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Abstract

As we apply machine learning to more and more important tasks, it becomes increas-
ingly important that these algorithms are robust to systematic, or worse, malicious,
noise. Despite considerable interest, no efficient algorithms were known to be robust
to such noise in high dimensional settings for some of the most fundamental statistical
tasks for over sixty years of research.

In this thesis we devise two novel, but similarly inspired, algorithmic paradigms
for estimation in high dimensions in the presence of a small number of adversarially
added data points. Both algorithms are the first efficient algorithms which achieve
(nearly) optimal error bounds for a number fundamental statistical tasks such as
mean estimation and covariance estimation. The goal of this thesis is to present these
two frameworks in a clean and unified manner.

We show that these insights also have applications for other problems in learning
theory. Specifically, we show that these algorithms can be combined with the power-
ful Sum-of-Squares hierarchy to yield improvements for clustering high dimensional
Gaussian mixture models, the first such improvement in over fifteen years of research.
Going full circle, we show that Sum-of-Squares also can be used to improve error rates
for robust mean estimation.

Not only are these algorithms of interest theoretically, but we demonstrate empiri-
cally that we can use these insights in practice to uncover patterns in high dimensional
data that were previously masked by noise. Based on our algorithms, we give new
implementations for robust PCA, new defenses for data poisoning attacks for stochas-
tic optimization, and new defenses for watermarking attacks on deep nets. In all of
these tasks, we demonstrate on both synthetic and real data sets that our perfor-
mance is substantially better than the state-of-the-art, often able to detect most to
all corruptions when previous methods could not reliably detect any.

Thesis Supervisor: Ankur Moitra
Title: Rockwell International CD Associate Professor of Mathematics
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A Note on the Content

This thesis presents a subset of results from the author’s results during his Ph.D [GGLS14,

AKLS15, ADH+15, LP15, ADLS16, DKK+16, ADLS17, LS17, BDLS17, AKLN17,

ZLK+17, DKK+17, AGL+17, DGL+17, DKK+18a, HL18, ABK+18, DLS18, LMPS18,

DKK+18b, AAZL18, KLSU18, TLM18], spanning roughly four (related) lines of work.

In the interest of presenting a somewhat coherent and concise thesis, it covers a

single line of work, namely, robust estimation in high dimensions. It covers large parts

of the papers [DKK+16, BDLS17, DKK+17, HL18, DKK+18b, TLM18]. Another

paper in this line of work which we mostly omit is [DKK+18a], though we touch on

parts of it.

The author also noted that in a number of theses he read, people would include

quotes from their favorite pieces of poetry and/or classical literature. In part because

the author is frankly too uncultured to know such material [Red15, Twi15], and in part
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similar but instead with loose translations of lyrics from Korean pop songs [Gir07,

Api16, Im17, IOI16, Red17a, BTS18b, IOI17, Lee17, IKO18]. The author hopes that

the reader and his future self will forgive this frivolity.
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Chapter 1

Introduction

Walking the many and unknowable paths,

I follow a dim light.

Let us do so together,

until the end,

into the new world.

1.1 A new perspective of robustness

The main question we seek to answer in this thesis is the following:

Question 1: Given adversarially corrupted high dimensional data, how can we

efficiently extract meaningful information from it?

This question is purposefully left somewhat vague, and in this thesis we will explore

a number of variations on this theme. In general, this question is of great interest to

data scientists and computer scientists, both in theory and in practice. Classically

this field has been known as robust statistics ; more recently it has gained a lot of

attention in machine learning as adversarial ML. This problem has been studied in

both statistics and machine learning for over fifty years [Tuk60, Hub64], yet until

recently the algorithmic aspects of this question were shockingly poorly understood.
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In a 1997 retrospective on the development of robust statistics [Hub97], Peter Huber

(one of the founders of the field), laments:

“It is one thing to design a theoretical algorithm whose purpose is to prove

[large fractions of corruptions can be tolerated] and quite another thing

to design a practical version that can be used not merely on small, but

also on medium sized regression problems, with a 2000 by 50 matrix or so.

This last requirement would seem to exclude all of the recently proposed

[techniques]."

The goal of this thesis is to answer Huber’s call to action and design estimators for a

number of statistical and supervised learning tasks—including those from the original

robust statistics papers—which are provably robust, and work in high-dimensions.

Such estimators make the promise of robust learning in high dimension much closer

to a reality.

The need for robustness in data analysis and machine learning is fairly universal.

Systematic and uncontrolled noise can become part of a dataset in many, and often

hard to avoid, ways. This noise can be due to model misspecification, since our

simple models fail to capture all of the intricacies of the real world. It can be due to

happenstance, if for instance small subpopulations of data are agglomerated into the

large dataset. And it can be due to malicious adversaries, who wish to corrupt the

algorithm’s performance. The latter in particular has become especially worrisome

in the modern era of machine learning and data science, as we use these algorithms

for increasingly important and sensitive applications.

To demonstrate the importance of robustness in modern data science and machine

learning, let us briefly list a couple of examples where robustness plays a major role.

Feature extraction for biological data The first application is biological data

(such as gene expression data). An important task in computational biology is to an-

alyze and visualize genetic expression data. In doing so, systematic and uncontrolled

noise can occur in many ways. For instance, labeling or measurement errors can cre-

ate systematic outliers [RPW+02, LAT+08] that require painstaking manual effort to
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remove [PLJD10]. Additionally, since data is often amalgamated from many different

labs, data sets for genetic expression are often contaminated with large amounts of

systematic noise.

Moreover, even given clean data sets, because of the presence of small but genet-

ically different subpopulations, general trends in genetic data can be obscured. For

instance, as mentioned in [NJB+08], the connection between genetic expression and

geography they report can only be found after carefully pruning genetic information

from immigrants. As a result, algorithms which are automatically robust to adver-

sarial noise can help to speed up the process of discovery, or to find new patterns

previously masked by these sources of noise.

Defending against data poisoning attacks The second motivation is machine

learning security, where outliers can be introduced through data poisoning attacks [BNJT10]

in which an adversary inserts malicious data into the training set. Recent work has

shown that for high-dimensional datasets, even a small fraction of outliers can sub-

stantially degrade the learned model [BNL12, NPXNR14, KL17, SKL17]. This is es-

pecially worrisome in setting such as search engines or recommender systems, where

it is natural to gather data from crowdsourced sources [KMY+16]. However, when we

do so, we can no longer fully trust our training dataset, and ignoring these security

issues can have dangerous effects [BLA16]. For instance, there are instances where

it is believed that search engines have been manipulated by a small group of mali-

cious users injecting their own queries, potentially influencing important events like

elections [ER15]. Clearly in such settings it would be ideal if these algorithms were

resistant to such meddling.

One form of data poisoning attack we highlight in particular are backdoor attacks.

Here, rather attemping to degrade the performance of the model on the test data, the

goal is to implant a backdoor into the model, so that, given any test image, the adver-

sary can perform some slight modifications to the image to have the model perform

badly on this image. These attacks are harder to root out, since it is often even hard

to detect whether or not the model has been backdoored. Such attacks have been
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discovered against deep neural networks. For instance, the authors of [GDGG17] were

able to build a backdoor into neural nets used for stop sign detection in autonomous

cars. By adding a small number of adversarially chosen points to the training set,

they were able to cause the network to wrongly classify any image by adding their

chosen perturbation. This attack is especially interesting—and dangerous—since the

network behaves normally on unwatermarked test images.

Observe that in all of these applications, the data is often quite high dimensional.

This is typical for most ML and data sciences applications nowadays. For instance,

genetic data is often tens or hundreds of thousands of dimensions. However, as will

be a recurring theme throughout this thesis, being robust in high dimensions can

be quite challenging from an algorithmic perspective. Understanding the interplay

between robustness and computation will be a large part of the contribution of this

thesis.

1.1.1 Formalizing the question

We approach Question 1 from a mathematical perspective, so the first order of busi-

ness is to rigorously specify what we mean in Question 1. In general, there are 3

components to making this question formal:

∙ What kind of assumptions do we make on the data? In this thesis,

we will primarily make distributional assumptions on the inliers. That is, we

assume the uncorrupted points are drawn i.i.d. from some “nice” distribution.

However, it will often be the case that we will give deterministic conditions on

the inliers under which our algorithms work.

∙ What kinds of corruptions are considered? In this work we focus on a

strong notion of corruption, namely gross corruption, where we assume that a

small fraction of samples are completely corrupted. There are of course a num-

ber of different models of corruption, such as statistical notions such as model

misspecification, additive models such as Hüber’s contamination model, etc.,

however, in large part, our model subsumes these notions. That is, in our model,
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the adversary corrupting the samples is allowed to do more than the adversary

in these other models of corruption. Despite this, we achieve strong statistical

guarantees against this adversary, much stronger than were even known for the

weaker models of corruption considered previously. In Section 1.4 we discuss

these notions of corruption and compare them in more detail.

∙ What sort of information do we wish to recover? Depending on the

problem, it is natural to ask to recover different types of information. The most

basic questions center around recovering information about the distribution of

uncorrupted points. However, we can also consider questions in a supervised

model. For instance, we could ask to learn some model as if the data were

uncorrupted.

1.1.2 Overview of the problems

In this thesis, we build a theory of how to approach Question 1, starting from the

most fundamental questions, and working our way to more general and complicated

settings. Even for the most basic questions, prior to our work, the picture was quite

incomplete. While these simple setups are quite specialized, by building on these

ideas, we are then able to tackle increasingly general problems.

In all these settings, there are three important criteria we are concerned with:

∙ Statistical error Given enough (possibly corrupted) samples, we wish to ob-

tain small error. Observe that, unlike in traditional minimax theory, in general

we cannot expect this error to go to zero as we take more and more samples,

simply because as we get more samples, we also receive more corrupted data,

since we assume that a constant fraction of the data points may be corrupted.

As our data is often extremely high dimensional, it is important that our er-

ror guarantees are dimension independent. This is also intimately related to

classical notions studied in robust statistics such as breakdown point.

