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Part I: Why random unitaries? A positive outlook.



A quantum state’s shadow

» Prediction of observables (O) from classical snapshots of
state.



A quantum state’s shadow

» Prediction of observables (O) from classical snapshots of
state.

» Rotate state by random quantum operation (unitary) and
measure.

Aaronson, STOC 2018;
Huang, Kueng, Preskill, Nat. Phys 2021



Build-A-Shadow

» Average measurement channel:
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Build-A-Shadow

» Average measurement channel:

M(l)) == Zu > betoay [(¢1U1B)? Ulb) (b UT

classical randomness

quantum randomness

» Classical shadow from samples and inverting M:

( S ML Uilby) b|UT>

» Estimate (O), by Tr[pO].
» Guarantees from Var(Tr[p0]).

» 3rd moments of Haar measure sufficel!
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Part Il: Unitary designs and pseudorandom unitaries



Quantum pseudoranomness

» Haar random unitaries require exponentially deep circuits.
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Quantum pseudoranomness

» Haar random unitaries require exponentially deep circuits.

» Haar random unitaries are hard to learn from counting

arguments.

() (b)

any k-query experiments
% Pseudorandom unitaries:

Quantum circuit

l T any efficient experiments « (s U Haar
random?
U m
Exponential depth Extremely low depth
Haar-random unitary random quantum circuit An experiment Observer

» Unitary k-design: Indistinguishable from k copies of U.
» PRU'’s: Indistinguishable in polynomial time.



Unitary designs

Unitary k-design v matches the kth moments of Haar measure

k k
o) = of

for
®((A) := Ey., [UWAUT:W} .

> Example: Moments of U(1) Ege'™® = 0, but
ei2><0 T ei2><7r 75 0.



Additive vs. multiplicative error approximate designs

Moment operator:
¢,(A):= E [U‘X’kAUT’@k} .
U~v
Additive error approximate designs:
[®py — Duflo <.

Multiplicative error approximte designs:

(1-2)oy < &g < (14¢)0y,

» CP ordering: A= B if B— Ais completely positive.



Information theoretical quantum pseudorandomness

> Approximate designs look Haar in any experiment that queries
k-copies.



Information theoretical quantum pseudorandomness
> Approximate designs look Haar in any experiment that queries
k-copies.
» Additive error 1/superpoly(r)-approximate designs property
imply non-adaptive security.
» Multiplicative error 1/superpoly(n)-approximate designs
property implies adaptive security.

Any adaptive Parallel queries + Bell projection
quantum experiment

Yi

Ty
Wa
Wy

oo




PRU'’s

Definition (Pseudorandom unitaries)

A family of quantum circuits {U/}fé{o 1y With m = poly(n) that
can be efficiently prepared. For any poly-time algorithm AY(1")
that queries U any number of times, satisfies

Pr/[AY(1") = 1] = Pry,, [AY(1") = 1].

(a) (b)

~any k-query experiments T ieutt
X Pseudorandom unitaries: =

[ T any efficient experiments
.

Exponential depth Extremely low depth
Haar-random unitary random quantum circuit An experiment Observer



Part Il: Random quantum circuits converge to
designs



Random quantum circuits

» Typically refers to circuits with gates drawn iid.

» Example: Brickwork circuits with gates drawn from Haar
measure.

» Depth d corresponds to d-fold convolution: yﬁ‘{mc 6-

» Random walk on unitary group.



Unitary designs from spectral gaps

Gap of k-th moment operator:

U eU - B U e U

A =1-
k(y) U~v Ur~py

o0

-~

=:g(v,k)

» Submultiplicative g(v*9, k) < g(v, k)“.
> 14 IS g(l/, k)22”k—approximate deSIgnS Brand3do, Harrow, Horodecki, Comm

Math. Phys 2016

Lemma

v*9 js c-approximate k-design in depth

B>~

d> —k(2nk + log(1/¢))



History of spectral gap estimates

Random reversible circuits (3-local all-to-all):

> Gowers 1996: A, = poly 1(nk) = Approximate
permutation designs in depth poly(nk)(2nk + log(1/¢)).

