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Abstract

High-performance concurrent priority queues are essential for applications such as task
scheduling and discrete event simulation. Unfortunately, even the best performing
implementations do not scale past a number of threads in the single digits. This
is because of the sequential bottleneck in accessing the elements at the head of the
queue in order to perform a DeleteMin operation.

In this thesis, we present the SprayList, a scalable priority queue with relaxed
ordering semantics. Starting from a non-blocking SkipList, the main innovation be-
hind our design is that the DeleteMin operations avoid a sequential bottleneck by
“spraying” themselves onto the head of the SkipList list in a coordinated fashion. The
spraying is implemented using a carefully designed random walk, so that DeleteMin
returns an element among the first 𝑂(𝑝 log3 𝑝) in the list, with high probability, where
𝑝 is the number of threads. We prove that the running time of a DeleteMin operation
is 𝑂(log3 𝑝), with high probability, independent of the size of the list.

Our experiments show that the relaxed semantics allow the data structure to scale
for high thread counts, comparable to a classic unordered SkipList. Furthermore, we
observe that, for reasonably parallel workloads, the scalability benefits of relaxation
considerably outweigh the additional work due to out-of-order execution.

Thesis Supervisor: Nir Shavit
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The necessity for increasingly efficient, scalable concurrent data structures is one of

the main software trends of the past decade. Efficient concurrent implementations

are known for several fundamental data structures, such as hash tables [17], linked

lists [14], SkipLists [13], pools [4], and trees [5]. On the other hand, several impossi-

bility results [12, 3] suggest that not all data structures can have efficient concurrent

implementations, due to an inherent sequentiality which follows from their sequential

specification.

A classic example of such a data structure is the priority queue, which is widely

used in applications such as scheduling and event simulation, e.g. [20]. In its simplest

form, a priority queue stores a set of key-value pairs, and supports two operations:

Insert, which adds a given pair to the data structure and DeleteMin, which re-

turns the key-value pair with the smallest key currently present. Sequential priority

queues are well understood, and classically implemented using a heap [19]. Unfor-

tunately, heap-based concurrent priority queues suffer from both memory contention

and sequential bottlenecks, not only when attempting to delete the single minimal

key element at the root of the heap, but also when percolating small inserted elements

up the heap.
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SkipList-based implementations were proposed [21, 27, 20] in order to reduce these

overheads. SkipLists are randomized list-based data structures which classically sup-

port Insert and Delete operations [23]. A SkipList is composed of several linked

lists organized in levels, each skipping over fewer elements. SkipLists are desirable

because they allow priority queue insertions and removals without the costly percola-

tion up a heap or the rebalancing of a search tree. Highly concurrent SkipList-based

priority queues have been studied extensively and have relatively simple implemen-

tations [13, 24, 16, 20]. Unfortunately, an exact concurrent SkipList-based priority

queue, that is, one that maintains a linearizable [16] (or even quiescently-consistent

[16]) order on DeleteMin operations, must still remove the minimal element from the

leftmost node in the SkipList. This means that all threads must repeatedly compete

to decide who gets this minimal node, resulting in a bottleneck due to contention,

and limited scalability [20].

An interesting alternative has been to relax the strong ordering constraints on the

output for better scalability. An early instance of this direction is the seminal work by

Karp and Zhang [18], followed up by several other interesting proposals, e.g. [9, 6, 25],

designed for the (synchronous) PRAM model. Recently, there has been a surge of

interest in relaxed concurrent data structures, both on the theoretical side, e.g. [15]

and from practitioners, e.g. [22]. In particular, Wimmer et al. [28] explored trade-offs

between ordering and scalability for asynchronous priority queues. However, despite

all this effort, it is currently not clear whether it is possible to design a relaxed priority

queue which provides both ordering guarantees under asynchrony, and scalability

under high contention for realistic workloads.

In this paper, we take a step in this direction by introducing the SprayList, a

scalable relaxed priority queue implementation based on a SkipList. The SprayList

provides probabilistic guarantees on the relative priority of returned elements, and on

the running time of operations. At the same time, it shows fully scalable throughput
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for up to 80 concurrent threads under high-contention workloads.

The main limitation of past SkipList-based designs was that all threads clash on

the first element in the list. Instead, our idea will be to allow threads to “skip ahead”

in the list, so that concurrent attempts try to remove distinct, uncontended elements.

The obvious issue with this approach is that one cannot allow threads to skip ahead

too far, or many high priority (minimal key) elements will not be removed.

Our solution is to have the DeleteMin operations traverse the SkipList, not along

the list, but via a tightly controlled random walk from its root. We call this operation

a spray. Roughly, at each SkipList level, a thread flips a random coin to decide how

many nodes to skip ahead at that level. In essence, we use local randomness and

the random structure of the SkipList to balance accesses to the head of the list. The

lengths of jumps at each level are chosen such that the probabilities of hitting nodes

among the first 𝑂(𝑝 log3 𝑝) are close to uniform. (See Figure 1-1 for the intuition

behind sprays.)

While a DeleteMin in an exact priority queue returns the element with the small-

est key—practically one of the 𝑝 smallest keys if 𝑝 threads are calling DeleteMin

concurrently— the SprayList ensures that the returned key is among the 𝑂(𝑝 log3 𝑝)

smallest keys (for some linearization of operations), and that each operation com-

pletes within log3 𝑝 steps, both with high probability. Our design also provides anti-

starvation guarantees, in particular, that elements with small keys will not remain in

the queue for too long. The formal proof of these guarantees is the main technical

contribution of our paper.

Specifically, our proofs are inspired by an elegant argument proving that sprays are

near-uniform on an ideal (uniformly-spaced) SkipList, given in Section 3.2. However,

this argument breaks on a realistic SkipList, whose structure is random. Precisely

bounding the node hit distribution on a realistic SkipList is significantly more in-
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Figure 1-1: The intuition behind the
SprayList. Threads start at height 𝐻

and perform a random walk on nodes at
the start of the list, attempting to

acquire the node they land on.

H

...
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Figure 1-2: A simple example of a spray,
with no padding. Green nodes are

touched by the Spray, and the thread
stops at the red node. Orange nodes

could have been chosen for jumps, but
were not.

volved1 Given the node hit distribution, we can upper bound the probability that

two sprays collide. In turn, this upper bounds the expected number of operation

retries, and the amount of time until a specific key is removed, given that a nearby

key has already been removed. The uniformity of the spray distribution also allows

us to implement an optimization whereby large contiguous groups of claimed nodes

are physically removed by a randomly chosen cleaner thread.

In sum, our analysis gives strong probabilistic guarantees on the rank of a removed

key, and on the running time of a Spray operation. Our algorithm is designed to be

lock-free, but the same spraying technique would work just as well for a lock-based

SkipList.

A key question is whether a priority queue with such relaxed guarantees can

be useful in practice. We answer this question in the affirmative, by examining the

practical performance of the SprayList through a wide series of benchmarks, including

synthetic high-contention tests, discrete-event simulation, and running single-source

shortest paths on grid, road network, and social graphs.

We compare our algorithm’s performance to the quiescently-consistent priority

queue of Lotan and Shavit [21], the state-of-the-art SkipList-based priority queue

implementation of Lindén and Jonsson [20] and the recent 𝑘-priority queue of Wimmer

1We perform the analysis in a restricted asynchronous model, defined in Section 3.1.
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et al. [28].2

Our first finding is that our data structure shows fully scalable throughput for

up to 80 concurrent threads under high-contention workloads. We then focus on the

trade-off between the strength of the ordering semantics and performance. We show

that, for discrete-event simulation and a subset of graph workloads, the amount of

additional work due to out-of-order execution is amply compensated by the increase

in scalability.

Related Work. The first concurrent SkipList was proposed by Pugh [24], while

Lotan and Shavit [21] were first to employ this data structure as a concurrent priority

queue. They also noticed that the original implementation is not linearizable, and

added a time-stamping mechanism for linearizability. Herlihy and Shavit [16] give a

lock-free version of this algorithm.

Sundell and Tsigas [27] proposed a lock-free SkipList-based implementation which

ensures linearizability by preventing threads from moving past a list element that has

not been fully removed. Instead, concurrent threads help with the cleanup process.

Unfortunately, all the above implementations suffer from very high contention under

a standard workload, since threads are still all continuously competing for a handful

of locations.

Recently, Lindén and Jonsson[20] presented an elegant design with the aim of

reducing the bottleneck of deleting the minimal element. Their algorithm achieves

a 30 − 80% improvement over previous SkipList-based proposals; however, due to

high contention compare-and-swap operations, its throughput does not scale past 8

concurrent threads. To the best of our knowledge, this is a limitation of all known

exact priority queue implementations.

Other recent work by Mendes et al. [7] employed elimination techniques to adapt

to contention in an effort to extend scalability. Even still, their experiments do not
2Due to the complexity of the framework of [28], we only provide a partial comparison with our

algorithm in terms of performance.
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show throughput scaling beyond 20 threads.

Another direction by Wimmer et al. [28] presents lock-free priority queues which

allow the user to dynamically decrease the strength of the ordering for improved

performance. In essence, the data structure is distributed over a set of places, which

behave as exact priority queues. Threads are free to perform operations on a place

as long as the ordering guarantees are not violated. Otherwise, the thread merges

the state of the place to a global task list, ensuring that the relaxation semantics

hold deterministically. The paper provides analytical bounds on the work wasted

by their algorithm when executing a parallel instance of Dijkstra’s algorithm, and

benchmark the execution time and wasted work for running parallel Dijkstra on a set

of random graphs. Intuitively, the above approach provides a tighter handle on the

ordering semantics than ours, at the cost of higher synchronization cost. The relative

performance of the two data structures depends on the specific application scenario,

and on the workload.