∙ Runtime Naturally, we wish to be able to actually run our algorithms, and

thus it is important that they are efficient computationally. Traditionally in
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learning theory this has meant polynomial time, but since datasets nowadays

are very large, ideally we want extremely fast algorithms. As we shall discuss

below, previous approaches to robust estimation that worked in high dimensions

had runtimes which were exponential in the parameters. We are not only able

to obtain the first polynomial time robust estimators in high dimensions, but in

fact our algorithms are fast enough to be run on large, high dimensional data

sets in practice!

∙ Sample Complexity We want our error guarantees to kick in even when we do

not have too many samples. While this is of course a very important measure,

it turns out that our algorithms tend to naturally be (nearly) sample optimal,

and so throughout this thesis we will generally emphasize this point less.

With these points in mind, we can now state the problems we consider in our thesis.

The starting point: robustly learning a Gaussian Here, we assume that we

are given samples 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 which are drawn i.i.d. from a distribution 𝐷 which

is a 𝑑-dimensional Gaussian with mean 𝜇 and covariance Σ, except an 𝜀-fraction of

these points have been arbitrarily changed. The goal is then to recover the underlying

Gaussian. Since a Gaussian is determined by its mean and covariance, this question

is equivalent to learning 𝜇,Σ under the appropriate metrics. In this setting, we are

able to obtain the first polynomial time estimators which achieve nearly optimal rates

in the presence of adversarial noise:

Theorem 1.1.1 (informal, see Theorems 2.2.1, 5.3.1, 5.4.1). Fix 𝜀 > 0. Let 𝑋1, . . . , 𝑋𝑛

be a sufficiently large set of samples from an unknown Gaussian 𝐺, except an 𝜀-

fraction of them are arbitrarily corrupted. There is a polynomial time algorithm which,

given 𝑋1, . . . , 𝑋𝑛, outputs ̂︀𝐺 so that with high probability, the total variation distance

between 𝐺 and ̂︀𝐺 is at most 𝑂(𝜀 log 1/𝜀).

We remark that it is easily demonstrated that Ω(𝜀) error is necessary for any

algorithm, given any number of samples. This is in contrast to traditional minimax

settings, where we expect the error to go to zero as the number of samples goes to
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infinity. This is because even though we get to take more samples, the adversary

always gets to corrupt an 𝜀-fraction of them. Thus, our error is nearly optimal, up to

log factors.

Moreover, the algorithms we design also have other very nice properties. In partic-

ular, they have nearly optimal sample complexities as well: their sample complexities

match (up to logarithmic factors) the optimal sample complexity for the non-robust

version of the problem. Thus, in this regard, robustness comes “for free” in this

setting.

Robust parameter estimation While the above problem is arguably the most

basic setting, it ends up being somewhat brittle, since the algorithms may implicitly

use the Gaussianity of the inliers. In practice, data may not have such nice concen-

tration, or may not exactly have the nice moment structure that Gaussians possess.

From this perspective, a natural generalization of the above problem is then to only

assume that the distribution of inliers 𝐷 is still “nice” in some sense, in that it has

bounded moments up to some degree. The goal then is not to learn 𝐷 (since without

stronger assumptions this is impossible), but to recover stastistics of 𝐷 such as the

mean or covariance.

We observe that while these problems are mathematically quite simple to state,

already they are of great interest in practice. For instance, the problem of robustly

estimating the covariance is intimately related to robust principal component analysis

(PCA), since the principal components of any dataset are simply the top eigenvectors

of the covariance. Hence, if we can robustly recover the covariance, we can simply

read off the top eigenvectors, and perform robust PCA. Prior methods for robust

PCA worked under orthogonal or weaker conditions on either the data matrix or

the corruptions. As a result, our methods are able to detect patterns on real high

dimensional data sets that these previous methods could not find.

The Gaussian learning algorithms that achieve 1.1.1 go through this recipe, and

give algorithms for robust mean and covariance estimation of a Gaussian. As a result,

ingredients from these algorithms can immediately give some results for robust param-
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eter estimation. In particular, they give nearly optimal results for mean estimation

of sub-Gaussian distributions with known covariance:1

Theorem 1.1.2 (informal, see Theorems 2.2.13 and 5.3.1). Fix 𝜀 > 0. Let 𝑋1, . . . , 𝑋𝑛

be a sufficiently large set of samples from an unknown sub-Gaussian distribution 𝐷

with mean 𝜇 and covariance 𝐼, except an 𝜀-fraction of them are arbitrarily corrupted.

There is a polynomial time algorithm which, given 𝑋1, . . . , 𝑋𝑛, outputs ̂︀𝜇 so that with

high probability,

‖𝜇− ̂︀𝜇‖2 = 𝑂(𝜀
√︀

log 1/𝜀) .

As before, this error is optimal up to log factors, and our algorithms are sample opti-

mal up to log factors. Moreover, for this important subproblem, we give algorithms

which are extremely efficient: only requiring at most ̃︀𝑂(𝑑) passes through the data.2

Thus not only do we achieve polynomial time estimators, but we are able to obtain

practical estimators.

However, sometimes data is not so well concentrated. In such settings, is it possible

to recover robust parameter recovery guarantees? We also give results for robust mean

estimation under much weaker assumptions. Specifically, we are able to show that

non-trivial robust estimation is possible even when we only assume bounded second

moments:

Theorem 1.1.3 (informal, see Theorem 5.5.11). Fix 𝜀 > 0. Let 𝑋1, . . . , 𝑋𝑛 be a

sufficiently large set of samples from an unknown distribution 𝐷 with mean 𝜇 and

bounded covariance, except an 𝜀-fraction of them are arbitrarily corrupted. There is

a polynomial time algorithm which, given 𝑋1, . . . , 𝑋𝑛, outputs ̂︀𝜇 so that with high

probability,

‖𝜇− ̂︀𝜇‖2 = 𝑂(
√
𝜀) .

1As we will define more formally in Section 1.4, a distribution is sub-Gaussian if it concentrates
“at least as well” as a Gaussian along every univariate projection.

2Throughout this thesis we let ̃︀𝑂(𝑓) = 𝑂(𝑓 log𝑂(1) 𝑓).
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It turns out that with these weaker assumptions, this weaker error guarantee is opti-

mal up to constants, and as before, our algorithm is sample optimal up to log factors.

This setting will prove extremely crucial for some of the later applications in the

thesis.

Given that we now have tight results for sub-Gaussian distributions (where in a

sense all moments are controlled), and results for distributions with only bounded

second moments, it is a natural question to ask if we can interpolate between these

two extremes. By using much more complicated algorithmic techniques, we are able

to partially resolve this question:

Theorem 1.1.4 (informal, see Theorem 4.6.1). Fix 𝜀 > 0 sufficiently small and let

𝑡 ≥ 4. Let 𝐷 be a distribution over R𝑑 with mean 𝜇 so that its ℓth moments are

bounded by those of a Gaussian, and this bound is given by a “simple certificate”, for

all ℓ ≤ 𝑡. Let 𝑋1, . . . , 𝑋𝑛 be a set of samples from 𝐷, where an 𝜀-fraction of these have

been arbitrarily corrupted. If 𝑛 = Ω
(︀
𝑑𝑂(𝑡)(1/𝜀)𝑂(1)

)︀
, there is an algorithm which takes

𝑋1, . . . , 𝑋𝑛 with running time (𝑑𝑡𝜀)𝑂(𝑡) and outputs ̂︀𝜇 so that with high probability

‖̂︀𝜇− 𝜇‖2 ≤ 𝑂(𝜀1−1/𝑡) .

This algorithm is based on the powerful Sum-of-squares (SoS) hierarchy which will

also play an important role for the next result. We remark that while the criterion

that the bound have a “simple certificate” is a rather technical one, it can be shown

(see e.g. [KS18]) that this applies to almost all classically studied distributions.

Clustering well-separated Gaussian mixture models The next problem is on

the surface unrelated to robustness, however, it shares some deep and interesting

technical connections to robust estimation, and in particular, Theorem 1.1.4. A

(uniform) mixture of 𝑘 distributions 𝐷1, . . . , 𝐷𝑘 is the distribution where samples

are generated via the following process: first, draw 𝑖 uniformly from {1, . . . , 𝑘}, then

output a sample from 𝐷𝑖. Mixture models, and especially, mixtures of Gaussians,

are pervasive in practice. For instance, any statistic of a heterogenous population
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consisting of a number of separate sub-populations with different distributions of this

statistic is well-modeled by a mixture model.

A well-studied and important question in this setting is to cluster data points

drawn from a Gaussian mixture model. That is, given samples from a mixture over

𝑘 isotropic Gaussians, recover with low error which component each sample came

from. Without additional assumptions this is information theoretically impossible

(for instance, consider the setting where all the Gaussians are identical). Thus, to

make this problem well-formed, we impose separation conditions on the Gaussians,

that is, the means of the Gaussians are located far apart from one another. The main

question in this setting is what sort of separation is necessary to efficiently cluster

the samples. Until our work, there was an exponential gap between what was known

information theoretically and what could be handled using efficient algorithms: one

can show that Ω(
√
log 𝑘) separation suffices to cluster the points with high probability,

however, prior efficient algorithms required separation at least Ω(𝑘1/4).

By leveraging algorithmic connections to robust statistics, we are able to drasti-

cally improve this:

Theorem 1.1.5 (Informal, see Theorem 4.5.1). For every 𝛾 > 0 there is an algorithm

with running time (𝑑𝑘)𝑂(1/𝛾2) using at most 𝑛 ≤ 𝑘𝑂(1)𝑑𝑂(1/𝛾) samples which, given

samples 𝑥1, . . . , 𝑥𝑛 from a uniform mixture of 𝑘 spherical Gaussians in 𝑑 dimensions

with means 𝜇1, . . . , 𝜇𝑘 ∈ R𝑑 satisfying ‖𝜇𝑖 − 𝜇𝑗‖2 ≥ 𝑘𝛾 for each 𝑖 ̸= 𝑗, returns

estimators �̂�1, . . . , �̂�𝑘 ∈ R𝑑 such that ‖�̂�𝑖 − 𝜇𝑖‖2 ≤ 1/ poly(𝑘) with high probability.

