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Memory Lower Bounds

We have an example of a learning problem which requires Ω(2n−k)
queries for n + k qubits of quantum memory (Chen-Cotler-Huang-Li,
Huang et al., Chen-Gong-Ye). But all existing methods for proving
quantum memory lower bounds for statistical tasks fail to say anything
when the algorithm has more than 2n qubits of quantum memory.

Problem
Are there methods for proving strong lower bounds in this regime?
More generally, what kinds of results can we prove when we have
constraints on both the amount of classical memory and the amount of
quantum memory we have?

Chen, Sitan, Cotler, Jordan, Huang, Hsin-Yuan, & Li, Jerry. ”Exponential separations between learning with and without quantum

memory.” FOCS (2021).

Huang, Hsin-Yuan, Broughton, Michael, Cotler, Jordan, Chen, Sitan, Li, Jerry, et al. ”Quantum advantage in learning from

experiments.” Science 376.6598 (2022): 1182-1186.

Chen, Sitan, Gong, Weiyuan, & Ye, Qi. ”Optimal tradeoffs for estimating Pauli observables.” arXiv preprint arXiv:2404.19105

(2024).



Entanglement Testing

A bipartite mixed state on 2n qubits is said to be separable if it can be
written as a convex combination of states of the form ρ⊗ σ, where ρ and
σ are n-qubit density matrices.

Problem
Given copies of a state which is promised to be either separable or ϵ-far in
trace distance from any separable state, how many copies are needed to
determine this?

For entangled measurements, the only known upper bound is 24n/ϵ2 via
full state tomography, and the only known lower bound is 22n/ϵ2, based
on lower bounds for quantum identity testing by Bǎdescu-O’Donnell ’20.

Bǎdescu, Costin, & O’Donnell, Ryan. ”Lower bounds for testing complete positivity and quantum separability.” LATIN. Springer,

2020. 375-386.



NISQ Lower Bounds

Chen-Cotler-Huang-Li defined the NISQ complexity class and established
(i) NISQ query lower bounds for certain oracle problems (Grover, shadow
tomography), and (ii) the construction of an oracle O for which
BPPO ⊊ NISQO ⊊ BQPO . These results motivate the following two
questions:

Problem (NISQ lower bounds)

1. What is a NISQ query lower bound for Simon’s problem? For
Forrelation?

2. Can one construct a more ‘natural’ oracle O for which
BPPO ⊊ NISQO ⊊ BQPO?

Chen, Sitan, Cotler, Jordan, Huang, Hsin-Yuan, & Li, Jerry. ”The complexity of NISQ.” Nature Communications 14.1 (2023):

6001.



Hierarchy for Replica Quantum Advantage

Aharonov-Cotler-Qi showed that there is a property testing problem
(i.e. distinguishing between a fixed Haar-random pure state and a
maximally mixed state for n qubits) which requires exponentially queries
if a quantum computer can only measure one sample at a time, but
requires only O(1) queries if the quantum computer can make joint
measurements on two samples (i.e. replicas) at a time. We say that this
is a learning task which is 1-replica hard and 2-replica easy.
In Chen-Cotler-Huang-Li ’21, we construct learning problems which are
k-replica hard and poly(n, k)-replica easy. We thus ask the following:

Problem
Are there any learning problems which are k-replica hard but k + 1 (or
k + O(1))-replica easy for any k > 1?

Aharonov, Dorit, Cotler, Jordan, & Qi, Xiao-Liang. ”Quantum algorithmic measurement.” Nature Communications 13.1 (2022):

1-9.
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(2021).



Shadow Tomography

Shadow tomography is the following task: given observables (i.e.
Hermitian operators) O1, . . . ,Om ∈ Cd×d and copies of an unknown
quantum state ρ ∈ Cd×d , estimate Tr(Oiρ) for i = 1, . . . ,m to within
error ϵ. If O1, . . . ,Om and ρ were “classical,” i.e. if they were diagonal,
then this is simply the question of estimating m statistical queries of a
distribution on d elements, which has sample complexity log(m)/ϵ2 by
Chernoff and union bound.
What is the optimal sample complexity in the quantum setting? The best
known upper bound currently, due to Bǎdescu-O’Donnell ’21 and Bene
Watts-Bostanci ’22, to, is O(log2(m) log(d)/ϵ4).