Our work can be seen as part of a broader research direction on high-throughput

concurrent data structures with relaxed semantics [15, 26]. Examples include con-

tainer data structures which (partially or entirely) forgo ordering semantics such as

the rendezvous mechanism [2] or the CAFE task pool [4]. Recently, Dice et al. [10]

considered randomized data structures for highly scalable exact and approximate

counting.
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Chapter 2

The SprayList Algorithm

In this section, we describe the SprayList algorithm. The Search and Insert opera-

tions are identical to the standard implementations of lock-free SkipLists [13, 16], for

which several freely available implementations exist, e.g. [13, 8]. In the following, we

assume the reader is familiar with the structure of a SkipList, and give an overview

of standard lock-free SkipList operations.

2.1 The Classic Lock-Free SkipList

Our presentation follows that of Fraser [16, 13], and we direct the reader to these

references for a detailed presentation.

General Structure. The data structure maintains an implementation of a set,

defined by the bottom-level lock-free list. (Throughout this paper we will use the

convention that the lowest level of the SkipList is level 0.) The SkipList is comprised

of multiple levels, each of which is a linked list. Every node is inserted deterministi-

cally at the lowest level, and probabilistically at higher levels. It is common for the

probability that a given node is present at level ℓ to be 2−ℓ. (Please see Figure 1-1

for an illustration.) A key idea in this design is that a node can be independently

inserted at each level. A node is present if it has been inserted into the bottom list;
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insertion at higher levels is useful to maintain logarithmic average search time.

Pointer Marking. A critical issue when implementing lock-free lists is that nodes

might “vanish” (i.e., be removed concurrently) while some thread is trying access

them. Fraser and Harris [13] solve this problem by reserving a marked bit in each

pointer field of the SkipList. A node with a marked bit is itself marked. The bit is

always checked and masked off before accessing the node.

Search. As in the sequential implementation, the SkipList search procedure looks

for a left and right node at each level in the list. These nodes are adjacent om the

list, with key values less-than and greater-than-equal-to the search key, respectively.

The search loop skips over marked nodes, since they have been logically removed

from the list. The search procedure also helps clean up marked nodes from the list: if

the thread encounters a sequence of marked nodes, these are removed by updating the

unmarked successor to point to the unmarked predecessor in the list at this level. If

the currently accessed node becomes marked during the traversal, the entire search is

re-started from the SkipList head. The operation returns the node with the required

key, if found at some level of the list, as well as the list of successors of the node.

Delete. Deletion of a node with key 𝑘 begins by first searching for the node. If the

node is found, then it is logically deleted by updating its value field to NULL. The next

stage is to mark each link pointer in the node. This will prevent an new nodes from

being inserted after the deleted node. Finally, all references to the deleted node are

removed. Interestingly, Fraser showed that this can be done by performing a search

for the key: recall that the search procedure swings list pointers over marked nodes.

Cleaners / Lotan-Shavit DeleteMin. In this context, the Lotan-Shavit [21]

DeleteMin operation traverses the bottom list attempting to acquire a node via a

locking operation. Once acquired, the node is logically deleted and then removed via

a search operation. We note that this is exactly the same procedure as the periodic

cleaner operations in our design.
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Insert. A new node is created with a randomly chosen height. The node’s pointers

are unmarked, and the set of successors is set to the successors returned by the search

method on the node’s key. Next, the node is inserted into the lists by linking it

between the successors and the predecessors obtained by searching. The updates are

performed using compare-and-swap. If a compare-and-swap fails, the list must have

changed, and the call is restarted. The insert then progressively links the node up to

higher levels. Once all levels are linked, the method returns.

2.2 Spraying and Deletion

The goal of the Spray operation is to emulate a uniform choice among the 𝑂(𝑝 log3 𝑝)

highest-priority items. To perform a Spray, a process starts at the front of the

SkipList, and at some initial height ℎ. (See Figure 1-2 for an illustration.)

At each horizontal level ℓ of the list, the process first jumps forward for some

small, randomly chosen number of steps 𝑗ℓ ≥ 0. After traversing those nodes, the

process descends some number of levels 𝑑ℓ, then resumes the horizontal jumps. We

iterate this procedure until the process reaches a node at the bottom of the SkipList.

Once on the bottom list, the process attempts to acquire the current node. If

the node is successfully acquired, the thread starts the standard SkipList removal

procedure, marking the node as logically deleted. (As in the SkipList algorithm,

logically deleted nodes are ignored by future traversals.) Otherwise, if the process

fails to acquire the node, it either re-tries a Spray, or, with low probability, becomes

a cleaner thread, searching linearly through the bottom list for an available node.

We note that, as with other SkipList based Priority Queue algorithms, the runtime

of a Spray operation is independent of the size of the SkipList. This is because,

with high probability, the Spray operation only accesses pointers belonging to the

𝑂(𝑝 log3 𝑝) items at the head of the list.
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Spray Parameters. An efficient Spray needs the right combination of parameters.

In particular, notice that we can vary the starting height, the distribution for jump

lengths at each level, and how many levels to descend between jumps. The constraints

are poly-logarithmic time for a Spray, and a roughly uniform distribution over the

head of the list. At the same time, we need to balance the average length of a Spray

with the expected number of thread collisions on elements in the bottom list.

We now give an overview of the parameter choices for our implementation. For

simplicity, consider a SkipList on which no removes have yet occurred due to Spray

operations. We assume that the data structure contains 𝑛 elements, where 𝑛≫ 𝑝.

Starting Height. Each Spray starts at list level 𝐻 = log 𝑝 + 𝐾, for some constant

𝐾. (Intuitively, starting the Spray from a height less than log 𝑝 leads to a high

number of collisions, while starting from a height of 𝐶 log 𝑝 for 𝐶 > 1 leads to Sprays

which traverse beyond the first 𝑂(𝑝 log3 𝑝) elements.) We may assume that log 𝑝 is

integral since if it is not, we can choose 𝑝 ≤ 𝑝′ < 2𝑝 so that log 𝑝′ is integral. This

does not affect anything in the theorems or analysis that follow.

Jump Length Distribution. We choose the maximum number of forward steps 𝐿

that a Spray may take at a level to be 𝐿 = 𝑀 log3 𝑝, where 𝑀 ≥ 1 is a constant.

Thus, the number of forward steps at level ℓ, is uniformly distributed in the interval

[0, 𝐿].

A intuitive reason for a choice of at least log 𝑝 is that a randomly built SkipList

is likely to have chains of log 𝑝 consecutive elements of height one, which can only be

accessed through the bottom list. We wish to be able to choose uniformly among such

elements, and we therefore need 𝐿 to be at least log 𝑝. (While the same argument

does not apply at higher levels, our analysis shows that choosing this jump length 𝑗ℓ

yields good uniformity properties.) Our specific choice of 𝑀 log3 𝑝 is simply because

we require strong concentration inequalities which simply do not hold for smaller

choices of jump length.
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Levels to Descend. The final parameter is the choice of how many levels to descend

after a jump. A natural choice, used in our implementation, is to descend one level

at a time, i.e., perform horizontal jumps at each SkipList level.

In the analysis, we consider a slightly more involved random walk, which descends

𝐷 = ⌈log log 𝑝⌉ consecutive levels after a jump at level ℓ, unless doing so would make

it descend to negative levels, in which case it descends to the bottom level of the

SkipList. We must always traverse the bottom level of the SkipList (or we will never

hit SkipList nodes of height 1) so we round 𝐻 down to the nearest multiple of 𝐷. We

note that we found empirically that setting 𝐷 = 1 yields similar performance.

In the following, we parametrize the implementation by 𝐻, 𝐿 and 𝐷 such that 𝐷

evenly divides 𝐻. The pseudocode for Spray(𝐻,𝐿,𝐷) is given below.

𝑥← head /* 𝑥 = pointer to current location */
ℓ← 𝐻 /* ℓ is the current level */
while ℓ > 0 do

Choose 𝑗ℓ ← Uniform[0, 𝐿] /* random jump */
Walk 𝑥 forward 𝑗ℓ steps on list at height ℓ /* traverse at this level */
ℓ← ℓ−𝐷 /* descend 𝐷 levels */

/* Walk along the bottom */
Choose 𝑗0 ← Uniform[0, 𝐿] Walk 𝑥 forward 𝑗0 steps on list at height 0
Return 𝑥

Algorithm 1: Pseudocode for Spray(𝐻,𝐿,𝐷). Recall that the bottom level of
the SkipList has height 0.

Node Removal. Once it has successfully acquired a node, the thread proceeds to

remove it as in a standard lock-free SkipList [13, 16]. More precisely, the node is

logically deleted, and its references are marked as invalid.

In a standard implementation, the final step would be to swing the pointers from

its predecessor nodes to its successors. However, a spraying thread skips this step and

returns the node. Instead, the pointers will be corrected by cleaner threads: these

are randomly chosen DeleteMin operations which linearly traverse the bottom of the

list in order to find a free node, as described in Section 2.2.1.
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2.2.1 Optimizations

Padding. A first practical observation is that, for small (constant) values of 𝐷,

the Spray procedure above is biased against elements at the front of the list. For

example, it would be extremely unlikely for the second element in the list to be hit

by a walk for 𝐷 = 1. To circumvent this bias, in such cases, we simply “pad" the

SkipList: we add 𝐾(𝑝) dummy entries in the front of the SkipList. If a Spray lands

on one of the first 𝐾(𝑝) dummy entries, it restarts. We choose 𝐾(𝑝) such that the

restart probability is low, while, at the same time, the probability that a node in the

interval [𝐾(𝑝) + 1, 𝑝 log3 𝑝] is hit is close to 1/𝑝 log3 𝑝.