We remark that our algorithms can also be generalized to work for non-uniform

mixtures, and also to mixtures of distributions of the type described in Theorem 1.1.4.

Defending backdoor attacks on deep networks A related and recently dis-

covered security threat to machine learning algorithms, and specifically deep neural

networks, are known as backdoor attacks. Here, as in data poisoning attacks, an

adversary injects a small fraction of adversarially chosen points into the data set.

However, the goal is not to lower test accuracy, as it was before. Rather, the goal is

to exploit the overparameterized nature of deep networks to build a “backdoor” into
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the network. The goal of the adversary is to cause the network to perform normally

on normal test images. However, the adversary should be able to slightly alter any

test image with their chosen perturbation, and cause the image to be misclassified.

These attacks are especially insidious, since it can be hard to detect whether or not

a network has been compromised or not, as its behavior looks normal on test images.

Prior to our work, no candidate defenses were known for this problem. We demon-

strate empirically that algorithms based on the methods presented in this thesis are

able to defeat all known backdoor attacks, in our experiments on CIFAR-10. Intu-

itively, it seems that known backdoor attacks cause a shift in the distribution of the

learned representation, which our methods are able to detect. As a result, we are

able to consistently remove almost all of the poisoned data points, causing the attack

to fail. Due to the poorly understood nature of deep networks, we are not able to

provide rigorous guarantees for our algorithm, but we view it as an important first

step towards principled defenses to such attacks.

Robust stochastic optimization The previous problems were all in the regime

of unsupervised learning. Another important setting is supervised learning, where

we are given labeled data points, and the goal is to perform regression, or to learn a

classifier for these data points.

As above, a natural question is whether we can perform supervised learning (i.e.

get low test error) when a small fraction of adversarially chosen data points and/or

labels are injected into the data set. In adversarial machine learning, such attacks

are known as data poisoning attacks.

To unify this setting, we observe that many of these problems fall under the

umbrella of stochastic optimization. Here, there is some distribution 𝐷 over functions

𝑓 , and the goal is to minimize 𝑓(𝑥) = E𝑓∼𝐷[𝑓(𝑥)]. This setting is extremely general,

and subsumes a large fraction of important supervised learning algorithms, including

least-squares and ridge regression, logistic regression, support vector machines, etc.

We show that given black box access to an algorithm for a stochastic optimization

task, it is possible to “robust-ify” it with minimal overhead, so that it is guaranteed
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to achieve good error, even in the presence of adversarial noise:

Theorem 1.1.6 (informal, see Theorem 7.2.1). Let 𝐷 be a “nice” distribution over

functions 𝑓 , and let 𝑓(𝑥) = E𝑓∼𝐷[𝑓(𝑥)]. Suppose we have black-box access to an

algorithm 𝒜 which, given 𝑓1, . . . , 𝑓𝑛 ∈ supp(𝐷), finds an approximate minimizer for
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑥). Then, for any 𝜀 > 0, there is an efficient algorithm which, given 𝒜 and

samples from 𝐷, where an 𝜀-fraction of these samples may be arbitrarily corrupted,

finds an approximate minimizer for 𝑓 with error at most 𝑂(
√
𝜀).

As a result, this gives us a general “meta-framework” for solving a number of optimiza-

tion problems in the presence of data poisoning attacks, with provable guarantees.

We then verify on synthetic and real data that our defenses achieve state-of-the-art

accuracy against state-of-the-art attacks for two of these problems, namely, ridge

regression and SVM.

1.2 Main contributions

In this section, we describe our contributions in this thesis to this area in more detail.

1.2.1 Overview

Rather than focusing on each problem in turn, it will be convenient for us to introduce

two frameworks for solving the problem of robustly learning a Gaussian which achieve

nearly identical statistical guarantees. These two frameworks can then be extended

in different ways to attack different subsets of the problems described above.

Unknown Convex Programming Our first approach is based on the principles

of convex programming. Developing this approach and its applications will be the

main subject of Chapters 2-4.

We show that robustly learning parameters of a Gaussian can be written as a

convex, but unknown, minimization problem. This convex program seeks to assign

weights to the samples corresponding to how much they can be trusted to give good
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estimates of the true parameters. While the objective is unknown, we show that we

can devise an approximate separation oracle for this minimization problem, allowing

us to optimize this objective. This algorithm appeared in the following paper:

∙ Ilias Diakonikolas, Guatam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra,

and Alistair Stewart, Robust estimators in high dimensions without the compu-

tational intractability, appeared at FOCS 2016 [DKK+16].

We give two applications of this approach. Our first is to robust sparse estimation,

which is described in Chapter 3. In many settings, the parameters of interest are not

completely arbitrary, but rather are quite structured, and in particular, sparse. For

instance, when analyzing genetic data, most genes do not matter, and thus the set

of important coordinates is often quite small. When there is no adversarial noise,

it has been shown that we can capitalize on this to substantially improve statis-

tical performance. We show that, by adapting the unknown convex programming

approach, we can recover many of the same statistical guarantees, in the presence

of adversarial noise. Interestingly, along the way we uncover some new candidate

statistical-computational tradeoffs that seem to only arise in the presence of noise.

This is based on the following paper:

∙ Sivaraman Balakrishnan, Simon S. Du, Jerry Li, Aarti Singh, Computation-

ally efficient robust sparse estimation in high dimensions, appeared in COLT

2017 [BDLS17], which was a merger of two independent preprints [Li17, DBS17].

In this thesis we will focus on presenting the results in [Li17].

Our second application, described in Chapter 4, is to robust parameter estimation

and high dimensional clustering. We show that by reinterpreting the convex program

in the Sum of Squares (SoS) hierachy, we are able to generalize and lift the program

to take into consideration higher order moment information. We can then use this

formulation to substantially improve the separation needed to cluster Gaussian mix-

ture models. Recall that to cluster a mixture of 𝑘 Gaussians in high dimensions,

previous efficient algorithms required separation Ω(𝑘1/4), whereas Ω(
√
log 𝑘) separa-

tion suffices information theoretically. We give polynomial time algorithms which

35



can tolerate separation Ω(𝑘𝜀) for any constant 𝜀 > 0, and we are able to recover the

information theoretic threshold in quasi-polynomial time. Interestingly, this same

framework can also be used to improve robust parameter estimation for a wide class

of sub-gaussian distributions. This is based on the following paper:

∙ Samuel B. Hopkins and Jerry Li, Mixture Models, Robustness, and Sum of

Squares Proofs, appeared in STOC 2018 [HL18].

Filtering Our second approach, which we call filtering, is based on iteratively rejec-

tion sampling. Developing this approach and its applications will be the main subject

of Chapters 5-7.

While the unknown convex programming approach assigns soft weights to each

sample point corresponding to how much it believes that the sample is good, filtering

assigns each point a score depending on how much it believes it is corrupted, and

removes the ones with scores above a threshold, and then repeats the process. We

show that when the good points come from a Gaussian, by carefully choosing how to

assign these scores and the threshold, we can guarantee that we always remove more

bad points than good points. As a result, we show that this algorithm always makes

progress.

We also generalize this approach to work for distributions with bounded second

moment. Moreover, filtering is quite practical; its pseudocode is quite simple, and

each iteration of filtering runs in nearly-linear time. We have implemented this al-

gorithm, and have demonstrated that it significantly improves upon the performance

of previous algorithms on both synthetic and real data sets. Filtering was first in-

troduced in the same paper as unknown convex programming [DKK+16], and the

generalizations and experiments are based on:

∙ Ilias Diakonikolas, Guatam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra,

and Alistair Stewart, Being Robust (in high dimensions) can be Practical, ap-

peared in ICML 2017 [DKK+17].

In general filtering appears to hold much promise in real world applications. In

Chapter 6, we demonstrate the utility of filtering on synthetic and real data sets.
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As a concrete application on real data, we demonstrate that our method is able to

recover patterns in high dimensional genomic data, even in the presence of adversarial

noise, even when previous methods fail. This is based on results which first appeared

in [DKK+17].

Additionally, in the same chapter, we show that these ideas have applications to

defending watermarking attacks against deep networks. We show that for known

backdoor attacks, by mapping the data points to their learned representations result-

ing from a neural network, spectral methods can distinguish between the true data

points from the watermarked points. As a result, they can be easily detected and

removed. This section is based on the following paper:

∙ Brandon Tran, Jerry Li, Aleksander Mądry, Spectral Signatures in Backdoor

Attacks for Neural Networks, in submission to NIPS 2018 [TLM18].

Finally, in Chapter 7, we dramatically generalize the filter to give results for for

robust stochastic optimization. We show that insights developed from filtering can be

combined with any black-box optimizer as a defense against data poisoning attacks.

Our framework enjoys theoretical worst-case error guarantees, and also improves upon

the error achieved by state of the art defenses against data poisoning attacks for ridge

regression and SVM. This section is based on the following paper:

∙ Ilias Diakonikolas, Guatam Kamath, Daniel M. Kane, Jerry Li, Jacob Stein-

hardt, Alistair Stewart, Sever: A Robust Meta-Algorithm for Stochastic Opti-

mization, in submission to NIPS 2018 [DKK+18b].

1.3 A recipe for efficient robust estimation

In this section, we describe the basic geometry which is at the heart of the algorithmic

ideas developed in this thesis. These ideas yield a very general recipe for algorithms

for a large class of robust estimation tasks. At a very high level, the key insight is

the following:
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Corruptions to the empirical moment of a data set necessarily leave detectable traces

in the spectrum of higher moments.

Our algorithms will crucially exploit this structural property. If, for instance, the

goal is to detect whether the mean (the first moment) has been corrupted, then the

key information can often be found in the empirical second moment (or even higher

moments, in some cases). If alternatively, the goal is to detect whether the covariance

(the second moment) has been corrupted, then we should look at the fourth moment,

etc.