Problem
Can one improve this to match the classical bound, or is there a provable
separation?

Bǎdescu, Costin, & O’Donnell, Ryan. ”Improved quantum data analysis.” STOC (2021): 1398-1411.

Watts, Adam Bene, & Bostanci, John. ”Quantum event learning and gentle random measurements.” arXiv:2210.09155 (2022).



Instance-Optimal State Certification

Quantum state certification is the natural quantum analogue of the
classical problem of identity testing. Formally, it asks: given a reference
state σ ∈ Cd×d and copies of an unknown state ρ, determine whether
ρ = σ or whether ∥ρ− σ∥tr > ϵ.
For worst-case σ, it is well-understood what the sample complexity for
this task is, and we have tight rates. But in general, one can ask for
instance-optimal bounds, i.e. sample complexity bounds that depend on
the reference state σ. For unentangled measurements, it was shown by
Chen-Li-O’Donnell ’22 that the sample complexity is essentially
F (σ, I/d) · d3/2/ϵ2, where F is the fidelity between quantum states.

Problem
Is there an analogous result for entangled measurements?

Chen, Sitan, Huang, Brice, Li, Jerry, & Liu, Allen. ”Tight bounds for quantum state certification with incoherent measurements.”

arXiv preprint arXiv:2204.07155 (2022).

Chen, Sitan, Li, Jerry, & O’Donnell, Ryan. ”Toward instance-optimal state certification with incoherent measurements.”

arXiv:2102.13098 (2021).
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Lower Bounds for Quantum Channel Property Testing
The following learning task was studied in Aharonov-Cotler-Qi and
Chen-Cotler-Huang-Li. The task is to determine whether an unknown channel is either
(i) the maximally depolarizing channel, or (ii) a fixed Haar-random unitary channel. If
the quantum computer can only adaptively prepare a quantum state, apply the
channel, and then adaptively make a measurement, then Ω(2n/3) queries are required
to distinguish between (i) and (ii), and O(2n/2) queries are necessary. If the quantum
computer can query the channel multiple times to make a joint measurement on the
outputs of two channels, then (i) and (ii) can be distinguished with O(1) queries.
There is a generalization of this learning task for distinguishing quantum channels
belonging to certain symmetry classes. We have the following two questions:

Problem
1. There is a gap between the Ω(2n/3) query lower bound and the O(2n/2) query

upper bound. Can one prove a tight bound of Θ(2n/2)?

2. Are there other natural property testing problems (for which one can prove
interesting results) that do not involve Haar-random unitaries (or their
psuedo-random proxies)? Some progress in this direction involves learning Pauli
channels (see e.g. Chen-Zhou-Seif-Jiang ’22). Natural targets include classes of
low-depth quantum circuits, or classes of local Hamiltonians.

Aharonov, Dorit, Cotler, Jordan, & Qi, Xiao-Liang. ”Quantum algorithmic measurement.” Nature Communications (2022).

Chen, Sitan, Cotler, Jordan, Huang, Hsin-Yuan, & Li, Jerry. ”Exponential separations between learning with and without quantum

memory.” FOCS (2021).

Chen, Senrui, Zhou, Sisi, Seif, Alireza, & Jiang, Liang. ”Quantum advantages for Pauli channel estimation.” Phys. Rev. A 105.3

(2022): 032435.



Learning Hamiltonians from Long Time Evolutions

Consider the task of learning the coefficients of an n-qubit Hamiltonian
H to ε error in ℓ∞. Let H =

∑m
a=1 λaEa for −1 ≤ λa ≤ 1 and Ea a tensor

product of Paulis with support size O(1) and which is local with respect
to some underlying lattice.
Suppose we want to learn some coefficient λa.