» Hoory, Magen, Myers, Rackoff: A, = Q(n=3k=3)
» Brodsky, Hoory : A, = Q(n2k™1)
> He and O'Donnell: A, = Q(n~ k1)



History of spectral gap estimates

Random reversible circuits (3-local all-to-all):

> Gowers 1996: A, = poly 1(nk) = Approximate
permutation designs in depth poly(nk)(2nk + log(1/€)).

» Hoory, Magen, Myers, Rackoff: A, = Q(n=3k=3)
» Brodsky, Hoory : A, = Q(n=2k~1)
> He and O'Donnell: A, = Q(n~ k1)

Random quantum circuits (2-local all-to-all):

» Brown and Viola: First order expansion of the gap,
A = const./n + O, (1/n?).

» Harrow and Low/Brandao, Horodecki: A, ;3 = Q(1/n).
» Brand3o, Harrow, and Horodecki: A, = Q(n~1k~105)
> H: A, = Q(n tk5-0()



Other constructions of approximate designs at FOCS 2024

All presented in session 2C, 1:30-2:30pm on Monday!!!

» Haah, Liu, and Tan: A, (Pauli rotations) = Q(kil). =
multiplicative error approximate designs in (1D) depth
O(n?k).

» Chen, Docter, Xu, Bouland, Brandao, Hayden: Construction
of additive error designs in depth O(kpoly(n)).

» Metger, Poremba, Sinha, Yuen, Additive error designs in
depth O(kpoly(n)).



Main result: k-independent gaps

Theorem (k-independent gap)

For 3-local all-to-all random reversible and 2-local all-to-all random
quantum circuits A, = Q(n~3) for all k < 2"/2.
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Main result: k-independent gaps

Theorem (k-independent gap)

For 3-local all-to-all random reversible and 2-local all-to-all random
quantum circuits A, = Q(n~3) for all k < 2n/2,

Theorem (Quasi-optimal gap)

For all k < 27/%1 e have A, = Q(n_l), which is optimal (up to
polylog factors) for random reversible and quantum circuits.

Corollary (Designs in linear depth)

Random brickwork circuits form c-approximate designs in depth
polylog(k)(2nk + log(1/<)).



Elements of the proof

» Gap of random reversible circuits from expanding Cayley
graph of symmetric Eroup Kassabov, Inventionae 2010.

> Relate to gap of random reversible circuits via “PFC”
ensemble Metger, Poremba, Sinha, Yuen, FOCS 2024

PEC= 3 e x>0 (Dot x o €

xe{0,1}" xe{0,1}" random Clifford

/

random permutation,7€Ssn random phase,f:{0,1}7—{0,1}

» Approximate components by random walks in subgroups.
» Universality theorem for random quantum circuits v, Quantum 2022

» Techniques developed for frustration-free Hamiltonians:
Detectability lemma and quantum union bound.



Part IV. Random unitaries in extremely low depth
(What the spectral gap can't see)



Random unitaries from gluing

..................... b
(2) k-design (b) ©)
T (] k-design
——

~ log(k/¢)

Theorem

The product of two k- overlapping on £ > log,(nk /<)
qubits form e-approximate unitary on the full space.



Approximate designs from gluing

» Use random quantum circuits in the blocks.
» Plug in polylog(k)(2nk + log(1/<))

Theorem
“Coarse-grained” random quantum circuits generate e-approximate
designs in depth polylog(k)klog(n/c).

A AN I NN approximatekdesign

2log(nk? /5) %

Chen, Haah, H, Liu, Metger, Tan, preprint 2024



How about classical circuits

Classical Vs Quantum
OutputA: 1 0 Both output states A and B
OutputB: 0 1 look Haar random
; % %
e}
©
<
wn
Input A:
Input B: 1

» Classical circuits require linear depth to be approximately
2-wise independent.



Optimality of our results

Theorem

%—approximate 2-designs require Q(log()) depth.

» Lower bound on anticoncentration in any basis.
Theorem

PRU's require w(log(n)) depth.

» 1D quantum circuits of depth O(log(7)) can be efficiently

|earned. Huang, Liu, Broughton, Kim, Anshu, Landau, McClean, STOC 2023



PRUs from gluing
Use "PFC" in the blocks:

Theorem

If quantum secure one-way functions exist, PFC is a PRU. The
depth of PFC is poly(n).