This method turns out to be quite powerful, and quite general. In particular,

this works even when we have only quite weak assumptions on the structure of the

unknown distribution. As a result, this meta-algorithm has found application in a

number of settings, a subset of which we will cover in this thesis.

The remainder of this section is dedicated to informally justifying this recipe.

Before we do so, it will be informative to understand the challenges that efficient

robust estimation in high dimensions face.

1.3.1 Why is robust estimation in high dimensions hard?

Why was so little known about efficient robust estimation in high dimensions? Let us

consider the simplest setting, to understand the main conceptual difficulties. Namely,

let us consider the setting where we get 𝑋1, . . . , 𝑋𝑛 from a Gaussian in 𝑑 dimensions

with identity covariance, and mean 𝜇, where an 𝜀-fraction of these samples are arbi-

trarily corrupted. This is (essentially) the problem initially considered in the seminal

work of [Tuk60, Hub64] that introduced robust statistics—yet until very recently no

efficient algorithms were able to achieve the right error rate for this problem! With-

out understanding this problem, it will be difficult to attack the more complicated

settings, so it is definitely worth spending some time here.

The state of affairs for this problem prior to our work can be summarized briefly

in Table 1.1. In short, all known algorithms for this basic problem fit into one of two

categories.
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Dimensionality Error guarantee Efficient?

In low dimensions
Median [folklore] Θ(𝜀) Yes

Pruning [folklore] Θ(𝜀
√︀
log 1/𝜀) Yes

In 𝑑 dimensions
Tukey Median [Tuk60] Θ(𝜀) No

Geometric Median [Web29] Θ(𝜀
√
𝑑) Yes

Tournament [folklore, see e.g. Ch. 6 of [DL12]] Θ(𝜀) No

Pruning [folklore] Ω(𝜀
√
𝑑) Yes

Coordinatewise median [folklore] Θ(𝜀
√
𝑑) Yes

RANSAC [FB87], many iterations ̃︀𝑂(𝜀) No

RANSAC [FB87], few iterations Ω(∞) Yes

Our results [DKK+16] 𝑂(𝜀
√︀

log 1/𝜀) Yes

Table 1.1: Overview of the known results for robustly learning the mean of a Gaussian
prior to our work. Green indicates that the algorithm achieves the qualitatively
desirable behavior for the given attribute, and red [Red17b] indicates that it does
not.

∙ Computationally intractable The algorithm would require time which was

exponential in the number of dimensions and/or samples, or would require solv-

ing a computational problem which is NP-hard in the worst case.

∙ Statistically suboptimal The error guarantees of the algorithm would prov-

ably degrade as the dimensionality of the data increased. Generally, the error

would grow polynomially with the dimension. As we are interested in extremely

high dimensional tasks, this renders the output of the algorithm uninformative.

Thus, as Huber lamented, the techniques developed for robust statistics were limited

in applicability to the regime of roughly 10 to 50 dimensions. This is a far cry from

modern day settings.

The barrier at Ω(𝜀
√
𝑑) So why is the problem so hard for efficient algorithms? In

particular, why does it seem that efficient algorithms get stuck at Ω(𝜀
√
𝑑)?
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Let us consider a representative efficient algorithm, and see why this algorithm

gets stuck. As it turns out, the same basic problem is at the heart of the issue for

most, if not all, previously proposed efficient algorithms.

Let us consider the pruning algorithm. This algorithm is very basic: it simply

attempts to remove all points which are “obviously” too far to be from the true

distribution, and hopes that it has removed them all. It then takes the empirical

mean of the remaining points in the data set.

This algorithm actually works pretty well in low dimensions (see Table 1.1). In-

tuitively, all points from a Gaussian in low dimension will be quite close to the true

mean. Thus, if the outliers wish to survive the pruning, they must also be quite

close to true mean, at distance roughly 𝑂(
√︀

log 1/𝜀). Since there are an 𝜀-fraction

of outliers, they cannot corrupt the value of the empirical mean by more than ̃︀𝑂(𝜀).
This is demonstrated pictorially in the figure on the left in Figure 1-1.

Figure 1-1: The qualitative difference between low dimensional and high dimensional
robust estimation. Blue points are inliers and red points are outliers. On the left:
the behavior of data in low dimensions. On the right: the behavior of data in high
dimensions.

However, in high dimensions, this begins to degrade badly. This is because in high

dimensions, we expect a typical sample from a Gaussian to have norm Θ(
√
𝑑). Thus,

as depicted in the picture on the right in Figure 1-1, in high dimensions we should

really think of samples from a Gaussian as living on a shell of radius roughly Θ(
√
𝑑).

As a result, given a point in the shell, the algorithm cannot reliably distinguish if it
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is a outlier or not. Thus, if all the outliers also live within this shell, they will survive

the pruning. As a result, there are an 𝜀-fraction of corruptions, each of which can

contribute a Ω(
√
𝑑) to the error. This results in an error of Ω(𝜀

√
𝑑).

Informally, what we’ve argued is that any method which attempts to determine

whether a sample is an outlier at an individual sample level must get stuck at Ω(𝜀
√
𝑑).

To surpass this barrier, we must somehow look at more global information of the

corruptions.

1.3.2 Breaking the 𝑂(𝜀
√
𝑑) barrier: spectral signatures

We now explain how the frameworks proposed in this thesis circumvent this difficulty.

While the two frameworks may look somewhat different algorithmically, they are

based on a shared information theoretic intuition. A major goal of this thesis is to

flesh out this connection. Indeed, many of the applications we give for one approach

or the other in this thesis can be achieved using the other approach, though with

certain caveats both ways.

Figure 1-2: A cartoon to explain the phenomena of spectral signatures.
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For the case of mean estimation, we provide a cartoon of this intuition in Figure 1-

2. As before, blue points are inliers, drawn from an isotropic distribution. Red points

are outliers, designed to change the empirical mean while blending in with the inliers.

The blue X denotes the true mean of the distribution. Let us denote this 𝜇. The red

X denotes the empirical mean of the corrupted dataset, which we call ̂︀𝜇. The rough

idea is as follows: we do not wish to identify which points are individually outliers.

Indeed, as we argued above, to do so would incur an error which would necessarily

grow polynomially with the dimension. Instead, we only care if the corrupted points

work together in aggregate to change the empirical mean of the data set.

We next ask how this can happen. Certainly the mean of the uncorrupted points

will concentrate nicely to the true mean of the distribution. Thus, if the mean ̂︀𝜇 of

the whole dataset is far from the true distribution, this means that along the direction

𝜇−̂︀𝜇, the corrupted points must be the source of the deviation, as we see in Figure 1-

2. Since there are comparatively fewer corrupted points than there are inliers, this

can only happen if the corrupted points are actually quite far out in this direction.

In fact, they must be so far out that this causes the variance of the total dataset

in this direction to be noticeably larger than it should be. In Figure 1-2, the blue

circle denotes the true covariance of the distribution, which is a circle, since the

distribution is isotropic. However, the empirical distribution, the red oval, clearly

has a large component in the direction roughly corresponding to 𝜇− ̂︀𝜇. As a result,

this direction can be detected as a large eigenvector of the empirical covariance. This

phenomena is something we call a spectral signature, and is a specific instance of a

more general behavior: to detect deviations in a empirical moment caused by a small

number of adversarially corrupted points, it suffices to consider spectral properties of

higher moments.

1.4 Notation and preliminaries

For any natural number 𝑛, we let [𝑛] = {1, . . . , 𝑛}. Throughout this thesis, we will

always let 𝑛 denote the number of samples we have taken.
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For any 𝑟 > 0 and any 𝜇 ∈ R𝑑, we let 𝐵(𝜇, 𝑟) = {𝑥 ∈ R𝑑 : ‖𝑥 − 𝜇‖2 < 𝑟} be the

ℓ2-ball of radius 𝑟 around 𝜇. For any two vectors 𝑢, 𝑣 ∈ R𝑑, we let ⟨𝑢, 𝑣⟩ =
∑︀𝑑

𝑖=1 𝑢𝑖𝑣𝑖

denote their usual inner product, and we let ‖𝑣‖2 = ⟨𝑣, 𝑣⟩1/2 denote the ℓ2 norm of

𝑣. It is easily verified that ℓ2 is self-dual, i.e.

‖𝑣‖2 = sup
‖𝑢‖2=1

⟨𝑢, 𝑣⟩ .

For any matrix 𝑀 ∈ R𝑚×𝑑 with singular values 𝜎1 ≥ 𝜎2 . . . 𝜎𝑟 ≥ 0, where 𝑟 =

max(𝑚, 𝑑), we let ‖𝑀‖2 = 𝜎1 be its spectral norm, and ‖𝑀‖𝐹 = (
∑︀𝑟

𝑖=1 𝜎
2
𝑖 )

1/2 denote

its Frobenius norm. In a slight abuse of notation, given two matrices 𝐴,𝐵 ∈ R𝑚×𝑑,

we let ⟨𝐴,𝐵⟩ = tr(𝐴⊤𝐵) to be the inner product between these two matrices.

When 𝑀 ∈ R𝑑×𝑑 is a Hermitian matrix, it can be verified that

‖𝑀‖2 = sup
‖𝑢‖2=1

⟨𝑢,𝑀𝑢⟩ , ‖𝑀‖𝐹 = sup
‖𝐴‖𝐹=1

⟨𝐴,𝑀⟩ .

We let ⪰ denote the Loebner PSD ordering on symmetric matrices. Given Σ ∈ R𝑑×𝑑

with Σ ≻ 0, we let Σ1/2 denote its matrix square root, and for any matrix 𝑀 ∈ R𝑑×𝑑

we let

‖𝑀‖Σ =
⃦⃦
Σ−1/2𝑀Σ−1/2

⃦⃦
𝐹

denote the Mahalanobis norm induced by Σ of 𝑀 . One can check that this value is

invariant under choice of matrix square root, i.e. for any 𝐴 so that 𝐴⊤𝐴 = Σ−1, we

have ‖𝑀‖Σ = ‖𝐴𝑀𝐴‖𝐹 .

