaussian optics (linear optics); there is non-contextual hidden variable theory: $\rho \leftrightarrow W_\rho(x_1,p_1,x_2,p_2,\cdots)$ (Wigner function)

The Quantum Neural Networks

1. quantum model: N hidden neurons (bosonic modes); 2. any classical models: at least $\propto N^2$ hidden neurons (can be extended to but non-gaussian unitary) $\propto N^2$ ∝ *n^k*

In HVM, a quantum state \Leftrightarrow a distribution over hidden variables

Naively, large overlap of 2 states (non-zero inner product) ⇒ the distributions have large overlap (e.g., Gaussian states by Wigner function rep.)

 $|\langle \psi_1 | \psi_2 \rangle|$ small

 $|\langle \psi_1 | \psi_2 \rangle|$ large

Theoretical results: there exists $p(y_1y_2\cdots | x_1x_2\cdots)$ to approximate, such that

-
-
-
-

- $|\psi_1\rangle$: distribution over λ_1, λ_2
- $|\psi_2\rangle$: distribution over λ_2, λ_3

hidden variables ∼dim of the Hilbert space

Sketch of the proof

Pusey M F, Barrett J, Rudolph T. On the reality of the quantum state[J]. Nature Physics, 2012, 8(6): 475-478.

Karanjai A, Wallman J J, Bartlett S D. Contextuality bounds the efficiency of classical simulation of quantum processes[J]. arXiv preprint arXiv:1802.07744, 2018.

measure *Y Y*, non-zero prob for all 3 states ⇒ get $YY = 1$, and states $\frac{1}{2}$ $|\psi_{1,2}\rangle$, $1 + YY$ $\overline{2}$ $|\psi_{1,2}\rangle$, $|\psi_{3}\rangle$ ⇒ measure *ZZ* to fully distinguish $1 + YY$

100

\n
$$
|\psi_1\rangle = |00\rangle
$$
\n
$$
|\psi_2\rangle = |++\rangle
$$
\n
$$
|\psi_3\rangle = CZ|++\rangle
$$
\n
$$
|\psi_4\rangle = |++\rangle
$$
\n
$$
|\psi_5\rangle = CZ|++\rangle
$$
\n
$$
|\psi_6\rangle = |+-\rangle
$$
\n
$$
|\psi_7\rangle = |+-\rangle
$$
\n
$$
|\psi_8\rangle = |+-\rangle
$$
\n
$$
|\psi_9\rangle = |+-\rangle
$$
\n
$$
|\psi_9\rangle = |--\rangle
$$
\n
$$
|\psi_1\rangle = |--\rangle
$$
\n
$$
|\psi_1\rangle = |--\rangle
$$
\n
$$
|\psi_2\rangle = |+-\rangle
$$
\n
$$
|\psi_3\rangle = |--\rangle
$$
\n
$$
|\psi_4\rangle = |--\rangle
$$
\n
$$
|\psi_5\rangle = |--\rangle
$$
\n
$$
|\psi_6\rangle = |--\rangle
$$
\n
$$
|\psi_7\rangle = |--\rangle
$$
\n
$$
|\psi_8\rangle = |--\rangle
$$
\n
$$
|\psi_9\rangle = |--\rangle
$$
\n
$$
|\psi_9\rangle = |--\rangle
$$
\n
$$
|\psi_1\rangle = |--\rangle
$$
\n
$$
|\psi_1\rangle = |--\rangle
$$
\n
$$
|\psi_2\rangle = |--\rangle
$$
\n
$$
|\psi_3\rangle = |--\rangle
$$
\n
$$
|\psi_4\rangle = |--\rangle
$$
\n
$$
|\psi_5\rangle = |--\rangle
$$
\n
$$
|\psi_6\rangle = |--\rangle
$$
\n
$$
|\psi_7\rangle = |--\rangle
$$
\n
$$
|\psi_8\rangle = |--\rangle
$$
\n
$$
|\psi_9\rangle = |--\rangle
$$
\n
$$
|\psi_9\rangle = |--\rangle
$$
\n
$$
|\psi_1\rangle = |--\rangle
$$
\n
$$
|\psi_1\rangle = |--\rangle
$$
\n
$$
|\psi_2\rangle = |--\rangle
$$
\n
$$
|\psi_3\rangle = |--\rangle
$$