Cleaners. Before each new Spray, each thread flips a low-probability coin to decide

whether it will become a cleaner thread. A cleaner thread simply traverses the

bottom-level list of the SkipList linearly (skipping the padding nodes), searching for

a key to acquire. In other words, a cleaner simply executes a lock-free version of

the Lotan-Shavit [21] DeleteMin operation. At the same time, notice that cleaner

threads adjust pointers for nodes previously acquired by other Spray operations,

reducing contention and wasted work. Interestingly, we notice that a cleaner thread

can swing pointers across a whole group of nodes that have been marked as logically

deleted, effectively batching this part of the remove process.

The existence of cleaners is not needed in the analysis, but is a useful optimization.

In the implementation, the probability of an operation becoming a cleaner is 1/𝑝, i.e.,

roughly one in 𝑝 Sprays becomes a cleaner.

Adapting to Contention. We also note that the SprayList allows threads to

adjust the spray parameters based on the level of contention. In particular, a thread

can estimate 𝑝, increasing its estimate if it detects higher than expected contention (in

the form of collisions) and decreasing its estimate if it detects low contention. Each

thread parametrizes its Spray parameters the same way as in the static case, but
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using its estimate of 𝑝 rather than a known value. Note that with this optimization

enabled, if only a single thread access the SprayList, it will always dequeue the

element with the smallest key.
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Chapter 3

Spray Analysis

In this section, we analyze the behavior of Spray operations. We describe our an-

alytical model in Section 3.1. We then give a first motivating result in Section 3.2,

bounding the probability that two Spray operations collide for an ideal SkipList.

We state our main technical result, Theorem 3, and provide a proof overview in

Section 3.3. In essence, given our model, our results show that SprayLists do not

return low priority elements except with extremely small probability (Theorem 2)

and that there is very low contention on individual elements, which in turn implies

the bound on the running time of Spray (Corollary 1).

3.1 Analytical Model

As with other complex concurrent data structures, a complete analysis of spraying in a

fully asynchronous setting is extremely challenging. Instead, we restrict our attention

to showing that, under reasonable assumptions, spraying approximates uniform choice

amongst roughly the first 𝑂(𝑝 log3 𝑝) elements. We will then use this fact to bound

the contention between Spray operations. We therefore assume that there are 𝑛 ≫

𝑝 log3 𝑝 elements in the SkipList.

We consider a set of at most 𝑝 concurrent, asynchronous processes trying to per-

25



form DeleteMin operations, traversing a clean SkipList, i.e. a SkipList whose height

distribution is the same as one that has just been built. In particular, a node has

height ≥ 𝑖 with probability 2−𝑖, independent of all other nodes. They do so by each

performing Spray operations. When two or more Spray operations end at the same

node, all but one of them must retry. if a Spray lands in the padded region of the

SkipList, it must also retry. We repeat this until all Sprays land at unique nodes

(because at most one thread can obtain a node). Our goal is to show that for all

𝑝 processors, this process will terminate in 𝑂(log3 𝑝) time in expectation and with

high probability. Note that since each Spray operation takes 𝑂(log3 𝑝) time, this is

equivalent to saying that each process must restart their Spray operations at most a

constant number of times, in expectation and with high probability. We guarantee

this by showing that Spray operations have low contention.

On the one hand, this setup is clearly only an approximation of a real execu-

tion, since concurrent inserts and removes may occur in the prefix and change the

SkipList structure. Also, the structure of the list may have been biased by previous

Spray operations. (For example, previous sprays might have been biased to land on

nodes of large height, and therefore such elements may be less probable in a dynamic

execution.)

On the other hand, we believe this to be a reasonable approximation for our

purposes. We are interested mainly in spray distribution; concurrent deletions should

not have a high impact, since, by the structure of the algorithm, logically deleted

nodes are skipped by the spray. Also, in many scenarios, a majority of the concurrent

inserts are performed towards the back of the list (corresponding to elements of lower

priority than those at the front). Finally, the effect of the spray distribution on the

height should be limited, since removing an element uniformly at random from the list

does not change its expected structure, and we closely approximate uniform removal.

Also, notice that cleaner threads (linearly traversing the bottom list) periodically
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“refresh" the SkipList back to a clean state.

3.2 Motivating Result: Analysis on a Perfect SkipList

In this section, we illustrate some of the main ideas behind our runtime argument

by first proving a simpler claim, Theorem 1, which holds for an idealized SkipList.

Basically, Theorem 1 says that, on SkipList where nodes of the same height are evenly

spaced, the Spray procedure ensures low contention on individual list nodes.

More precisely, we say a SkipList is perfect if the distance between any two con-

secutive elements of height ≥ 𝑗 is 2𝑗, and the first element has height 0. On a perfect

SkipList, we do not have to worry about probability concentration bounds when

considering SkipList structure, which simplifies the argument. (We shall take these

technicalities into account in the complete argument in the next section.)

We consider the Spray(𝐻,𝐿,𝐷) procedure with parameters 𝐻 = log 𝑝 − 1, 𝐿 =

log 𝑝, and 𝐷 = 1, the same as our implementation version. Practically, the walk starts

at level log 𝑝 − 1 of the SkipList, and, at each level, uniformly chooses a number of

forward steps between [1, log 𝑝] before descending. We prove the following upper

bound on the collision probability, assuming that log 𝑝 is even1:

Theorem 1. For any position 𝑥 in a perfect SkipList, let 𝐹𝑝(𝑥) denote the probability

that a Spray(log 𝑝− 1, log 𝑝, 1) lands at 𝑥. Then

𝐹𝑝(𝑥) ≤ 1/(2𝑝).

Proof. In the following, fix parameters 𝐻 = log 𝑝− 1, 𝐿 = log 𝑝,𝐷 = 1 for the Spray,

and consider an arbitrary such operation. Let 𝑎𝑖 be the number of forward steps

taken by the Spray at level 𝑖, for all 0 ≤ 𝑖 ≤ log 𝑝− 1.

1We can always choose a 𝑝′ = 𝑂(𝑝) then work with that 𝑝′ (so no asymptotic runtimes are
affected) so that this happens
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We start from the observation that, on a perfect SkipList, the operation lands at

the element of index
∑︀log 𝑝−1

𝑖=0 𝑎𝑖2
𝑖 in the bottom list. Thus, for any element index 𝑥,

to count the probability that a Spray which lands at 𝑥, it suffices to compute the

probability that a (log 𝑝+ 1)-tuple (𝑎0, . . . , 𝑎log 𝑝) whose elements are chosen indepen-

dently and uniformly from the interval {1, . . . , log 𝑝} has the property that the jumps

sum up to 𝑥, that is,
log 𝑝−1∑︁
𝑖=0

𝑎𝑖2
𝑖 = 𝑥. (3.1)

For each 𝑖, let 𝑎𝑖(𝑗) denote the 𝑗th least significant bit of 𝑎𝑖 in the binary expansion

of 𝑎𝑖, and let 𝑥(𝑗) denote the 𝑗th least significant bit of 𝑥 in its binary expansion.

Choosing an arbitrary Spray is equivalent to choosing a random (log 𝑝)-tuple

(𝑎1, . . . , 𝑎log 𝑝) as specified above. We wish to compute the probability that the random

tuple satisfies Equation 3.1. Notice that, for
∑︀log 𝑝−1

𝑖=0 𝑎𝑖2
𝑖 = 𝑥, we must have that

𝑎0(1) = 𝑥(1), since the other 𝑎𝑖 are all multiplied by some nontrivial power of 2 in

the sum and thus their contribution to the ones digit (in binary) of the sum is always

0. Similarly, since all the 𝑎𝑖 except 𝑎0 and 𝑎1 are bit-shifted left at least twice, this

implies that if Equation 3.1 is satisfied, then we must have 𝑎1(1) + 𝑎0(2) = 𝑥(2).

In general, for all 1 ≤ 𝑘 ≤ log 𝑝 − 1, we see that to satisfy Equation 3.1, we must

have that 𝑎𝑘(1) + 𝑎𝑘−1(2) + . . . + 𝑎0(𝑘) + 𝑐 = 𝑥(𝑘), where 𝑐 is a carry bit determined

completely by the choice of 𝑎0, . . . , 𝑎𝑘−1.

Consider the following random process: in the 0th round, generate 𝑎0 uniformly

at random from the interval {1, . . . , log 𝑝}, and test if 𝑎0(1) = 𝑥(1). If it satisfies this

condition, continue and we say it passes the first round, otherwise, we say we fail this

round. Iteratively, in the 𝑘th round, for all 1 ≤ 𝑘 ≤ log 𝑝 − 1, randomly generate

an 𝑎𝑘 uniformly from the interval {1, . . . , log 𝑝}, and check that 𝑎𝑘(1) + 𝑎𝑘−1(2) +

. . . + 𝑎0(𝑘) + 𝑐 = 𝑥(𝑘) mod 2, where 𝑐 is the carry bit determined completely by the

choice of 𝑎0, . . . , 𝑎𝑘−1 as described above. If it passes this test, we continue and say

that it passes the 𝑘th round; otherwise, we fail this round. If we have yet to fail after
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the (log 𝑝 − 1)st round, then we output PASS, otherwise, we output FAIL. By the

argument above, the probability that we output PASS with this process is an upper

bound on the probability that a Spray lands at 𝑥.

The probability we output PASS is then

Pr[pass 0th round]

log 𝑝−2∏︁
𝑖=0

Pr[pass (𝑖 + 1)th round|𝐴𝑖]

where 𝐴𝑖 is the event that we pass all rounds 𝑘 ≤ 𝑖. Since 𝑎0 is generated uni-

formly from the interval {1, 2, . . . , log 𝑝}, and since log 𝑝 is even by assumption, the

probability that the least significant bit of 𝑎0 is 𝑥(1) is exactly 1/2, so

Pr[pass 0th round] = 1/2. (3.2)

Moreover, for any 1 ≤ 𝑖 ≤ log 𝑝−2, notice that conditioned on the choice of 𝑎1, . . . , 𝑎𝑖,

the probability that we pass the (𝑖 + 1)th round is exactly the probability that the

least significant bit of 𝑎𝑖+1 is equal to 𝑥(𝑖 + 1)− (𝑎𝑖(2) + . . . + 𝑎0(𝑖 + 1) + 𝑐) mod 2,

where 𝑐 is some carry bit as we described above which only depends on 𝑎1, . . . , 𝑎𝑖.