Given 𝑘 distributions 𝐹1, . . . , 𝐹𝑘 with PDFs 𝑓1, . . . , 𝑓𝑘 and mixing weights 𝑤1, . . . , 𝑤𝑘

so that
∑︀𝑘

𝑖=1𝑤𝑖 = 1 and 𝑤𝑖 ≥ 0 for all 𝑖 ∈ [𝑘], we let the mixture of 𝐹1, . . . , 𝐹𝑘 with

mixing weights 𝑤1, . . . , 𝑤𝑘, denoted 𝐷 =
∑︀𝑘

𝑖=1𝑤𝑖𝐹𝑖, be the distribution with PDF∑︀𝑘
𝑖=1𝑤𝑖𝑓𝑖. This corresponds to the distribution whose samples are generated via

the following process: first, choose 𝑖 from [𝑘] with probability 𝑤𝑖, then output an

independent sample from 𝐹𝑖. Given a sample 𝑋 ∼ 𝐷, we say 𝑖 is its corresponding

component if it was drawn from 𝐹𝑖. If the mixing weights are uniform, we say that
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the mixture is a uniform mixture.

For convenience throughout this thesis, we will often conflate probability distri-

butions and their probability density functions (PDFs). Hopefully the context makes

it clear which one we are discussing at any given time. When the usage may be

ambiguous we will clarify.

1.4.1 The Gaussian distribution, sub-gaussian distributions

A univariate Gaussian (also known as a normal distribution) is specified by a mean

𝜇 ∈ R and a variance 𝜎2 > 0, is denoted 𝒩 (𝜇, 𝜎2), and has PDF given by

𝒩 (𝜇, 𝜎2)(𝑥) =
1√
2𝜋𝜎2

exp

(︂
−𝜎

2

2
(𝑥− 𝜇)2

)︂
.

When 𝜇 = 0 and 𝜎2 = 1, we say that the distribution is the standard normal distri-

bution.

Amongst the many important properties of Gaussians are their concentration

properties. For instance, an important concentration property we will require is the

following:

Fact 1.4.1. Let 𝐺 be the standard normal distribution. For any 𝑇 > 0, we have

Pr
𝑋∼𝐺

[|𝑋| ≥ 𝑇 ] ≤ exp(−𝑇 2/2) .

To generalize this to beyond Gaussians, we say that a univariate distribution 𝐷

is sub-gaussian with variance proxy 𝑠2 if

E
𝑋∼𝐷

[︂(︁
𝑋 − E

𝑋∼𝐷
[𝑋]
)︁𝑘]︂
≤ E

𝑋∼𝒩 (0,𝑠2)

[︀
𝑋𝑘
]︀
,

for all 𝑘 even. It can be shown (see e.g. [RH17]) that this implies (indeed, is equivalent

to the fact) that any sub-gaussian distribution has the same concentration properties

as a Gaussian with the same variance.

A multivariate Gaussian distribution the natural generalization of a Gaussian to
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high dimensions. It is specified by a mean vector 𝜇 ∈ R𝑑 and a covariance matrix

Σ ∈ R𝑑×𝑑 so that Σ ≻ 0, is denoted by 𝒩 (𝜇,Σ), and has probability distribution

function given by

𝒩 (𝜇,Σ)(𝑥) =
1√︀

(2𝜋)𝑘 det(Σ)
exp

(︂
−1

2
(𝑥− 𝜇)⊤Σ−1(𝑥− 𝜇)

)︂
.

The PDF of an example Gaussian is pictured in Figure 1-3. When Σ = 𝜎2𝐼 for some

Figure 1-3: The PDF of a 2-dimensional Gaussian.

𝜎 > 0, we say that the corresponding Gaussian is spherical, and when Σ = 𝐼, we say

that the Gaussian is isotropic.

Finally, to generalize sub-gaussianity to multivariate settings, we say that a dis-

tribution 𝐷 is sub-gaussian with variance proxy Σ if for all unit vectors 𝑢 ∈ R𝑑, the

distribution ⟨𝑢,𝑋⟩ where 𝑋 ∼ 𝐷 is sub-gaussian with variance proxy 𝑢⊤Σ𝑢. That

is, the distribution looks sub-gaussian along all one dimensional projections. In anal-

ogy with multivariate Gaussians, we say a sub-gaussian distribution is isotropic if its

covariance (which is always guaranteed to exist) is the identity.
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1.4.2 Distances and divergences between distributions

Total variation distance Given two distributions 𝐹,𝐺 over a shared probability

space Ω with PDFs 𝑓, 𝑔 respectively, we define the total variation distance between

𝐹 and 𝐺 (also known as the statistical distance), denoted 𝑑TV(𝐹,𝐺), to be

𝑑TV(𝐹,𝐺) = sup
𝐴

(︁
Pr

𝑋∼𝐹
[𝑋 ∈ 𝐴]− Pr

𝑋∼𝐺
[𝑋 ∈ 𝐴]

)︁
=

1

2

∫︁
Ω

|𝑓(𝑥)− 𝑔(𝑥)| .

This is a natural and well-studied metric of similarity between distributions. It is

especially well suited for our setting because it measures how well samples from 𝐹,𝐺

can be coupled. Recall a coupling between two distributions 𝐹,𝐺 is a distribution

over Ω × Ω whose marginals are distributed as 𝐹 and 𝐺, respectively. Then, the

following fact is well-known:

Fact 1.4.2 (folklore, see e.g. [Dur10]). For any two distributions 𝐹,𝐺, we have

𝑑TV(𝐹,𝐺) = sup
(𝑋,𝑌 )

Pr [𝑋 ̸= 𝑌 ] ,

where the supremum is taken over all couplings of 𝐹 and 𝐺.

In other words, given two distributions 𝐹 and 𝐺 with total variation distance 𝜀,

it is possible to transform samples from 𝐹 to samples from 𝐺 by changing at most

an 𝜀-fraction of the samples on average. Vice versa, if it is possible to change only an

𝜀-fraction of samples of 𝐹 to mimic 𝐺 perfectly, then their total variation distance

is at most 𝜀. Since we are interested in constant amounts of gross corruptions, this

naturally lends itself to the study of recovery in total variation distance. Moreover,

as we shall see shortly, learning a Gaussian in total variation distance corresponds

to recovering the parameters of the Gaussian in the natural affine invariant manner.

Indeed, when the two Gaussians are isotropic, we have that learning them in TV

distance is equivalent up to a constant factor to learning the means in ℓ2:

Fact 1.4.3 (folklore, see e.g. [DKK+18a], Lemma 1). Let 𝜀 > 0 be sufficiently small.
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Let 𝜇1, 𝜇2 ∈ R𝑑 so that ‖𝜇1 − 𝜇2‖2 = 𝜀. Then, we have

𝑑TV(𝒩 (𝜇1, 𝐼),𝒩 (𝜇2, 𝐼)) =

(︂
1√
2𝜋

+ 𝑜(1)

)︂
𝜀 .

For completeness of exposition we include the proof of this fact in Appendix A.1.

KL divergence Another important measure of similarity between distributions is

the Kullbeck-Liebler divergence or KL divergence, also known as relative entropy.

Given 𝐹,𝐺 with PDFs 𝑓, 𝑔 respectively, the KL divergence between them, denoted

by 𝑑KL(𝐹‖𝐺), is given by

𝑑KL(𝐹‖𝐺) =
∫︁
Ω

log 𝑓(𝑥) log
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥 .

While KL divergence is not a metric (it is asymmetric), and while we will not directly

study KL divergence, it is a very useful tool for us in the study of recovery in TV

distance. This is because of a couple of reasons. First, we have the following classical

inequality, which allows us to relate KL divergence to TV distance:

Fact 1.4.4 (Pinsker’s inequality, see e.g. [CT06]). Given two probability distributions

𝐹,𝐺, we have

𝑑TV(𝐹,𝐺) ≤
√︂

1

2
𝑑KL(𝐹‖𝐺) .

The second reason is that there is a very convenient closed form formula for the

KL divergence between two multivariate Gaussians:

Fact 1.4.5 (folklore). Let 𝜇1, 𝜇2 ∈ R𝑑 and let Σ1,Σ2 ∈ R𝑑×𝑑 be positive definite. Let

𝒩 1 = 𝒩 (𝜇1,Σ1) and 𝒩 2 = 𝒩 (𝜇2,Σ2). Then we have

𝑑KL (𝒩 1 ‖𝒩 2) =
1

2

(︂
tr(Σ−1

2 Σ1) + (𝜇2 − 𝜇1)
⊤Σ−1

2 (𝜇1 − 𝜇2)− 𝑘 + log

(︂
det(Σ2)

det(Σ1)

)︂)︂
.

(1.1)

Combining these two facts allows us to bound the TV distance between two Gaus-

sians with the same mean by the difference in their covariances in the Mahalanoubis
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norm induced by either:

Corollary 1.4.6 (folklore, see e.g. [DKK+16], Corollary 2.14). Fix 𝜀 > 0 sufficiently

small. Let Σ1,Σ2 be so that ‖Σ1 − Σ2‖Σ2 = 𝜀. Then 𝑑TV(𝒩 (0,Σ1),𝒩 (Σ2)) ≤ 𝑂(𝜀).

For completeness we provide a proof of Corollary 1.4.6 in Appendix A.1. We remark

that it is not hard to see that in the regime where 𝜀 as defined in Corollary 1.4.6

is small, this bound is tight up to constant factors, though we will not require this.

We also remark that the same technique can recover Fact 1.4.3, albeit losing some

constant factors along the way. Still, KL divergence and Pinsker’s inequality allow us

to exactly characterize the TV distance (up to constant factors) between multivariate

Gaussians.

1.4.3 Dealing with tensors

Let ⊗ denote the Kronecker product on matrices. We will make crucial use of the

following definition:

Definition 1.4.1. For any matrix 𝑀 ∈ R𝑑×𝑑, let 𝑀 ♭ ∈ R𝑑2 denote its canonical

flattening into a vector in R𝑑2 , and for any vector 𝑣 ∈ R𝑑2 , let 𝑣♯ denote the unique

matrix 𝑀 ∈ R𝑑×𝑑 such that 𝑀 ♭ = 𝑣.