Theorem

PRU's can be generated in depth polylog(n) on any geometry,
including a 1D line.

pseudorandom unitary

Metger, Poremba, Sinha, Yuen, FOCS 2024; Huang, Ma, preprint 2024



How to prove the gluing lemma?

Lemma (Unitary designs from EPR states)
A random unitary ensemble £ forms an c-approximate unitary
k-design with error

4nk

= <1+2f+1>'|| (@ — &) @ T)(PEPRY ||




How to prove the gluing lemma?

Lemma (Unitary designs from EPR states)
A random unitary ensemble £ forms an c-approximate unitary
k-design with error

4nk

= <1+2f+1>'|| (@ — &) @ T)(PEPRY ||

» CP ordering A < B iff A® 1(P*'R) < B ® 1(PFPR).

» Analyse spectrum of Choi states.

Brand3o, Harrow, Horodecki, Comm. Math. Phys. 2016



Weingarten and permutations

» Expand blocks in

OH(A) = Eyng,[UP A(UN ] = Y Tr(Ac ) We(or 1 22) 7.
,TES)



Weingarten and permutations

» Expand blocks in permutations:

®p(A) = Eung, [UTAUN® ] = Y (Aot We(or H22)
o, 7TES,

» Exploit approximate orthogonality of permutations:

/(2
|G — Lirxrt]oo < 72 G,WE%/zTr[mf]

Harrow, Lett. in Math. Phys. 2024



Proof sketch

1
Oy~ Z |y (7], (r| = WTI‘[FO]
TES,



Proof sketch

1
by ~ Z |y (7], (r| = WTT[WO]

TES)

onszonas= 3 LT || = 3




Proof sketch

oux Y 00l (= 5

TES,

Dpi1p0Py23 = Z ﬂ“ = Z
e e o

» Use approximate orthogonality again:

D1 00Pp 03~ § = E ~ P13
ﬁESk




V. Applications



Hardness of quantum learning

Trivial phase

Shallow
2D cireuit

Product state

» Hard to distinguish trivial order and toric code after appyling
PRU.

» Topological order up to circuits of subextensive depth.

» Distinguishing random pure states from maximally mixed
Using Single COpy measurements. Chen, Cotler, Huang, and Li, FOCS 2022



Power of time-reversal in quantum learning

Short-range

They look |-
the same

ability to

» Distinguish 2D local circuit Upp from Uj, augmented with a

long range interaction e/®%i4i.

> Time-reversal allows to “see lightcones”.



Shallow shadows

Corollary
Classical shadows can be obtained with log(n)-depth circuits:

» Use the same inversion map as for Haar random
measurement-channel.

» Learn V| observables O with O(maxgp ||O||1 log(M)) samples.
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Shallow shadows

Corollary
Classical shadows can be obtained with log(n)-depth circuits:

» Use the same inversion map as for Haar random
measurement-channel.

» Learn V| observables O with O(maxgp ||O||1 log(M)) samples.
» || o ||1 scaling is bias from wrong inversion map.

» Sufficient for fidelity estimation.



Outlook

Summary

» Optimal k-dependence for random reversible and random
quantum circuits: resolved conjectures from 1996 and 2009.

» Also resolved robust Brown-Susskind conjecture.
» |og-depth convergence for random quantum circuits.
» Plenty of hardness results for learning.
Open problems
» |og-depth random quantum circuits with iid gates!
» Is the optimal scaling log() + k for approximate designs?
» Are random quantum circuits with iid gates PRU’s?

approximate k-design

N %
2log(nk?/2)




Why is the purity not a counterexample?

» Unitary 2-design have maximal entanglement but shallow
circuits do not!

> ETTra(]) (V)2 < (1+€)2720)?



Why is the purity not a counterexample?

» Unitary 2-design have maximal entanglement but shallow
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Why is the purity not a counterexample?

» Unitary 2-design have maximal entanglement but shallow
circuits do not!

> ETr[Tra(]0)(0])?] < (14 )2~ )72

> Relative errors only for psd observables. But

ETr [Tra(0)(0])?] = ETr [(|0)(0])®21a © Fg] .

» Relative errors only in the SWAP-test probability
3+ T[Tra(lo) ()2,