But this is just some value 𝑣 ∈ {0, 1} wholly determined by the choice of 𝑎0, . . . , 𝑎𝑖,

and thus, conditioned on any choice of 𝑎0, . . . , 𝑎𝑖, the probability that we pass the

(𝑖+ 1)th round is exactly 1/2 just as above. Since the condition that we pass the 𝑘th

round for all 𝑘 ≤ 𝑖 only depends on the choice of𝑎0, . . . , 𝑎𝑖, we conclude that

Pr[pass (𝑖 + 1)th round|𝐴𝑖] = 1/2. (3.3)

Therefore, we have Pr[output PASS] = (1/2)log 𝑝 = 1/𝑝, which completes the proof.
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3.3 Runtime Analysis for DeleteMin

In this section, we show that, given a randomly chosen SkipList, each DeleteMin

operation completes in 𝑂(log3 𝑝) steps, in expectation and with high probability. As

mentioned previously, the runtime claim is equivalent to saying that the Spray op-

erations for each process restart at most a constant number of times, in expectation

and with high probability. The crux of this result (stated in Corollary 1) is a charac-

terization of the probability distribution induced by Spray operations on an arbitrary

SkipList, which we obtain in Theorem 3.

We consider Sprays with the parameters 𝐻 = log 𝑝 − 1, 𝐿 = 𝑀 log3 𝑝, and 𝐷 =

⌈log log 𝑝⌉.

Integrality of Jump Lengths and Ratios The integrality of 𝐷 and 𝐻/𝐷 is an-

noying technically. Unfortunately, we must deal with non-integral 𝐷 and 𝐻/𝐷 for the

totally general analysis. Recall before with 𝐻 we could choose 𝑝′ = 𝑂(𝑝) so that log 𝑝′

was integral, so that no asymptotics were affected, however, notice that in general

we cannot choose a 𝑝′ = 𝑂(𝑝) so that log log 𝑝′ is integral, thus we must deal with

rounding when it comes to 𝐷 and with 𝐻/𝐷.

We will deal with general 𝐷, i.e., when log log 𝑝 is non-integral. This obfuscates

the notation somewhat, but the reader should almost always just think of 2𝐷 as log 𝑝.

However, in this section we will assume that 𝐻/𝐷 is in fact integral. The dedicated

reader who is still with us, if such a thing exists, is encouraged to check for him or

herself, as the author did, that the analysis still goes through without modification

in this general case. We omit the details here for simplicity of exposition.

3.3.1 Additional Setup

Since we only care about the relative ordering of the elements in the SkipList with

each other and not their real priorities, we will call the element with the 𝑖th lowest
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priority in the SkipList the 𝑖th element in the SkipList. We will also need the following

definition.

Definition 1. Fix two positive functions 𝑓(𝑝), 𝑔(𝑝).

∙ We say that 𝑓 and 𝑔 are asymptotically equal, 𝑓 ≃ 𝑔, if lim𝑝→∞ 𝑓(𝑝)/𝑔(𝑝) = 1.

∙ We say that 𝑓 . 𝑔, or that 𝑔 asymptotically bounds 𝑓 , if there exists a function

ℎ ≃ 1 so that 𝑓(𝑝) ≤ ℎ(𝑝)𝑔(𝑝) for all 𝑝.

Note that saying that 𝑓 ≃ 𝑔 is stronger than saying that 𝑓 = Θ(𝑔), as it insists

that the constant that the big-Theta would hide is in fact 1, i.e. that asymptotically,

the two functions behave exactly alike even up to constant factors.

There are two sources of randomness in the Spray algorithm and thus in the

statement of our theorem. First, there is the randomness over the choice of the

SkipList. Given the elements in the SkipList, the randomness in the SkipList is over

the heights of the nodes in the SkipList. To model this rigorously, we use the following

definition:

Definition 2. For any such SkipList 𝑆, we identify it with the 𝑛-length vectors

(ℎ1, . . . , ℎ𝑛) of natural numbers (recall there are 𝑛 elements in the SkipList), where

ℎ𝑖 denotes the height of the 𝑖th node in the SkipList.

Given this representation, the probability that 𝑆 occurs is
∏︀𝑛

𝑖=1 2−(ℎ𝑖).

Second, there is the randomness of the Spray algorithm itself. Formally, we iden-

tify each Spray with the (𝐻/𝐷+1)-length vector (𝑎0, . . . , 𝑎𝐻/𝐷) where 0 ≤ 𝑎𝑖 ≤ 𝐻/𝐷

denotes how far we walk at height 𝑖𝐷. Our Spray algorithm uniformly chooses a com-

bination from the space of all possible Sprays. For a fixed SkipList, and given a choice

for the steps at each level in the Spray, we say that the Spray returns element 𝑖 if,

after doing the walk prescribed by the lengths chosen and the procedure described in

Algorithm 1, we end at element 𝑖. With this, we can now define the following:
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Definition 3. For a fixed SkipList and some element 𝑖 in the SkipList, we let 𝐹𝑝(𝑖)

denote the probability that a Spray returns element 𝑖.

Implicit in this notation is the underlying SkipList on which we are performing our

Spray, however, this should be clear from context.

Throughout the rest of the section, we will need a way to talk about partial Sprays,

those which have only completely some number of levels.

Definition 4. Fix a Spray 𝑆, (𝑎0, . . . , 𝑎𝐻/𝐷) where 1 ≤ 𝑎𝑖 ≤𝑀 log3 𝑝.

∙ To any 𝑘-tuple (𝑏𝑘, . . . , 𝑏𝐻/𝐷) for 𝑘 ≥ 0, associate to it the walk which occurs

if, descending from level 𝐻, we take 𝑏𝑟 steps at each height 𝑟𝐷, following the

procedure specified in Algorithm 1. We define the 𝑘-prefix of 𝑆 to be the walk

associated with (𝑎𝑘, . . . , 𝑎ℓ). We say the 𝑘-prefix of 𝑆 returns the element that

the walk described ends at.

∙ To any (𝑘 + 1)-tuple (𝑏0, . . . , 𝑏𝑘) for 𝑘 ≤ 𝐻/𝐷 and any starting element 𝑖,

associate to it the walk which occurs if, descending from level 𝑘𝐷, we take 𝑏𝑟

steps at each height 𝑟𝐷, as specified in Algorithm 1. We define the 𝑘-suffix of 𝑆

to be the walk associated with (𝑎0, . . . , 𝑎𝑘), starting at the node the (𝐻/𝐷−𝑘−1)-

prefix of 𝑆 returns. We say the 𝑘-prefix of 𝑆 returns the element that the walk

described ends at.

∙ The 𝑘th part of 𝑆 is the walk at level 𝑘𝐷 of length 𝑎𝑘 starting at the element

that the (𝐻/𝐷 − 𝑘 + 1)-prefix of 𝑆 returns.

Intuitively, the 𝑘-prefix of a spray is simply the walk performed at the 𝑘 top levels of

the spray, and the 𝑘-suffix of a spray is simply the walk at the bottom 𝑘 levels of the

spray.

Definition 5. We say an event happens with high probability or w.h.p. for short

if it occurs with probability at least 1 − 𝑝−Ω(𝑀), where 𝑀 is the constant defined in

Algorithm 1.
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3.3.2 Top Level Theorems

With these definitions we are now equipped to state our main theorems about SprayLists.

Theorem 2. In the model described above, there is a function 𝑓(𝑝) so that no Spray

will return an element beyond the first 𝑓(𝑝) elements, where 𝑓(𝑝) ≃ 𝑀𝑝 log3 𝑝, with

probability at least 1− 𝑝−Ω(𝑀).

This theorem states simply that sprays do not go too far past the first 𝑂(𝑝 log3 𝑝)

elements in the SkipList, which demonstrates that our SprayList does return elements

with relatively small priority. The proof of Theorem 2 is fairly straightforward and

uses standard concentration bounds. However, the tools we use there will be crucial

to later proofs. The other main technical contribution of this thesis is the following

theorem.

Theorem 3. For 𝑝 ≥ 2 and under the stated assumptions, there exists an interval

of elements 𝐼(𝑝) = [𝑎(𝑝), 𝑏(𝑝)] of length 𝑏(𝑝)− 𝑎(𝑝) ≃ 𝑀𝑝 log3 𝑝 and endpoint 𝑏(𝑝) .

𝑀𝑝 log3 𝑝, such that for all elements in the SkipList in the interval 𝐼(𝑝), we have that

𝐹𝑝(𝑖, 𝑆) ≃ 1

𝑀𝑝 log3 𝑝
,

w.h.p. over the choice of 𝑆.

In plain words, this theorem states that there exists a range of elements 𝐼(𝑝),

whose length is asymptotically equal to 𝑀𝑝 log3 𝑝, such that if you take a random

SkipList, then with high probability over the choice of that SkipList, the random

process of performing Spray approximates uniformly random selection of elements in

the range 𝐼(𝑝), up to a factor of two. The condition 𝑏(𝑝) . 𝑀𝑝 log3 𝑝 simply means

that the right endpoint of the interval is not very far to the right. In particular, if we

pad the start of the SkipList with 𝐾(𝑝) = 𝑎(𝑝) dummy elements, the Spray procedure
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will approximate uniform selection from roughly the first 𝑀𝑝 log3 𝑝 elements, w.h.p.

over the random choice of the SkipList.