We will also require the following definitions:

Definition 1.4.2. Let 𝒮sym = {𝑀 ♭ ∈ R𝑑2 : 𝑀 is symmetric}, let 𝒮 ⊆ 𝒮sym be the

subspace given by

𝒮 = {𝑣 ∈ 𝒮sym : tr(𝑣♯) = 0} ,

and let Π𝑆 and Π𝒮⊥ denote the projection operators onto 𝒮 and 𝒮⊥ respectively.

Finally let

‖𝑣‖𝒮 = ‖Π𝒮𝑣‖2 and ‖𝑣‖𝒮⊥ = ‖Π𝒮⊥𝑣‖2 .
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Moreover, for any 𝑀 ∈ R𝑑2×𝑑2 , let

‖𝑀‖𝒮 = sup
𝑣∈𝒮−{0}

𝑣𝑇𝑀𝑣

‖𝑣‖22
.

In fact, the projection of 𝑣 = 𝑀 ♭ onto 𝒮 where 𝑀 is symmetric can be written

out explicitly. Namely, it is given by

𝑀 =

(︂
𝑀 − tr(𝑀)

𝑑
𝐼

)︂
+

tr(𝑀)

𝑑
𝐼 .

By construction the flattening of the first term is in 𝒮 and the flattening of the second

term is in 𝒮⊥. The expression above immediately implies that ‖𝑣‖𝒮⊥ = |tr(𝑀)|√
𝑑

.

1.4.4 Types of adversarial noise

Here we formally define the types of adversarial corruption we study throughout this

thesis. Throughout this thesis, we will always let 𝜀 denote the fraction of corrupted

points, and we will always take it to be a sufficiently small constant. All of our

algorithms will for for 𝜀 ∈ (0, 𝑐] for some universal constant 𝑐 sufficiently small.

The largest 𝑐 for which our algorithms work is known as the breakdown point of the

algorithm, and is a well-studied object in robust statistics. However, in this thesis we

will not focus on optimizing for breakdown point.

Recall that 𝑛 will always denote the number of (potentially corrupted) samples we

have. For convenience, we will always assume that 𝜀𝑛 is an integer value; by either

slightly increasing 𝜀 and/or 𝑛 by a small constant this can always be ensured.

The first, and most powerful, model we consider, will be that of adversarial cor-

ruption:

Definition 1.4.3 (𝜀-corruption). Fix 𝜀 ∈ (0, 1/2), and let 𝐷 be a distribution. We

say that a dataset 𝑋1, . . . , 𝑋𝑛 is a 𝜀-corrupted set of samples from 𝐷 if it is generated

via the following process:

∙ 𝑛 samples 𝑌1, . . . , 𝑌𝑛 are drawn i.i.d. from 𝐷.
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∙ A computationally unbounded adversary inspects 𝑌1, . . . , 𝑌𝑛, arbitrarily alters

an 𝜀-fraction of these, then returns the altered set of samples in any arbitrary

order.

Given an 𝜀-corrupted set of samples 𝑋1, . . . , 𝑋𝑛, we let 𝑆bad ⊂ [𝑛] denote the set of

indices of corrupted samples, and we let 𝑆good = [𝑛] ∖ 𝑆bad.

Observe that while the uncorrupted points are originally independent, because

the adversary is allowed to remove an 𝜀-fraction of them after inspecting them, the

points in 𝑆good may be dependent. Getting around this dependency will be a crucial

part of obtaining good error guarantees.3

All of the results presented in this thesis will hold for this strong notion of corrup-

tion. However, for completeness, we also mention other classically considered notions

of robustness. The first is the notion of a oblivious adversary :

Definition 1.4.4 (Oblivious 𝜀-corruption). Fix 𝜀 ∈ (0, 1/2), and let 𝐷 be any distri-

bution. We say that 𝑋1, . . . , 𝑋𝑛 is a obliviously 𝜀-corrupted set of samples from 𝐷 if

they are drawn i.i.d. from some distribution 𝐷′ with 𝑑TV(𝐷,𝐷
′) ≤ 𝜀.

This notion of corruption is also known as model misspecification in statistics.

Perhaps it is not clear a priori that oblivious 𝜀-corruption is weaker than 𝜀-corruption,

but this follows from the following lemma:

Lemma 1.4.7. Fix 𝜀, 𝛿 > 0, and let 𝐷 be a distribution. Let 𝑋1, . . . , 𝑋𝑛 be an

obliviously 𝜀-corrupted set of samples from 𝐷. Then, with probability 1 − 𝛿, it is an[︂(︂
1 +𝑂

(︂√︁
log 1/𝛿

𝑛

)︂)︂
· 𝜀
]︂
-corrupted set of samples from 𝐷.

Proof. By definition, there exists a distribution 𝐷′ be so that 𝑋1, . . . , 𝑋𝑛 are drawn

i.i.d. from 𝐷′, and so that 𝑑TV(𝐷,𝐷
′) ≤ 𝜀. By Fact 1.4.2, these samples can be

coupled to𝑋 ′
1, . . . , 𝑋

′
𝑛 drawn i.i.d. from𝐷 so that for each 𝑖, 𝑋𝑖 = 𝑋 ′

𝑖 with probability

1 − 𝜀. Thus, the adversary simply uses these 𝑋 ′
𝑖, and outputs 𝑋𝑖 only when the

3Note that technically all of these sets should technically be considered multisets, as samples may
be duplicated, especially in the corrupted sets. However, this does not meaningfully affect anything,
and so for simplicity of notation, throughout this paper we will simply refer to these as sets, and
use set notation and operations.
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coupling disagrees. By a Chernoff bound, with probability 1 − 𝛿, the number of

indices which disagree is
[︂(︂

1 +𝑂

(︂√︁
log 1/𝛿

𝑛

)︂)︂
· 𝜀
]︂
𝑛.

Thus, with a subconstant loss in the number of corrupted samples, we can simulate

obliviously corrupted samples by corrupted samples. Up to this loss, observe that the

adaptive corruption model is strictly stronger than the oblivious corruption model.

This difference does not appear to be very meaningful, but it will be useful for us to

think of adaptive corruption when analyzing our algorithms.

The last kinds of corruptions are strictly weaker, but have been studied fairly

extensively, and are still of interest:

Definition 1.4.5 (𝜀-additively corruption). Fix 𝜀 ∈ (0, 1/2), and let 𝐷 be a distribu-

tion. We say a set of samples 𝑋1, . . . , 𝑋𝑛 is an 𝜀-additively corrupted set of samples

from 𝐷 if it is generated via the following process:

∙ (1− 𝜀)𝑛 samples 𝑌1, . . . , 𝑌(1−𝜀)𝑛 are drawn i.i.d. from 𝐷.

∙ A computationally unbounded adversary inspects 𝑌1, . . . , 𝑌(1−𝜀)𝑛, adds 𝜀𝑛 ar-

bitrarily chosen points to the data set, and returns the result in any arbitrary

order.

As before, we let 𝑆bad denote the set of corrupted samples, and 𝑆good denote the

remaining set of samples.

There is an analogous definition of oblivious additive corruption:

Definition 1.4.6 (oblivious 𝜀-additive corruption). Fix 𝜀 ∈ (0, 1/2). We say𝑋1, . . . , 𝑋𝑛

is an obliviously 𝜀-additively corrupted set of samples from 𝐷 if they are drawn i.i.d.

from 𝐷′ = (1− 𝜀)𝐷 + 𝜀𝐹 , where 𝐹 is an arbitrary distribution.

As an historical aside, we note that this was the model of corruption considered in

Huber’s original paper [Hub64], and is also known as Huber’s contamination model.

As in the general case, the oblivious additive adversary can be simulated at a

sub-constant loss by the adaptive additive adversary. The main difference in these
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additive settings when compared to the general corruption setting is that the ad-

versary cannot remove good points; that is, the good points remain i.i.d. from the

original distribution.

1.4.5 Robustly learning a Gaussian

With this we can now finally formally state the problem of robustly learning a Gaus-

sian. This will be the first problem we solve with both unknown convex programming

and filtering, and will serve as the launching point to all the other problems we con-

sider in this thesis.

Problem 1.4.1 (Robustly learning a Gaussian). Fix 𝜀 > 0, and let 𝜇 ∈ R𝑑 and

Σ ∈ R𝑑×𝑑 be symmetric and positive definite. Given an 𝜀-corrupted set of samples

from 𝒩 (𝜇,Σ), output ̂︀𝜇 and ̂︀Σ minimizing 𝑑TV(𝒩 (𝜇,Σ),𝒩 (̂︀𝜇, ̂︀Σ)).
This naturally decomposes into two parametric sub-problems:

Problem 1.4.2 (Robust estimation of location). Fix 𝜀 > 0, and let 𝜇 ∈ R𝑑. Given

an 𝜀-corrupted set of samples from 𝒩 (𝜇, 𝐼), output ̂︀𝜇 minimizing ‖𝜇− ̂︀𝜇‖2.
Problem 1.4.3 (Robust estimation of scale). Fix 𝜀 > 0, and let Σ ∈ R𝑑×𝑑 be

symmetric and postive definite. Given an 𝜀-corrupted set of samples from 𝒩 (0,Σ),

output ̂︀Σ minimizing ‖Σ− ̂︀Σ‖Σ.

As stated above, solving Problem 1.4.1 (and its corresponding sub-problems Prob-

lem 1.4.2 and Problem 1.4.3) will prove to be an important starting point for under-

standing a number of other problems down the line.

Robust parameter recovery A more general problem is to ask for the same

sorts of parameter recovery guarantees as in Problem 1.4.2, but for other classes of

distributions.

