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Caveat
The goal of this talk is to describe the basic ideas of quantum learning to 
folks with TCS background, but maybe don’t know quantum.

There will be  physical intuition provided in this talk for why these are 
the “right” notions.

Instead, we will see how quantum learning arises naturally from a 
mathematical perspective.

TL;DR just trust me

≤ ε



What is quantum learning?
How can we learn about quantum objects and phenomena?

Arguably one of the most basic scientific questions!
• What is this object?

• Is it equal to some other 
object?

• What are its statistics?

𝜌



(Online) quantum learning
In his lab, Prof. H sets up an experiment that can produce copies 
of his quantum state  one at a time.

Question: How many copies of  does he need to learn about it?

𝜌

𝜌

𝑡



Why do we care?
• Physical phenomena are fundamentally quantum.

• It is useful for verifying the outcome of quantum computation.

• This is the natural non-commutative analogue of distribution 
learning and testing.



Classical testing and learning
Given  samples from an unknown distribution , infer some property of :

• Uniformity testing: Test if  is the uniform distribution or -far from it.

• Identity testing: Test if  is some given distribution  or -far from it.

• Density estimation: Learn  to error .

𝑛 𝑝 𝑝
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𝑝 𝑞 𝜀
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(All statements are with high probability)
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Quantum testing and learning
Given  samples from an unknown distribution , infer some property of :

• Uniformity testing: Test if  is the uniform distribution or -far from it.

• Identity testing: Test if  is some given distribution  or -far from it.

• Density estimation: Learn  to error .
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(All statements are with high probability)



Quantum testing and learning
Given  copies of an unknown quantum state , infer some property of :

• Uniformity testing: Test if  is the uniform distribution or -far from it.

• Identity testing: Test if  is some given distribution  or -far from it.

• Density estimation: Learn  to error .

𝑛 𝜌 𝜌
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𝑝 𝜀

(All statements are with high probability)



Quantum testing and learning
Given  copies of an unknown quantum state , infer some property of :

• Mixedness testing: Test if  is the maximally mixed state or -far from it.

• Identity testing: Test if  is some given distribution  or -far from it.

• Density estimation: Learn  to error .
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𝑝 𝜀

(All statements are with high probability)



Quantum testing and learning
Given  copies of an unknown quantum state , infer some property of :

• Mixedness testing: Test if  is the maximally mixed state or -far from it.

• State certification: Test if  is some given state  or -far from it.

• Density estimation: Learn  to error .

𝑛 𝜌 𝜌
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𝑝 𝜀

(All statements are with high probability)



Quantum testing and learning
Given  copies of an unknown quantum state , infer some property of :

• Mixedness testing: Test if  is the maximally mixed state or -far from it.

• State certification: Test if  is some given state  or -far from it.

• State tomography: Learn  to error .

𝑛 𝜌 𝜌

𝜌 𝜀

𝜌 𝜎 𝜀

𝜌 𝜀

(All statements are with high probability)

[O’Donnell, Wright’15]

[Bădescu, O’Donnell, Wright’15]

[Haah et al’16], [O’Donnell, Wright’16]



Classical distributions
A distribution over  elements is specified by a vector  on 
the simplex, i.e. 

, for all 

𝑑 𝑝 ∈ ℝ𝑑

𝑝𝑥 ≥ 0 𝑥 = 1, …,  𝑑

∑  𝑝𝑥 = 1

𝑝     =



Quantum “distributions”

A mixed state over  elements is specified by a matrix  on 
the spectrahedron, i.e. a Hermitian matrix satisfying

, for all 

𝑑 𝜌 ∈ ℂ𝑑×𝑑

𝑝𝑥 ≥ 0 𝑥 = 1, …,  𝑑

∑  𝑝𝑥 = 1

𝑝     =



Quantum “distributions”
A mixed state over  elements is specified by a matrix  on 
the spectrahedron, i.e. a Hermitian matrix satisfying

𝑑 𝜌 ∈ ℂ𝑑×𝑑

𝜌 ≽ 0
tr(𝜌) = 1

𝑝     =



Quantum “distributions”
By the spectral theorem, , where  is a unitary 
(rotation) matrix, and  is a diagonal matrix with nonnegative 
entries which sum to 1.

𝜌 = 𝑈𝜆𝑈∗ 𝑈
𝜆

𝜌 =

𝑈 λ 𝑈∗



Quantum distributions and pure states
More formally,

where the  are pure states, i.e. -dimensional unit vectors, 
and  are nonnegative and satisfy .

In this way,  can be thought of as a probability distributions over 
pure states.

|ϕi⟩ d
λi ∑ λi = 1

ρ

ρ =
d

∑
i=1

λiϕiϕ†
i =

d

∑
i=1

λi |ϕi⟩⟨ϕi |



Braket notation: be not afraid!
 is just a column vector with label ,  is the corresponding row 

vector, i.e. .