Runtime Bound. Given this theorem, we then use it to bound the probability

of collision for two Sprays, which in turn bounds the running time for a DeleteMin

operation, which yields the following Corollary. Given Theorem 3, its proof is fairly

straightforward. We give its proof in Section 3.3.7.

Corollary 1. In the model described above, DeleteMin takes 𝑂(log3 𝑝) time in ex-

pectation. Moreover, for any 𝜖 > 0, DeleteMin will run in time 𝑂(log3 𝑝 log 1
𝜖
) with

probability at least 1− 𝜖.

3.3.3 Proof of Theorem 2

For 𝑘 ≥ 0, let 𝐸𝑘 denote the expected distance the Spray travels at the (𝑘)th level if

it jumps exactly 𝑀 log3 𝑝 steps. In particular,

𝐸𝑘 = 𝑀2𝑘 log3 𝑝.

We in fact prove the following, stronger version of Theorem 2.

Lemma 1. Let 𝜎(𝑝) = 2𝐷/(2𝐷 − 1). For any fixed 𝛼, the 𝑘-suffix of any Spray will

go a distance of at most (1 + 𝛼)𝜎(𝑝)𝐸𝑘𝐷, with probability at least 1 − 𝑝−Ω(𝑀𝛼2 log2 𝑝)

over the choice of the SkipList.

Notice that setting 𝛼 = 1/ log 𝑝 and 𝑘 = 𝐻/𝐷 then gives us the Theorem 2. Thus

it suffices to prove Lemma 1. First, we require a technical proposition.

Proposition 1. For 𝑘 ≤ 𝐻/𝐷 and 𝛼 > 0, the probability that the 𝑘th part of a Spray

travels more than (1 + 𝛼)𝑀2𝑘𝐷 log3 𝑝 distance is at most (1/𝑝)Ω(𝑀𝛼2 log2 𝑝).

Proof. The claim is clear for the bottom level, i.e. when 𝑘 = 0. Thus assume 𝑘 > 0.

Fix some node 𝑥 in the list. Let 𝑋𝑇 be the number of elements with height at
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least 𝑘𝐷 that we encounter in a random walk of 𝑇 steps starting at 𝑥. We know

that E(𝑋𝑇 ) = 𝑇/2𝑘. Choose 𝑇 = (1 + 𝛼)𝑀2𝑘 log3 𝑝. Then by a Chernoff bound,

Pr(𝑋𝑇 ≤ (1 + 𝛼)𝑀 log3 𝑝) ≤ 𝑝−Ω(𝑀𝛼2 log2 𝑝).

Therefore, if we take 𝑇 steps at the bottom level we will with high probability hit

enough elements of the necessary height, which implies that a Spray at that height

will not go more than that distance.

Proof of Lemma 1. WLOG suppose we start at the head of the list, and 𝑗 is the

element with distance (1 + 𝛼)𝜎(𝑝)𝐸𝑘𝐷 from the head. Consider the hypothetical

Spray which takes the maximal number of allowed steps at each level 𝑟𝐷 for 𝑟 ≤ 𝑘.

Clearly this Spray goes the farthest of any Spray walking at levels 𝑘𝐷 and below, so

if this Spray cannot reach 𝑗 starting at the front of the list and walking only on levels

𝑘𝐷 and below, then no Spray can. Let 𝑥𝑟 denote the element at which the Spray

ends up after it finishes its 𝑟𝐷th level for 0 ≤ 𝑟 ≤ 𝑘 and 𝑥𝑘𝐷+1 = 0, and let 𝑑𝑟 be the

distance that the Spray travels at level 𝑟𝐷. For any 𝑟 ≥ 0, by Proposition 1 and the

union bound, Pr(∃𝑘 : 𝑑𝑟 > (1 + 𝛼)𝐸𝑟𝐷) ≤ 𝑝−Ω(𝑀𝛼2 log2 𝑝).

Therefore, w.h.p., the distance that this worst-case spray will travel is upper

bounded by

𝑘∑︁
𝑟=0

𝑑𝑟 ≤ (1 + 𝛼)
𝑘∑︁

𝑟=0

𝐸𝑟𝐷

≤ (1 + 𝛼)𝜎(𝑝)𝐸𝑘𝐷.

3.3.4 Outline of Proof of Theorem 3

We prove Theorem 3 by proving the following two results:
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Lemma 2. For all elements 𝑖, we have

𝐹𝑖(𝑝, 𝑆) .
1

𝑝𝑀 log3 𝑝

with high probability over the choice of 𝑆.

Lemma 3. There is some constant 𝐴 > 1 which for 𝑝 sufficiently large can be chosen

arbitrarily close to 1 so that for all

𝑖 ∈ [𝐴𝑝 log2 𝑝,
1

1 + 1/ log 𝑝
𝑀𝑝 log3 𝑝],

we have

𝐹𝑖(𝑝) &
1

𝑀𝑝 log3 𝑝

with high probability over the choice of 𝑆.

Given these two lemmas, if we then let 𝐼(𝑝) be the interval defined in Theorem

3, it is straightforward to argue that this interval satisfies the desired properties for

Theorem 3 w.h.p. over the choice of the SkipList 𝑆. Thus the rest of this section is

dedicated to the proofs of these two lemmas.

We first need a simple technical lemma. Fix any interval 𝐼 = [𝑎, 𝑏] for 𝑎, 𝑏 ∈ N

and 𝑎 ≤ 𝑏. In expectation, there are (𝑏−𝑎+ 1)2𝑘−1 elements in 𝐼 with height at least

𝑘 in the SkipList; the following Lemma bounds the deviation from the expectation.

Proposition 2. For any SkipList 𝑆, any 𝑏, and any height ℎ, let 𝐷𝑏,ℎ = 𝐷𝑏,ℎ(𝑆) be

the number of items between the (𝑏− 𝑘)th item and the 𝑏th item in the SkipList with

height at least ℎ. Let 𝜈 = E𝑆[𝐷𝑏,ℎ] = (𝑘 + 1)2−ℎ. Then for any 𝛼 > 0,

Pr [|𝐷𝑏,ℎ − 𝜈| > (1 + 𝛼)𝜈] < 𝑒−Ω(𝜈𝛼2)
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Proof. Let 𝑋𝑖 be the random variable which is 1 if the (𝑏−𝑘+ 𝑖)th item has a bucket

of height at least 𝑖, and 0 otherwise, and let 𝑋 =
∑︀𝑘

𝑖=0 𝑋𝑖. The result then follows

immediately by applying Chernoff bounds to 𝑋.

Proof Overview. First we prove that the fraction of Sprays which hit any 𝑖 ∈ 𝐼(𝑝)

is asymptotically bounded above by 1/(𝑀𝑝 log3 𝑝), then we prove the other direction

of the inequality, which suffices to prove the theorem. The proof of the upper bound

proceeds, at a high level, as follows. First, for any 𝑖 ∈ 𝐼(𝑝), we filter the Sprays

removing those Sprays which are not in the “valid" interval in the SkipList after

each level of the spray, and argue that unless the Spray is in these intervals at each

level, it cannot reach 𝑖 w.h.p. over the choice of the SkipList. Thus it suffices to

count the number of Sprays which are in these valid intervals at each step. By using

concentration bounds we can argue that w.h.p., up to a small multiplicative error

which vanishes in the limit as 𝑝 → ∞, the number of elements in the SkipList at

any given height in any given interval behaves exactly like its expectation. Thus, we

can count the number of Sprays which are in valid intervals at every height, and we

derive that this number of asymptotically bounded by 1/(𝑀𝑝 log3 𝑝).

The proof of the lower bound is in the same vein and makes the additional obser-

vation that if these valid intervals we described above are not too large and are close

together, then every Spray which is in a valid interval at any height has a good shot

of being valid at the next height, and any Spray which is in the bottommost valid

interval can reach 𝑖. This, when done carefully, yields that the probability that a

Spray stays valid and then hits 𝑖 is lower bounded by 1/(2𝑀𝑝 log3 𝑝) asymptotically.

3.3.5 Proof of Lemma 2

With the above proposition in place, we can now prove Lemma 2.
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Proof of Lemma 2. Let 𝐼0 = [𝑖−𝑀 log3 𝑝 + 1, 𝑖] and for 𝑘 ≥ 1 let

𝐼𝑘 = [⌈𝑖− (1 + 𝛼)𝜎(𝑝)𝐸(𝑘−1)𝐷⌉+ 1, 𝑖],

and let 𝑡𝑘 denote the number of elements in the SkipList lying in 𝐼𝑘 with height at

least 𝑘𝐷. Define a Spray to be viable at level 𝑘 if its (ℓ − 𝑘)-prefix returns some

element in 𝐼𝑘, and say that a Spray is viable if it is viable at every level. Intuitively, a

Spray is viable at level 𝑘 if, after having finished walking at level 𝑘𝐷, it ends up at a

node in 𝐼𝑘. By Lemma 1, if a Spray is not viable at level 𝑘 for any 1 ≤ 𝑘 ≤ ℓ𝑝, it will

not return 𝑥 except with probability 𝑝−Ω(𝑀𝛼2 log2 𝑝) over the choice of the SkipList, for

all 𝑘. Thus, by a union bound, we conclude that if a Spray is not viable, it will not

return 𝑥 except with probability 𝑝−Ω(𝑀𝛼2 log2 𝑝) over the choice of the SkipList. It thus

suffices to bound the probability that a Spray is viable.