Problem 1.4.4 (Robust mean estimation). Fix 𝜀 > 0, and a class of distributions 𝒟

over R𝑑. Given an 𝜀-corrupted set of samples from some 𝐷 ∈ 𝒟, output ̂︀𝜇 minimizing

‖𝜇− ̂︀𝜇‖2.
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The types of guarantees that can be achieved for this problem of course depend on

𝒟. We remark that robust covariance estimation (up to maybe a constant factor loss)

can also be thought of as a special case of this problem. Finally, we can also consider

other norms (see e.g. [SCV18]), but in this thesis we will mostly restrict our attention

to ℓ2, although we touch on the geometry involved with robust mean estimation in

other norms in Chapter 3.

1.4.6 Prior work

Before we dive into our results, we pause here to recap what was known about Prob-

lem 1.4.1 before the initial dissemination of [DKK+16], the basis of the most funda-

mental results presented in our thesis. There has been a flurry of work concurrent to

and subsequent to this by the author as well as many other researchers; for the sake

of narrative we will present these with the corresponding sections of the thesis.

Our results fit in the framework of density estimation and parameter learning

which are both classical problems in statistics with a rich history (see e.g., [BBBB72,

DG85, Sil86, Sco92, DL12]). While these problems have been studied for several

decades by different communities, the computational complexity of learning is still

not well understood, even for some surprisingly simple distribution families. Most

textbook estimators are hard to compute in general, especially in high-dimensional

settings. In the past few decades, a rich body of work within theoretical computer

science has focused on designing computationally efficient distribution learning al-

gorithms. In a seminal work, Kearns, Mansour, Ron, Rubinfeld, Schapire, and Sel-

lie [KMR+94] initiated a systematic investigation of the computational complexity of

distribution learning. Since then, efficient learning algorithms have been developed for

a wide range of distributions in both low and high-dimensions [Das99, FM99, AK01,

VW02, CGG02, MR05, BV08, KMV10, MV10, BS10a, DDS12, CDSS13, DDO+13,

CDSS14a, CDSS14b, HP15a, DDS15, DDKT16, DKS16b, DKS16a, ADLS17].

Our general question of robust learning also resembles learning in the presence of

malicious errors [Val85, KL93]. There, an algorithm is given samples from a distribu-

tion along with their labels according to an unknown target function. The adversary
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is allowed to corrupt an 𝜀-fraction of both the samples and their labels. A sequence of

works studied the problem of learning a halfspace with malicious noise in the setting

where the underlying distribution is a Gaussian [Ser03, KLS09], culminating in the

work of Awasthi, Balcan, and Long [ABL17], who gave an efficient algorithm that

finds a halfspace with agreement 𝑂(𝜀). There is no direct connection between their

problem and ours, especially since one is a supervised learning problem and the other

is unsupervised. However, we note that there is an interesting technical parallel in

that the works [KLS09, ABL17] also uses spectral methods to detect outliers. Both

their work and our algorithm for agnostically learning the mean are based on the

intuition that an adversary can only substantially bias the empirical mean if the cor-

ruptions are correlated along some direction. Our other algorithms are also based

on spectral techniques but need to handle many significant conceptual and techni-

cal complications that arise when working with higher moments or binary product

distributions.

Another connection is to the work on robust principal component analysis (PCA).

PCA is a transformation that (among other things) is often justified as being able

to find the affine transformation 𝑌 = Σ−1/2(𝑋 − 𝜇) that would place a collection

of Gaussian random variables in isotropic position. One can think of our results on

agnostically learning a Gaussian as a type of robust PCA that tolerates gross corrup-

tions, where entire samples are corrupted. This is different than other variants of the

problem where random sets of coordinates of the points are corrupted [CLMW11],

or where the uncorrupted points were assumed to lie in a low-dimensional subspace

to begin with [ZL14, LMTZ15]. Finally, Brubaker [Bru09] studied the problem of

clustering samples from a well-separated mixture of Gaussians in the presence of ad-

versarial noise. The goal of [Bru09] was to separate the Gaussian components from

each other, while the adversarial points are allowed to end up in any of clusters. Our

work is orthogonal to [Bru09], since even if such a clustering is given, the problem

still remains to estimate the parameters of each component.
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1.4.7 Concurrent and (some) subsequent work

In concurrent and independent work to [DKK+16], Lai, Rao, and Vempala [LRV16]

also study high-dimensional agnostic learning. In comparison to [DKK+16], their

results work for more general types of distributions, but our guarantees are stronger

when learning a Gaussian. In particular, their estimates lose factors which are loga-

rithmic in the dimension, whereas our guarantees are always dimension-free. More-

over, their results are superceded than those given in [DKK+17].

After the initial publication of [DKK+16], there has been a flurry of recent work

on robust high-dimensional estimation, besides the ones discussed in this thesis. Di-

akonikolas, Kane, and Stewart [DKS16c] studied the problem of learning the param-

eters of a graphical model in the presence of noise, when given its graph theoretic

structure. Charikar, Steinhardt, and Valiant [CSV17] developed algorithms that can

tolerate a fraction of corruptions greater than a half, under the weaker goal of out-

putting a small list of candidate hypotheses that contains a parameter set close to

the true values. studied sparse mean and covariance estimation in the presence of

noise obtaining computationally efficient robust algorithms with sample complexity

sublinear in the dimension. Diakonikolas, Kane, and Stewart [DKS17] proved statis-

tical query lower bounds providing evidence that the error guarantees of our robust

mean and covariance estimation algorithms are best possible, within constant factors,

for efficient algorithms.

Diakonikolas, Kane, and Stewart [DKS18a] studied PAC learning of geomet-

ric concept classes (including low-degree polynomial threshold functions and inter-

sections of halfspaces) in the same corruption model as ours, obtaining the first

dimension-independent error guarantees for these classes. Steinhardt, Charikar, and

Valiant [SCV18] focused on deterministic conditions of a dataset which allow robust

estimation to be possible. In our initial publication, we gave explicit deterministic

conditions in various settings; by focusing directly on this goal, [SCV18] somewhat

relaxed some of these assumptions. Meister and Valiant [MV17] studied learning

in a crowdsourcing model, where the fraction of honest workers may be very small
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(similar to [CSV17]). Qiao and Valiant [QV18] considered robust estimation of dis-

crete distributions in a setting where we have several sources (a fraction of which

are adversarial) who each provide a batch of samples. Concurrent to [HL18], which

we discuss in this thesis, number of simultaneous works [KS18, DKS18b] investigated

robust mean estimation in even more general settings, and apply their techniques to

learning mixtures of Gaussians under minimal separation conditions. Finally, con-

current to [DKK+18b], a number of results study robustness in supervised learning

tasks [PSBR18, KKM18], including regression and SVM problems. Despite all of this

rapid progress, there are still many interesting theoretical and practical questions left

to explore.
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Chapter 2

Convex Programming I: Learning a

Gaussian

The pink lights reflecting off of

the waves are so beautiful

Can you hear the trembling sounds

that connect you and I?

In this chapter we present our first framework for robust learning, namely unknown

convex programming. These algorithms will typically assign weights to individual data

points, corresponding to how much the algorithm believes that the data point is good

or bad. Then algorithm then hopes to converge to a set of weights which is essentially

uniform over the good points. Algorithms based loosely on these sorts of ideas will be

the focus on the next three chapters of this thesis. We will show that variants of this

general technique can provide polynomial time algorithms for a number of problems

in robust learning and beyond.

Naively, given an 𝜀-corrupted set of data points of size 𝑛, because we know that at

most 𝜀𝑛 of these data points are bad, a natural set to attempt to optimize over would

be the collection of sets of these data points of size (1− 𝜀)𝑛. However, this collection

does not inherently possess any convex structure and as a result is difficult to directly

optimize over. Insetead, we will have to take some sort of convex relaxation of this
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set. In the next two chapters, we will use a fairly naive way of relaxing the set of

weights, which already turns out to be sufficient for the purposes of these chapters.

We will show that the spectral signatures described in the introduction will allow

us to efficiently optimize over these relaxed sets. In Chapter 4, we will use a more

general relaxation, namely, a relaxation corresponding to the powerful Sum of Squares

hierarchy. This will prove vital for solving the problems considered in that chapter.

While these algorithms are polynomial time, in general, the focus of these chapters

will be on sample complexity. As we shall see, the correctness of these algorithms

does not require very powerful concentration, and these algorithms are often sample-

optimal. Morally, it seem that the powerful algorithmic tools we use allow us to argue

correctness using subtle, but simple statements (a fact that will prove very crucial in

Chapter 4). The framework presented in Chapter 5 and beyond will be significantly

more efficient, but will require more delicate concentration bounds to hold. As a

result, the analysis for the latter algorithms tend to be more complicated (at least

in the author’s view), although in the end we are able to get very similar sample

complexities in many cases for the two algorithms (up to polylog factors).

2.1 Preliminaries

2.1.1 The Set 𝑆𝑛,𝜀

An important algorithmic object for us will be the following set:

Definition 2.1.1. For any 1
2
> 𝜀 > 0 and any integer 𝑛, let

𝑆𝑛,𝜀 =

{︃
(𝑤1, . . . , 𝑤𝑛) :

𝑛∑︁
𝑖=1

𝑤𝑖 = 1, and 0 ≤ 𝑤𝑖 ≤
1

(1− 𝜀)𝑛
,∀𝑖

}︃
.

Next, we motivate this definition. For any 𝐽 ⊆ [𝑛], let 𝑤𝐽 ∈ R𝑛 be the vector

which is given by 𝑤𝐽
𝑖 = 1

|𝐽 | for 𝑖 ∈ 𝐽 and 𝑤𝐽
𝑖 = 0 otherwise. Then, observe that

𝑆𝑛,𝜀 = conv
{︀
𝑤𝐽 : |𝐽 | = (1− 𝜀)𝑛)

}︀
,
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and so we see that this set is designed to capture the notion of selecting a set of

(1− 𝜀)𝑛 samples from 𝑛 samples.