Problem
Can we do this, when only given the ability to perform the channel
ρ 7→ e−iHtρe iHt for all t > 100? In other words, can we perform
time-efficient Hamiltonian learning with time resolution beyond a small
constant? Can we get it with total evolution time log(n)/ε?

Total evolution time 1/ε and time resolution Θ(1) is known (Bakshi et
al. ’24), but nothing beyond this.

Huang, Hsin-Yuan, Tong, Yu, Fang, Di, & Su, Yuan. ”Learning many-body Hamiltonians with Heisenberg-limited scaling.” Phys.

Rev. Lett. 130.20 (2023): 200403.

Dutkiewicz, Alicja, O’Brien, Thomas E., & Schuster, Thomas. ”The advantage of quantum control in many-body Hamiltonian

learning.” arXiv:2304.07172 (2023).

Bakshi, Ainesh, Liu, Allen, Moitra, Ankur, & Tang, Ewin. ”Structure learning of Hamiltonians from real-time evolution.”

arXiv:2405.00082 (2024).



Lower Bounds for Hamiltonian Learning from Real-Time
Evolution

Problem
Does Hamiltonian learning require a total time evolution dependent on n?

The best lower bound is 1/ε, which follows from a simple “hybrid”
argument: perturbing a coefficient by ε only affects the algorithm by
O(εT ) where T is the total evolution time, so T has to be large enough
to detect this difference.
However, not even a log(n)/ε lower bound is known here: note that
“union bound” style arguments do not work, since it is possible in simple
examples to learn a Hamiltonian with probability 1. But the best
algorithms only get Θ(log(n)/ε), precisely from a union bound.
Further, we might expect the algorithm to require a dependence on
one-spin energy maxi∈[n]

∑
a∈[m]:supp(Ea)∋i ∥λaEa∥.

Bakshi, Ainesh, Liu, Allen, Moitra, Ankur, & Tang, Ewin. ”Structure learning of Hamiltonians from real-time evolution.”

arXiv:2405.00082 (2024).



Does Amplitude Amplification Require Inverses?

Grover-style methods typically require the use of the inverse. For
example, to estimate an entry of a unitary U, a naive approach requires
1/ε2 uses of U, but if one has access to U†, one can use amplitude
estimation, which only requires 1/ε uses (of U and U†).

Problem
Can we prove that this use of U† is somehow necessary?

Note that it is possible to convert d3 uses of U to one use of U† via
Quintino et al., but this is extremely expensive as the number of qubits
grows. So, can we show a separation between having the inverse and not
for amplitude estimation, in the regime where d is sufficiently large?
This question was previously posed by Apeldoorn et al. ’23.

Quintino, Marco Túlio, Dong, Qingxiuxiong, Shimbo, Atsushi, Soeda, Akihito, & Murao, Mio. ”Reversing unknown quantum

transformations: universal quantum circuit for inverting general unitary operations.” Phys. Rev. Lett. 123.21 (2019): 210502.

Apeldoorn, Joran van, Cornelissen, Arjan, Gilyén, András, & Nannicini, Giacomo. ”Quantum tomography using state-preparation

unitaries.” SODA (2023): 1265-1318.



Polemical Discussion
In the last 5 years, there has been enormous progress in the following
directions:
1. We now have efficient quantum algorithms, even NISQ algorithms,

for learning properties of quantum states, quantum Hamiltonians,
and low-depth quantum circuits.

2. We now have large quantum query complexity separations between
different models of quantum computation (classical vs. quantum
measurement protocols, NISQ vs. BQP, etc.) for certain kinds of
property testing problems.

The tools (1) are extraordinary useful, but ‘blunt’ instruments. They also
require a fine degree of local control over a quantum system which is not
available in experimental platforms. The results (2) are very technically
and conceptually interesting, but while the problems in question are
mathematically nice they are for the most part not practically useful.

Problem
How do we go beyond (1) and (2)? For instance, how could we use a
quantum computer to search for materials which furnish
high-temperature superconductivity?

Aharonov, Dorit, Cotler, Jordan, & Qi, Xiao-Liang. ”Quantum algorithmic measurement.” Nature Communications 13.1 (2022):

1-9.
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