Let 𝑡𝑘 be the number of elements in 𝐼𝑘 with height at least 𝑘𝐷. The probability

that the 𝑘𝐷th level of any Spray lands in 𝐼𝑘 is at most 𝑡𝑘/(𝑀 log3 𝑝), since we choose

how far to spray at level 𝑘𝐷 uniformly at random. By Proposition 2 we know that

except with probability 𝑒−Ω(𝛼2(𝐸𝑘+1)) = 𝑝−Ω(𝑀𝛼2 log2 𝑝), 𝐼𝑘 contains at most

(1 + 𝛼)2𝜎(𝑝)𝐸(𝑘−1)𝐷2−𝑘𝐷

= (1 + 𝛼)2𝑀𝜎(𝑝)2−𝐷 log3 𝑝

elements with height at least 𝑘𝐷. Hence,

𝑡𝑘

(𝑀 log3 𝑝)
≤ (1 + 𝛼)2𝜎(𝑝)2−𝐷

except with probability 𝑝−Ω(𝑀𝛼2 log2 𝑝), for any fixed 𝑘. By a union bound over all

log 𝑝/ log log 𝑝 levels, this holds for all levels except with probability 𝑝−Ω(𝑀𝛼2 log2 𝑝).

Thus, the probability that a Spray lands in 𝐼0 after it completes but the traversal at
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the bottom of the list is

(︀
(1 + 𝛼)2𝜎(𝑝)2−𝐷

)︀𝐻/𝐷
=

[︀
(1 + 𝛼)2

]︀𝐻/𝐷 · 𝜎(𝑝)𝐻/𝐷 · 1

𝑝
(3.4)

except with probability 𝑝−Ω(𝑀𝛼2 log2 𝑝). Choose (1 + 𝛼)2 = (1 + 1
log 𝑝

). One can show

that with this choice of 𝛼, (1) the first two terms on the right hand side of Equation

3.4 approach 1 as 𝑝→∞, and (2) 𝛼2 log2 𝑝→ 1/4. The second claim is necessary to

ensure that this all happens with high probability. All these limits are elementary, if

involved, calculus. We will only demonstrate the proof of what we consider the most

nontrivial limit, that 𝜎(𝑝)𝐻/𝐷 → 1 as 𝑝→∞:

Claim 1.

lim
𝑝→∞

𝜎(𝑝)𝐻/𝐷 = 1.

Proof. Writing out the terms, we have that

𝜎(𝑝)𝐻/𝐷 =

(︂
1− 1

2𝐷 + 1

)︂𝐻/𝐷

= exp

(︂
log 𝑝

𝐷
ln

(︂
1− 1

2𝐷 + 1

)︂)︂
.

Using the Taylor expansion of ln(1− 𝑥), we have that

log 𝑝

𝐷
ln

(︂
1− 1

2𝐷 + 1

)︂
=

log 𝑝

𝐷

[︂
− 1

2𝐷 + 1
−𝑂

(︂
1

22𝐷

)︂]︂
.

Since 𝐷 = ⌈log log 𝑝⌉ and thus 2𝐷 ≥ log 𝑝, it is easy to see that both terms on the

right hand side go to zero, and thus 𝜎(𝑝)𝐻/𝐷 → 1 as 𝑝→∞, as claimed.

These limits together imply that with high probability, the fraction of Sprays

that land in 𝐼0 is asymptotically bounded by 𝑝−1. Conditioned its ℓ-prefix returning

something in 𝐼0, for the Spray to return 𝑖, it must further take the correct number
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of steps at the bottom level, which happens with at most a 1
𝑀 log3 𝑝

fraction of these

Sprays. Moreover, if the ℓ-prefix of the Spray does not return an element in 𝐼0, then

the Spray will not hit 𝑖, since it simply too far away. Thus 𝐹𝑝(𝑖, 𝑆) . 1
𝑝𝑀 log3 𝑝

, as

claimed. as claimed.

3.3.6 Proof of Lemma 3

Proof Strategy. We wish to lower bound the probability of hitting the 𝑖th smallest

item, for 𝑖 in some reasonable interval which will be precisely defined below. For

simplicity of exposition in this section, we will assume that all the endpoints of the

intervals we define here are integers are necessary. While this is not strictly true,

the proof is almost identical conceptually (just by taking floors and ceilings whenever

appropriate) when the values are not integers and much more cumbersome.

Fix some index 𝑖. As in the proof of Lemma 2, we will again filter Spray by where

they land at each level. By defining slightly smaller and non-overlapping regions than

in the proof of Lemma 2, instead of obtaining upper bounds on the probabilities that

a Spray lands at each level, we are instead able to lower bound the probability that a

Spray successfully lands in the “good" region at each level, conditioned on the event

that they landed in the “good" region in the previous levels.

Formally, let 𝐼0 = [𝑖 − log3 𝑝, 𝑖 − 1]. Let 𝑆 be a spray, chosen randomly. Then if

𝑖− log3 𝑝 ≥ 0, we know that if the ℓ-prefix of 𝑆 returns an element in 𝐼0, then 𝑆 has

a 1/ log3 𝑝 probability of stepping to 𝑖. Inductively, for all 𝑘 ≤ 𝐻/𝐷− 1, we are given

an interval 𝐼𝑘−1 = [𝑎𝑘−1, 𝑏𝑘−1] so that 𝑎𝑘−1 ≥ 0. Notice that there are, except with

probability 𝑝−Ω(𝑀𝛼2 log2 𝑝), at most 𝑀 log3 𝑝 elements in [𝑏𝑘−1 − 1
1+𝛼

𝐸𝑘𝐷, 𝑏𝑘−1] with

height 𝑘𝐷, by Proposition 2.

Then, let 𝑎𝑘 = 𝑏𝑘−1 − 1
1+𝛼

𝐸(𝑘−1)𝐷 and 𝑏𝑘 = 𝑎𝑘−1 − 1, and let 𝐼𝑘 = [𝑎𝑘, 𝑏𝑘]. For

all 0 ≤ 𝑘 ≤ 𝐻/𝐷 − 1, let 𝑡𝑘 be the number of elements in 𝐼𝑘 with height (𝑘 + 1)𝐷.
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Assume for now that 𝑎𝑘 ≥ 0. Then, if the (𝑘 − 1)-prefix of 𝑆 returns an element 𝑖 in

𝐼𝑘, then every element of 𝐼𝑘−1 of height 𝑘𝐷 by some walk of length at most 𝑀 log3 𝑝

at level 𝑘𝐷, since there are at most 𝑀 log3 𝑝 elements of height 𝑘 log log 𝑝 in the

interval [𝑎𝑘, 𝑏𝑘−1] and 𝑏𝑘 < 𝑎𝑘−1. Thus, of the Sprays whose (𝑘+1) prefixes return an

element in 𝐼𝑘, a 𝑡𝑘/(𝑀 log3 𝑝) fraction will land in 𝐼𝑘−1 after walking at height 𝑘𝐷.

The following proposition provides a size bound on the 𝐼𝑘.

Proposition 3. Let 𝑠𝑘 = 𝑏𝑘 − 𝑎𝑘 + 1. For all 𝑘 ≥ 2, we have

(︀
𝛾0 − 𝛾12

−𝐷
)︀
𝐸𝑘𝐷 ≤ 𝑠𝑘 ≤

(︀
𝛾0 + 𝛾12

−2𝐷
)︀
𝐸𝑘𝐷

with

𝛾0 =
2𝐷

(𝛼 + 1)(2𝐷 + 1)
and 𝛾1 =

𝛼2𝐷 + 𝛼 + 1

(𝛼 + 1)(2𝐷 + 1)
.

Proof. Define 𝜉𝑘 to be the quantity so that 𝑠𝑘 = 𝜉𝑘𝐸𝑘𝐷. Clearly 𝜉0 = 1, and induc-

tively,

𝑠𝑘 =
1

1 + 𝛼
𝐸𝑘𝐷 − 𝑠𝑘−1

=

(︂
1

1 + 𝛼
− 2−𝐷𝜉𝑘−1

)︂
𝐸𝑘𝐷

so

𝜉𝑘 =
1

1 + 𝛼
− 2−𝐷𝜉𝑘−1.

Homogenizing gives us a second order homogenous recurrence relation

𝜉𝑘 =
(︀
1− 2−𝐷

)︀
𝜉𝑘−1 + 2−𝐷𝜉𝑘−2
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with initial conditions 𝜉0 = 1 and 𝜉1 = 1
1+𝛼
− 2−𝐷. Solving gives us that

𝜉𝑘 = 𝛾0 + 𝛾1
(︀
−2−𝐷

)︀𝑘
.

Notice that 𝜉2𝑘+2 ≤ 𝜉2𝑘 and 𝜉2𝑘+3 ≥ 𝜉2𝑘+1 and moreover, 𝜉2𝑘+1 ≤ 𝜉2𝑘′ for any 𝑘, 𝑘′.

Thus for 𝑘 ≥ 2 the maximum of 𝜉𝑘 occurs at 𝑘 = 2, and the minimum occurs at

𝑘 = 1. Substituting these quantities in gives us the desired results.

Once this result is in place, we use it to obtain a lower bound on the hit probability.

Lemma 4. There is some constant 𝐴 = 𝐴(𝑝) > 1 which for 𝑝 sufficiently large can

be chosen arbitrarily close to 1 so that for all 𝑖 ∈ [𝐴𝑝 log2 𝑝, 1
1+1/ log 𝑝

𝑀𝑝 log3 𝑝], we

have 𝐹𝑖(𝑝) & 1
𝑀𝑝 log3 𝑝

with high probability.

This statement is equivalent to the statement in Theorem 3.