- If two states are orthogonal \Rightarrow no common hidden variable *λ*
- Proof: $\lambda(O)$ gives the same result; but there is O to fully distinguish between them deterministically
- What if states are not orthogonal?
- assume there is a common *λ*, measure *YY* ⇒ non-zero prob, get *λ* → *λ*′ ⇒

measure *ZZ* on *λ*′, non-zero prob with the same results

Sketch of the proof

XG, Anschuetz, E. R., Wang, S. T., Cirac, J. I., & Lukin, M. D. Enhancing generative models via quantum correlations. PRX (2022). Anschuetz, E. R., **XG**. Arbitrary Polynomial Separations in Trainable Quantum Machine Learning. arXiv:2402.08606 (2024) Eric Anschuetz, Hongye Hu, Jinlong Huang, **XG**. Interpretable Quantum Advantage in Neural Sequence Learning, PRX Quantum (2023)

hidden variables ~ # quantum states >> dim of Hilbert space

The "density" of such kind of triples are very large: for any *m* states involved, we can find at least one such triples; but *m* ≪ # states

Real-world data Spanish-English translation

Numerical results: Spanish-to-English translation

CRNN: Contextual Recurrent Neural Network which is the quantum model GRU (gated-recurrent-unit): variation of LSTM (basically the best RNN architecture) here we restrict both models with **just 26 neurons** s.t. we can simulate CRNN

OUTPUT I am a student **DECODER Feed Forward ENCODER Feed Forward Encoder-Decoder Attention DECODERS ENCODERS** Self-Attention Self-Attention

Compared with Transformer • Transformers (building block of Large Language Model)

Seems that it requires $n^2/2$ hidden neurons? perhaps coincidence *n*2/2

 $\left(\bullet \right)$

No-go theorem of general hidden variable theory Go-beyond non-contextual assumption

• no need to assume locality, non-contextuality, no fine-tune, etc.

only need to assume the "size" (cardinality, bond dimension, dimension, # neurons, #bits) of hidden Markov model is bounded

See also the discussion from space complexity point of view: arXiv:1802.07744, 2018.

-
-

- **XG**, Anschuetz, E. R., Wang, S. T., Cirac, J. I., & Lukin, M. D. Enhancing generative models via quantum correlations. PRX (2022).
- Karanjai A, Wallman J J, Bartlett S D. Contextuality bounds the efficiency of classical simulation of quantum processes[J]. arXiv preprint

Anschuetz, E. R., **XG**. Arbitrary Polynomial Separations in Trainable Quantum Machine Learning. arXiv:2402.08606 (2024) Eric Anschuetz, Hongye Hu, Jinlong Huang, **XG**. PRX Quantum (2023)

Why expressive power?

Intuitively, smaller size of *θ*, less number of samples

Time and sample complexity of training?

- Barren plateau: highly likely to avoid (numerics and Lie algebra structure)
- No back-propagation:
	- translational invariant and shallow in each step
- Gaussian unitary has at most $O(n^2)$ parameters: W_1
	- fully determined by 2-point correlation function), perhaps $O(\log n)$ using classical shadow

may need classical shadow tomography for super-density operator \overline{O}

-
- Cotler J, Jian C M, Qi X L, et al. Superdensity operators for spacetime quantum mechanics[J]. Journal of High Energy Physics, 2018, 2018(9): 1-57. Huang H Y, Kueng R, Preskill J. Predicting many properties of a quantum system from very few measurements[J]. Nature Physics, 2020, 16(10): 1050-1057.

These works are only focusing on expressive power, the training part is not very clear in detail

Outlook

Common math between quantum & linguistic Contextuality

• Sheaf-cohomology

Penrose, Roger. On the cohomology of impossible figures Cervantes V H, Dzhafarov E N. Contextuality analysis of impossible figures

The math to study something "locally consistent but globally inconsistent"

Common math between quantum & linguistic Contextuality

The right one is from ChatGPT and DALL-E: "Here is an illustration inspired by Escher's "Waterfall," depicting an impossible and surreal structure where water flows uphill and cascades down again in an endless loop."