Folks kinda stick in whatever they want for —it’s just an index!

|x⟩ x ⟨x |
x†

|x⟩⟨x | = xx⊤

⟨x |y⟩ = x†y
⟨x |ρ |x⟩ = x†ρx

|x1⟩ |x2⟩ = |x1x2⟩ = x1 ⊗ x2

x



Quantum measurement
One does not simply sample from a quantum state!

To interact with a quantum state, one must specify a 
measurement .ℳ

𝜌

𝑋 ∼ 𝑝(𝜌,  ℳ)

ℳ
 is a classical distribution over 

measurement outcomes that depends on 
the relationship between  and 

𝑝

𝜌 ℳ



Measuring quantum distributions
A measurement is a collection of  matrices  such 
that:
1.   for all , and
2.  

 is referred to as a positive-operator valued measure (POVM).

The outcome of measuring  using this POVM is that we observe  with 
probability 

𝑑 × 𝑑 ℳ = {𝑀1, …, 𝑀ℓ}
𝑀𝑖 ≽ 0 𝑖 = 1, …, ℓ
𝑀1 + … + 𝑀ℓ = 𝐼

ℳ

𝜌 𝑀𝑖

pi = tr(ρMi)



Measurement and collapse
Additionally, measuring a state collapses the state.

Formally, if , and  where the  are known as the 
Kraus operators, then if you measure  and get outcome , the state 
collapses to a state

Intuitively, the more informative the measurement is, the more destructive it 
is to the state.

ℳ = {𝑀1, …, 𝑀ℓ} Mi = BiB†
i Biρ Mi

ρ →
B†

i ρBi

tr(B†
i ρBi)



Example 1
Consider the trivial POVM . 

If we measure a state  with this POVM, we get the outcome  
deterministically, i.e. we learn nothing.

 also trivially collapses, i.e. .

ℳ = {I}

ρ I

ρ ρ → ρ



Example 2
Given a classical distribution  over , form 

and consider the POVM ℳ . 

Then, the probability of seeing the th outcome is , so this recovers the classical 
setting. 

Also, if we see outcome , then , i.e.  collapses completely.

𝑝 {1, …, 𝑑}

𝜌 =  
𝑝1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑝𝑑

= { |e1⟩⟨e1 | , |e2⟩⟨e2 | , …, |ed⟩⟨ed |}

𝑖 𝑝𝑖

i ρ → |ei⟩⟨ei | ρ



Exponentiality in quantum learning
A single qubit quantum state is described by a

So,  non-interacting qubits is described by , and a more 
general  qubit state is an arbitrary element of this space.

In general, we are working with “distributions” over exponentially large 
spaces, i.e. , so ideally we want runtimes like 

How can we efficiently learn interesting things in this very high dimensional 
space?

|ϕ⟩ ∈ ℂ2

n |ϕ1⟩… |ϕn⟩ ∈ ℂ2n

n

d = 2n poly log(d)



Exponentiality in quantum learning (cont.)
One cannot avoid  sample complexity and runtime for learning 
general quantum states.

But we don’t care about learning everything about all quantum states!

• Learning restricted properties? (shadow estimation)
• Learning restricted classes of states?

See Anurag’s talk!

poly(d)



Exponentiality in quantum learning (cont.)
Because the systems are over exponentially large domains, we 
also can’t afford to perform arbitrary measurements.

We need to design quantum circuits that efficiently prepare the 
measurements that we wish to make.

What are some ways of efficiently preparing interesting classes of 
quantum circuits/measurements?  see Jonas’s talk!→



Quantum systems and Hamiltonians
The time evolution of a quantum system is defined by an operator 
known as a Hamiltonian.

Finding ground states of Hamiltonians  solving CSPs
Gibbs sampling  sampling graphical models

Learning local Hamiltonians  see Ewin’s talk!

⟺
⟺

→



Quantum learning in the real world
So we don’t have general, fault-tolerant quantum computation yet.

But we do have intermediate-scale devices.
• Google Sycamore (2019) has ~50 qubits
• IBM Condor (2023) has ~1100 qubits

These are so-called noisy intermediate scale quantum (NISQ) devices.

Can we design learning algorithms for such devices?  See Xun’s talk!→



Resource constrained quantum learning
One key resource that NISQ devices are very constrained on is 
quantum memory: the ability to persistently store quantum 
information.

My (and my co-organizers) work: 
Can we develop a theory for learning on quantum memory-

bounded devices?



Resource constrained quantum learning

One of the first unconditional demonstrations of quantum 
advantage ever!



Shameless plug
UW has a fledgling quantum computation group!

Come work with us!