Proof. The arguments made above are precise, as long as (1) every element of 𝐼𝑘−1

can be reached by a walk from anywhere in 𝐼𝑘 at level 𝑘 of length at most 𝑀 log3 𝑝,

and (2) each 𝑎𝑘 ≥ 0. By Proposition 2, condition (2) holds except with probability

𝑝−𝑂(𝛼2𝑀 log2 𝑝). Moreover, each 𝑎𝑘 ≥ 0 is equivalent to the condition that 𝑖 ≥𝑀 log3 𝑝+∑︀ℓ𝑝−1
𝑘=0 𝑠𝑘, but by Proposition 3, we have that (except with probability 𝑝−𝑂(𝑀𝛼2 log2 𝑝))

that

𝐻/𝐷−1∑︁
𝑘=0

𝑠𝑘 ≤
(︀
𝛾0 + 𝛾12

−2𝐷
)︀⎛⎝𝐻/𝐷−1∑︁

𝑘=0

𝐸𝑘

⎞⎠ .

For the choice of 𝛼 = 1
log 𝑝

, the first term in this product can be made arbitrarily

close to one for 𝑝 sufficiently large, and thus we have that except with probability

𝑝−𝑂(𝛼2𝑀 log2 𝑝),

𝐻/𝐷−1∑︁
𝑘=1

𝑠𝑘 ≤ 𝐴𝑀𝑝 log2 𝑝,
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for some 𝐴 which can be made arbitrarily close to one for 𝑝 sufficiently large.

By Propositions 2 and 3, by a union bound, we have that except with probability

𝑝−𝑂(𝑀𝛼2 log2 𝑝),

𝑡𝑘 ≥ 2−𝐷
(︀
𝛾0 − 𝛾12

−𝐷
)︀
𝑀 log3 𝑝,

for all 𝑘. Thus by the logic above, if we let 𝐻𝑘 denote the event that the (𝑘+1)-prefix

of the spray is in 𝐼𝑘, we have that the probability that the spray hits 𝑖 is

≥ Pr(spray hits 𝑖|𝐻0)

⎛⎝𝐻/𝐷−1∏︁
𝑘=1

Pr(𝐻𝑘−1|𝐼𝑘)

⎞⎠Pr(𝐻𝐻/𝐷−1)

≥ 1

log3 𝑝

𝐻/𝐷−1∏︁
𝑘=0

𝑡𝑘

𝑀 log3 𝑝

≥ 1

log3 𝑝

(︀
2−𝐷

(︀
𝛾0 − 𝛾12

−𝐷
)︀)︀𝐻/𝐷

.

If we choose 𝛼 = 1
log𝑛

, then one can show (effectively by the same ugly calculus used

to prove Claim 1) that

(︀
𝛾0 − 𝛾12

−𝐷
)︀𝐻/𝐷 ≃ 1,

so we conclude that 𝐹𝑖(𝑝) & 1
𝑝 log3 𝑝

with high probability.

3.3.7 Proof of Corollary 1

We have shown so far that on a clean skip list, Spray operations act like uniformly

random selection on a predictable interval 𝐼 near the front of the list of size tending

to 𝑀𝑝 log3 𝑝. We justify here why this property is sufficient to guarantee that Spray

operations execute in polylogarithmic time. A single Spray operation always takes

polylogarithmic time, however, a thread may have to repeat the Spray operation
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many times. We show here that this happens with very small probability.

Corollary 1. In the model described above, DeleteMin takes 𝑂(log3 𝑝) time in ex-

pectation. Moreover, for any 𝜖 > 0, DeleteMin will run in time 𝑂(log3 𝑝 log 1
𝜖
) with

probability at least 1− 𝜖.

Proof. Recall a process has to retry if either (1) its Spray lands outside of 𝐼, or (2) the

Spray collides with another Spray operation which has already removed that object.

We know by Theorem 3 and more specifically the form of 𝐼(𝑝) given in Lemma 4 that

(1) happens with probability bounded by 𝑂(1/ log 𝑝) as 𝑝 → ∞ for each attempted

Spray operation since Lemma 4 says that there are 𝑂(𝑝 log2 𝑝) elements before the

start of 𝐼(𝑝), and Theorem 3 says that each is returned with probability at most

𝑂(1/𝑝 log3 𝑝), and (2) happens with probability upper bounded by the probability

that we fall into set of size 𝑝−1 in 𝐼, which is bounded by 𝑂(1/ log3 𝑝) for 𝑝 sufficiently

large by Lemma 2. Thus, by a union bound, we know that the probability that Spray

operations must restart is bounded by 𝑂(1/ log 𝑝) ≤ 1/2 for 𝑝 sufficiently large. Each

spray operation takes log3 𝑝 time, and thus the expected time it takes for a Spray

operation to complete is bounded by

log3 𝑝
∞∑︁
𝑖=0

2−1 = 𝑂(log3 𝑝)

and thus we know that in expectation, the operation will run in polylogarithmic time,

as claimed. Moreover, for any fixed 𝜖 > 0, the probability that we will restart more

than 𝑂(log(1/𝜖)/ log log 𝑝) times is at most 𝜖, and thus with probability at least 1− 𝜖,

we will run in time at most 𝑂(log3 𝑝 log(1/𝜖)/ log log 𝑝).
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Chapter 4

Implementation Results

Methodology. Experiments were performed on a Fujitsu PRIMERGY RX600 S6

server with four Intel Xeon E7-4870 (Westmere EX) processors. Each processor has

10 2.40 GHz cores, each of which multiplexes two hardware threads, so in total our

system supports 80 hardware threads. Each core has private write-back L1 and L2

caches; an inclusive L3 cache is shared by all cores.

We examine the performance of our algorithm on a suite of benchmarks, designed

to test its various features. Where applicable, we compare several competing imple-

mentations, described below.

Lotan and Shavit Priority Queue. The SkipList based priority queue implemen-

tation of Lotan and Shavit on top of Keir Fraser’s SkipList [13] which simply traverses

the bottom level of the SkipList and removes the first node which is not already logi-

cally deleted. The logical deletion is performed using a Fetch-and-Increment oper-

ation on a ’deleted’ bit. Physical deletion is performed immediately by the deleting

thread. Note that this algorithm is not linearizable, but quiescently consistent. This

implementation uses much of the same code as the SprayList, but does not provide

state of the art optimizations.

Lindén and Jonsson Priority Queue. The priority queue implementation pro-
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Figure 4-1: Priority Queue implementation performance on a 50% insert, 50% delete
workload: throughput (operations completed), average CAS failures per DeleteMin, and

average L1 cache misses per operation.

vided by Lindén et. al. is representative of state of the art of linearizable priority

queues [20]. This algorithm has been shown to outperform other linearizable priority

queue algorithms under benchmarks similar to our own. This algorithm is optimized

to minimize compare-and-swap (CAS) operations performed by DeleteMin. Physical

deletion is batched and performed by a deleting thread only when the number of

logically deleted threads exceeds a threshold.

Fraser Random Remove. An implementation using Fraser’s SkipList which, when-

ever DeleteMin would be called, instead deletes a random element by finding and

deleting the successor of a random value. Physical deletion is performed immediately

by the deleting thread. Although this algorithm has no ordering semantics whatso-

ever, we consider it to be the performance ideal in terms of throughput scalability as

it incurs almost no contention from deletion operations.

Wimmer et. al. 𝑘-Priority Queue. The relaxed 𝑘-Priority Queue given by Wim-

mer et. al. [28]. This implementation provides a linearizable priority queue, except

that it is relaxed in the sense that each thread might skip up to 𝑘 of the highest
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Figure 4-2: The frequency distribution of Spray operations when each thread performs a
single Spray on a clean SprayList over 1000 trials. Note that the 𝑥-axis for the 64 thread

distribution is twice as wide as for 32 threads.

priority tasks; however, no task will be skipped by every thread. We test the hybrid

version of their implementation as given in [28]. We note that this implementation

does not offer scalability past 8 threads (nor does it claim to). Due to compatibility

issues, we were unable to run this algorithm on the same framework as the others (i.e.

Synchrobench). Instead, we show its performance on the original framework provided

by the authors. Naturally, we cannot make direct comparisons in this manner, but

the scalability trends are evident.

SprayList. The algorithm described in Section 2, which chooses an element to delete

by performing a Spray with height ⌊log 𝑝⌋+ 1, jump length uniformly distributed in

[1, ⌊log 𝑝⌋ + 1] and padding length 𝑝 log 𝑝/2. Each thread becomes a cleaner (as

described in Section 2.2.1) instead of Spray with probability 1/𝑝. Note that in these

experiments, 𝑝 is known to threads. Through testing, we found these parameters to

yield good results compared to other choices. Physical deletion is performed only by

cleaner threads. Our implementation is built on Keir Fraser’s SkipList algorithm [13],

described in the Appendix, using the benchmarking framework of Synchrobench[8].

The code has been made publicly available [?].
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Figure 4-3: Runtimes for SSSP using each PriorityQueue implementation on each network
(lower is better).

4.1 Throughput

We measured throughput of each algorithm using a simple benchmark in which each

thread alternates insertions and deletions, thereby preserving the size of the underly-

ing data structure. We initialized each priority queue to contain 1 million elements,

after which we ran the experiment for 1 second.

Figure 4-1 shows the data collected from this experiment. At low thread counts

(≤ 8), the priority queue of Lindén et. al. outperforms the other algorithms by up

to 50% due to its optimizations. However, like Lotan and Shavit’s priority queue,

Lindén’s priority queue fails to scale beyond 8 threads due to increased contention

on the smallest element. In particular, the linearizable algorithms perform well when
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all threads are present on the same socket, but begin performing poorly as soon

as a second socket is introduced above 10 threads. On the other hand, the low

contention random remover performs poorly at low thread counts due to longer list

traversals and poor cache performance, but it scales almost linearly up to 64 threads.

Asymptotically, the SprayList algorithm performs worse than the random remover

by a constant factor due to collisions, but still remains competitive.

To better understand these results, we measured the average number of failed

synchronization primitives per DeleteMin operation for each algorithm. Each im-

plementation logically deletes a node by applying a (CAS) operation to the deleted

marker of a node (though the actual implementations use Fetch-and-Increment for

performance reasons). Only the thread whose CAS successfully sets the deleted marker

may finish deleting the node and return it as the minimum. Any other thread which

attempts a CAS on that node will count as a failed synchronization primitive. Note

that threads check if a node has already been logically deleted (i.e. the deleted marker

is not 0) before attempting a CAS.