Relation with communication complexity

1. quantum model: $D = \log N$ qubits;

- $\log N$ vs. $\Omega(N)$ separation in communication complexity # hidden neurons ⇔ one-way communication complexity
- **how quantum play a role?** (there is already exponential separation in expressive power but
	-
	-

The computational complexity for each unit cell is exponentially long ∝ *N* based on complexity assumption instead of unconditional proof here)

XG, Zhang, Z.Y., Duan, L. M. A quantum machine learning algorithm based on generative models. Sci.Adv. (2018). Raz, Ran. "Exponential separation of quantum and classical communication complexity." *STOC* 1999.

- **Theoretical results**: there exists $p(y_1y_2\cdots | x_1x_2\cdots)$ to approximate, such that
- 2. any classical models: at least $\Omega(N) \propto \exp(D)$ bits hidden variables.

Relation with non-negative matrix factorization

Positive Semi-Definite Rank (PSD rank): $V = \sum tr(P_i Q_i)$, where $P_i, Q_i \geq 0$ (positive semi-definite) *K* ∑ *i* $tr(P_iQ_i)$, where $P_i, Q_i \geq 0$

rank=2 in this example

Correlation/Communication complexity of generating bipartite states

Rahul Jain*

Yaoyun Shi[†]

Zhaohui Wei[‡]

Shengyu Zhang[§]

If each entry in W and $H \geq 0$, non-negative rank

contextuality may give a separation

Potential experiments

• Bose-Hubbard model in atomic system An atomic boson sampler

• GKP \rightarrow other non-Gaussian state

Aaron W. Young^{IO}, Shawn Geller, William J. Eckner, Nathan Schine, Scott Glancy, Emanuel Knill & Adam M. Kaufman[⊠]

Nature 629, 311-316 (2024) Cite this article

Homodyne **Measurement**

• Gaussian BosonSampling, almost gaussian except measurement (photon number)

like a layer of linear transformation (Gaussian unitary) + nonlinear activation function (non-Gaussian measurements)

R. Booth, et al.. "Contextuality and Wigner negativity are equivalent for continuous-variable quantum measurements." PRL (2022) J. Haferkamp, et. al. "Equivalence of contextuality and Wigner function negativity in continuous-variable quantum optics." arXiv:2112.14788 (2021).

Photonic Neural Networks

However, not easy to implement non-linear activation function (usually optical signal to electric signal then some information processing, this will destroy these two advantages)

Contextuality for non-linear function? inspired from Raussendorf's result $(\mathbb{Z}_2 \rightarrow \mathbb{R})$

Two advantages:

- 1. faster computation
- 2. energy-saving

Deep learning with coherent nanophotonic circuits

<u>Yichen Shen</u>[∞], Nicholas C. Harris[∞], Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones, Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund & Marin Soljačić

Nature Photonics 11, 441-446 (2017) \int Cite this article

82k Accesses | 2055 Citations | 513 Altmetric | Metrics

Extending contextuality

holonomy (path-dependence) vs. context-dependence

Berry Phase: inconsistency or frustration to assign phases to quantum states to observables globally,although the flexibility to assign phases "locally"

Pancharatnam-Berry phase

 $\phi \equiv -\mathrm{Im} \ln [\langle u_0 | u_1 \rangle \langle u_1 | u_2 \rangle \cdots \langle u_{N-1} | u_0 \rangle] = - \sum_{j=0}^{N-1} \mathrm{Im} \ln \langle u_j | u_{j+1} \rangle$ $\ket{\tilde{u}_j} = e^{-i\beta_j} \ket{u_j} ~\;\; \pmb{\beta_i}$ could be arbitrary locally

Cihan Okay, Sam Roberts, Stephen D. Bartlett, and Robert Raussendorf. Topological proofs of contextuality in quantum mechanics. ArXiv:1701.01888.

Contextuality \Leftrightarrow "Chern number" $\neq 0$

Extending contextuality

Contextuality: inconsistency or frustration to assign measurement results to observables globally,although the flexibility to assign measurement results "locally"

Thank you for your attention!