The number of CAS failures incurred by each algorithm gives insight into why

the exact queues are not scalable. The linearizable queue of Lindén et. al. induces

a large number of failed operations (up to 2.5 per DeleteMin) due to strict safety

requirements. Similarly, the quiescently consistent priority queue of Lotan and Shavit

sees numerous CAS failures, particularly at higher thread counts. We observe a dip

in the number of CAS failures when additional sockets are introduced (i.e. above 10

threads) which we conjecture is due to the increased latency of communication, giving

threads more time to successfully complete a CAS operation before a competing thread

is able to read the old value. In contrast, the SprayList induces almost no CAS failures

due to its collision avoiding design. The maximum average number of failed primitives

incurred by the SprayList in our experiment was .0090 per DeleteMin which occurred

with 4 threads. Naturally, the random remover experienced a negligible number of
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collisions due to its lack of ordering semantics.

Due to technical constraints, we were unable to produce a framework compatible

with both the key-value-based implementations presented in Figure 4-1 and the task-

based implementation of Wimmer et. al. However, we emulated our throughput

benchmark within the framework of [28].

We implement tasks whose only functionality is to spawn a new task. Thus, each

thread removes a task from the queue and processes that task by adding a new task to

the queue. In this way, we measure the same pattern of alternating inserts and deletes

in a task-based framework. As in the previous experiment, we initially populate the

queue with 1 million tasks before measuring performance.

Figure 4-1 shows the total number of tasks processed by the 𝑘-priority queue of

Wimmer et. al.1 with 𝑘 = 1024 over a 1 second duration. Similarly to the priority

queue of Lindén et. al., the 𝑘-priority queue scales at low thread counts (again ≤ 8),

but quickly drops off due to contention caused by synchronization needed to maintain

the 𝑘-linearizability guarantees. Other reasonable values of 𝑘 were also tested and

showed identical results.

In sum, these results demonstrate that the relaxed semantics of Spray achieve

throughput scalability, in particular when compared to techniques ensuring exact

guarantees.

4.2 Spray Distribution

We ran a simple benchmark to demonstrate the distribution generated by the Spray

algorithm. Each thread performs one DeleteMin and reports the position of the

element it found. (For simplicity, we initialized the queue with keys 1, 2, . . . so that

the position of an element is equal to its key. Elements are not deleted from the

1We used the hybrid 𝑘-priority queue which was shown to have the best performance of the
various implementations described [28].
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SprayList so multiple threads may find the same element within a trial.) Figure 4-2

shows the distribution of elements found after 1000 trials of this experiment with 32

and 64 threads.

We make two key observations: 1) most Spray operations fall within the first

roughly 400 elements when 𝑝 = 32 and 1000 elements when 𝑝 = 64 and 2) the modal

frequency occurred roughly at index 200 for 32 threads and 500 for 64 threads. These

statistics demonstrate our analytic claims, i.e., that Spray operations hit elements

only near the front of the list. The width of the distribution is only slightly superlinear,

with reasonable constants. Furthermore, with a modal frequency of under 100 over

1000 trials (64000 separate Spray operations), we find that the probability of hitting

a specific element when 𝑝 = 64 is empirically at most about .0015, leading to few

collisions, as evidenced by the low CAS failure count. These distributions suggest

that Spray operations balance the trade-off between width (fewer collisions) and

narrowness (better ordering semantics).

4.3 Single-Source Shortest Paths.

One important application of concurrent priority queues is for use in Single Source

Shortest Path (SSSP) algorithms. The SSSP problem is specified by a (possibly

weighted) graph with a given “source” node. We are tasked with computing the

shortest path from the source node to every other node, and outputting those dis-

tances. One well known algorithm for sequential SSSP is Dijkstra’s algorithm, which

uses a priority queue to repeatedly find the node which is closest to the source node

out of all unprocessed nodes. A natural parallelization of Dijkstra’s algorithm simply

uses a parallel priority queue and updates nodes concurrently, though some extra care

must be taken to ensure correctness.

Note that skiplist-based priority queues do not support the decrease-key operation
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which is needed to implement Dijkstra’s algorithm, so instead duplicate nodes are

added to the priority queue and stale nodes (identified by stale distance estimates)

are ignored when dequeued.

We ran the single-source shortest path algorithm on three types of networks:

an undirected grid (1000 × 1000), the California road network, and a social media

network (from LiveJournal) [1]. Since the data did not contain edge weights, we ran

experiments with unit weights (resembling breadth-first search) and uniform random

weights. Figure 4-3 shows the running time of the shortest paths algorithms with

different thread counts and priority queue implementations.

We see that for many of the test cases, the SprayList significantly outperforms

competing implementations at high thread counts. There are of course networks for

which the penalty for relaxation is too high to be offset by the increased concurrency

(e.g. weighted social media) but this is to be expected. The LiveJournal Weighted

graph shows a surprisingly high spike for 60 cores using the SprayList which is an

artifact of the parameter discretization. In particular, because we use ⌋ log 𝑝⌊ for the

Spray height, the Spray height for 60 cores rounds down to 5. The performance of

the SprayList improves significantly at 64 cores when the Spray height increases to

6, noting that nothing about the machine architecture suggests a significant change

from 60 to 64 cores.

4.4 Discrete Event Simulation

Another use case for concurrent priority queues is in the context of Discrete Event

Simulation (DES). In such applications, there are a set of events to be processed which

are represented as tasks in a queue. Furthermore, there are dependencies between

events, such that some events cannot be processed before their dependencies. Thus,

the events are given priorities which impose a total order on the events which subsumes
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the partial order imposed by the dependency graph. As an example, consider 𝑛-body

simulation, in which events represent motions of each object at each time step, each

event depends on all events from the preceding time step. Here, a total order is given

by the time step of each event, along with an arbitrary ordering on the objects.

We emulate such a DES system with the following methodology: we initially insert

1 million events (labelled by an ID) into the queue, and generate a list of dependencies.

The number of dependencies for each event 𝑖, is geometrically distributed with mean

𝛿. Each event dependent on 𝑖 is chosen uniformly from a range with mean 𝑖+𝐾 and

radius
√
𝐾. This benchmark is a more complex version of the DES-based benchmark

of [20], which in turn is based on the URDME stochastic simulation framework [11].

Once this initialization is complete, we perform the following experiment for 500

milliseconds: Each thread deletes an item from the queue and checks its dependants.

For each dependant, if it is not present in the queue, then some other thread must

have already deleted it. This phenomenon models an inversion in the event queue in

which an event is processed with incomplete information, and must be reprocessed.

Thus, we add it back into the queue. We call this early deletion and reinsertion

wasted work. This can be caused by the relaxed semantics, although we note that

even linearizable queues may waste work if a process stalls between claiming an event

and actually processing it.

This benchmark allows us to examine the trade-off between the relaxed semantics

and the increased concurrency of SprayLists. Figure 4-4 reports the actual work

performed by each of the competing algorithms, where actual work is calculated by

simply measuring the reduction in the size of the list over the course of the experi-

ment, as this value represents the number of nodes which were deleted without being

reinserted later and can thus be considered fully processed. For each trial, we set

𝛿 = 2 and tested 𝐾 = 100, 1000, 10000.

As expected, the linearizable priority queue implementation does not scale for any
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value of 𝐾. As in the pure throughput experiment, this experiment also presents high

levels of contention, so implementations without scaling throughput cannot hope to

scale here despite wasting very little work.

On the other hand, the SprayList also fails to scale for small values of 𝐾. For

𝐾 = 100, there is almost no scaling due to large amounts of wasted work generated by

the loose semantics. However, as 𝐾 increases, we do start to see increased scalability,

with 𝐾 = 1000 scaling up to 16 threads and 𝐾 = 10000 scaling up to 80 threads.

To demonstrate the dependence of scalability on the distribution of dependencies,

we measured the minimum value of 𝐾 needed to obtain maximum performance from a

SprayList at each thread count. In particular, for each fixed value of 𝑛, we increased

𝐾 until performance plateaued and recorded the value of 𝐾 at which the plateau

began.

Figure 4-4: Work performed for varying dependencies (higher is better). The mean number
of dependants is 2 and the mean distance between an item and its dependants varies

between 100, 1000, 10000.

Figure 4-5: Minimum value of 𝐾 which maximizes the performance of the SprayList for
each fixed number of threads.
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Figure 4-5 reports the results of this experiment. We notice that the minimum 𝐾

required increases near linearly with the number of threads. Note that the “bumps"

at 40 and 80 threads due to the dependence of Spray width only on ⌊log2 𝑛⌋ (so the

minimum 𝐾 required will generally only increase at powers of 2). This plot suggests

the required dependency sparsity in order for the SprayList to be a good choice of

data structure for a particular application.
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Chapter 5

Discussion and Future Work

We presented a new design for a relaxed priority queue, which allows throughput

scaling for large number of threads. The implementation weakens the strict ordering

guarantees of the sequential specification, and instead provides probabilistic guaran-

tees on running time and number of inversions. Our evaluation suggests that the

main advantage of our scheme is the drastic reduction in contention, and that, in

some workloads, the gain in scalability can fully compensate for the additional work

due to inversions. We develop our technique on a lock-free SkipList, however a similar

construct works for a lock-based implementation. Also, the relaxation parameters of

our algorithm (spray height, step length) can be tuned depending on the workload.

An immediate direction for future work would be to tune the data structure for

specific workloads, such as efficient traversals of large-scale graphs. A second direction

would be to adapt the spraying technique to obtain relaxed versions of other data

structures, such as double-ended queues [16].
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