Given 𝑤 ∈ 𝑆𝑛,𝜀 we will use the following notation

𝑤𝑔 =
∑︁

𝑖∈𝑆good

𝑤𝑖 and 𝑤𝑏 =
∑︁

𝑖∈𝑆bad

𝑤𝑖

to denote the total weight on good and bad points respectively. The following facts

are immediate from |𝑆bad| ≤ 𝜀𝑛 and the properties of 𝑆𝑛,𝜀.

Fact 2.1.1. If 𝑤 ∈ 𝑆𝑛,𝜀 and |𝑆bad| ≤ 𝜀𝑛, then 𝑤𝑏 ≤ 𝜀
1−𝜀

. Moreover, the renormalized

weights 𝑤′ on good points given by 𝑤′
𝑖 =

𝑤𝑖

𝑤𝑔
for all 𝑖 ∈ 𝑆good, and 𝑤′

𝑖 = 0 otherwise,

satisfy 𝑤′ ∈ 𝑆𝑛,2𝜀.

2.1.2 The Ellipsoid algorithm and approximate separation or-

acles

Throughout this section, our algorithms will build off the ellipsoid algorithm for

convex optimization, which we review here. We will first require the notion of a

separation oracle for a convex set, which we will slightly generalize later:

Definition 2.1.2. Let 𝐶 ⊆ R𝑑 be a convex set. A separation oracle for 𝐶 is an

algorithm which, given 𝑥 ∈ R𝑑, either outputs:

∙ “YES”, if 𝑥 ∈ 𝐶, or

∙ a hyperplane ℓ : R𝑑 → R so that ℓ(𝑥) ≥ 0 but ℓ(𝑧) < 0 for all 𝑧 ∈ 𝐶.

It can be shown that if 𝑥 ̸∈ 𝐶, then such a ℓ always exists. It can be shown that such

an oracle suffices for (approximately) finding a point in a convex set:

Theorem 2.1.2 ([GLS88]). Let 𝑅 ≥ 𝜀 > 0 be fixed. Let 𝐶 be a convex set in R𝑑

so that 𝐶 ⊆ 𝐵(0, 𝑅). Suppose there exists a separation oracle 𝒪 for 𝐶. Then, there

exists an algorithm Ellipsoid(𝒪, 𝜀) which requires poly(𝑑, log(𝑅/𝜀)) calls to 𝒪, and

finds a point 𝑥′ so that ‖𝑥′ − 𝑥‖2 < 𝜀 for some 𝑥 ∈ 𝐶.
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In fact, this result can be strengthened to accomodate slightly weaker notions of sep-

aration oracle, which will be crucial for us. Specifically, we will require the following

notion of an approximate separation oracle:

Definition 2.1.3. Let 𝐶 ⊆ R𝑑 be a convex set. An approximate separation oracle

for 𝐶 is an algorithm which, given 𝑥 ∈ R𝑑, either outputs:

∙ “YES”, if 𝑥 ∈ 𝐶 ′, or

∙ a hyperplane ℓ : R𝑑 → R so that ℓ(𝑥) ≥ 0 but ℓ(𝑧) < 0 for all 𝑧 ∈ 𝐶 ′, if 𝑥 ̸∈ 𝐶.

Here 𝐶 ′ ⊆ 𝐶 is some fixed convex set. Moreover, if the algorithm ever outputs a

separation oracle, then ℓ(𝑥) < 0 for all 𝑥 ∈ 𝐶 ′.

Specifically, the behavior of such an oracle is somewhat unspecified if 𝑥 ∈ 𝐶 ∖𝐶 ′:

it can either output “YES” or a hyperplane. However, any hyperplane output by this

algorithm is always a separating hyperplane for 𝐶 ′. Then, it can be shown (by the

same arguments as in [GLS88]) that this still suffices to approximately find a feasible

point in 𝐶:

Corollary 2.1.3. Let 𝑅 ≥ 𝜀 > 0 be fixed. Let 𝐶 be a convex set in R𝑑 so that

𝐶 ⊆ 𝐵(0, 𝑅). Suppose there exists an approximate separation oracle 𝒪 for 𝐶. Then,

there exists an algorithm Ellipsoid(𝒪, 𝜀) which requires poly(𝑑, log(𝑅/𝜀)) calls to

𝒪, and finds a point 𝑥′ so that ‖𝑥′ − 𝑥‖2 < 𝜀 for some 𝑥 ∈ 𝐶.

Remark 2.1.1. For the expert, the correctness of the ellipsoid algorithm with this

approximate separation oracle follows because outside 𝐶, the separation oracle acts

exactly as a separation oracle for 𝐶 ′. Thus, as long as the algorithm continues to

query points outside of 𝐶, the action of the algorithm is equivalent to one with a

separation oracle for 𝐶 ′. Moreover, the behavior of the algorithm is such that it

will never exclude 𝐶 ′, even if queries are made within 𝐶. By terminating therefore in

poly(𝑑, log(𝑅/𝜀)) steps, from these two conditions, it is clear from the classical theory

presented in [GLS88] that the ellipsoid method satisfies the guarantees given above.
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For conciseness, throughout this chapter we will often drop the “approximate”

and refer to an approximate separation oracle as a separation oracle. Because of the

inherent noise in estimation problems, due to variance in the (uncorrupted) samples,

all of our separation oracles will be approximate, usually with a single point being

the 𝐶 ′ in the definition above.

2.1.3 Concentration inequalities

Throughout this section we will make use of various concentration bounds on low

moments of Gaussian random variables. Some are well-known, and others are new

but follow from known bounds and appropriate union bound arguments.

Empirical estimates of first and second Moments

Here we will give rates of convergence for various statistics for sub-Gaussian distribu-

tions with covariance matrix 𝐼 that we will make use of later. First, we will require

the following well-known “per-vector” and “per-matrix” concentration bounds:

Lemma 2.1.4 (Chernoff inequality). Let 𝑛 be a positive integer. Let 𝐷 be a sub-

gaussian distribution with mean 0 and covariance 𝐼. Let 𝑌𝑖 ∼ 𝐷 be independent, for

𝑖 = 1, . . . , 𝑛. Let 𝑣 ∈ R𝑑 be an arbitrary unit vector. Then, there exist a universal

constant 𝐵 > 0 so that for all 𝑡 > 0, we have

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

⟨𝑣, 𝑌𝑖⟩

⃒⃒⃒⃒
⃒ > 𝑡

]︃
≤ 4 exp

(︀
−𝐵𝑛𝑡2

)︀
.

Lemma 2.1.5 (Hanson-Wright). Let 𝑛 be a positive integer. Let 𝐷 be a sub-gaussian

distribution with mean 0 and covariance Σ ⪯ 𝐼. Let 𝑌𝑖 ∼ 𝐷 be independent, for

𝑖 = 1, . . . , 𝑛. Let 𝑈 ∈ R𝑑×𝑑 satisfy 𝑈 ⪯ 0 and ‖𝑈‖𝐹 = 1. Then, there exists a

universal constant 𝐵 > 0 so that for all 𝑡 > 0, we have

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

tr(𝑋𝑖𝑋
⊤
𝑖 𝑈)− tr(𝑈)

⃒⃒⃒⃒
⃒ > 𝑡

]︃
≤ 4 exp

(︀
−𝐵𝑛min(𝑡, 𝑡2)

)︀
.
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By standard union bound arguments (see e.g. [Ver10]), we obtain the following con-

centration results for the empirical mean and covariance:

Lemma 2.1.6. Let 𝑛 be a positive integer. Let 𝐷 be a sub-gaussian distribution with

mean 0 and covariance 𝐼. Let 𝑌𝑖 ∼ 𝐷 be independent, for 𝑖 = 1, . . . , 𝑛. Then, there

exist universal constants 𝐴,𝐵 > 0 so that for all 𝑡 > 0, we have

Pr

[︃⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑌𝑖

⃦⃦⃦⃦
⃦
2

> 𝑡

]︃
≤ 4 exp

(︀
𝐴𝑑−𝐵𝑛𝑡2

)︀
.

Lemma 2.1.7. With the same setup as in Lemma 2.1.6, there exist universal con-

stants 𝐴,𝐵 > 0 so that for all 𝑡 > 0, we have

Pr

[︃⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
2

> 𝑡

]︃
≤ 4 exp

(︀
𝐴𝑑−𝐵𝑛min(𝑡, 𝑡2)

)︀
.

We will also be interested in how well various statistics concentrate around their ex-

pectation, when we take the worst-case set of weights in 𝑆𝑛,𝜀. This is more subtle

because as we take more samples, any fixed statistic (e.g. taking the uniform distri-

bution over the samples) concentrates better but the size of 𝑆𝑛,𝜀 (e.g. the number of

sets of (1− 𝜀)𝑛 samples) grows too.

Lemma 2.1.8. Let 𝐷 be a sub-gaussian distribution with mean 0 and covariance 𝐼.

Fix 𝜀 and 𝛿 ≤ 1. There is a 𝛾1 = 𝑂(𝜀 log 1/𝜀) such that if 𝑌1, . . . , 𝑌𝑛 are independent

samples from 𝐷 and

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝛾21

)︂
,

then

Pr

[︃
∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
2

≥ 𝛾1

]︃
≤ 𝛿 . (2.1)

Before we start the proof, we note that this proof technique will be used a num-

ber of times in the next several chapters, and (in the author’s humble opinion) is

worth understanding, as it provides good insight into the geometry which governs the

quantitative guarantees that our algorithms provide.
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Proof of Lemma 2.1.8. Recall that for any 𝐽 ⊆ [𝑛], we let 𝑤𝐽 ∈ R𝑛 be the vector

which is given by 𝑤𝐽
𝑖 = 1

|𝐽 | for 𝑖 ∈ 𝐽 and 𝑤𝐽
𝑖 = 0 otherwise. By convexity, it suffices

to show that

Pr

[︃
∃𝐽 : |𝐽 | = (1− 𝜀)𝑛, and

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝐽
𝑖 𝑌𝑖𝑌

⊤
𝑖 − (1− 𝜀)𝐼

⃦⃦⃦⃦
⃦
2

≥ 𝛾1

]︃
≤ 𝛿 .

For any fixed 𝑤𝐽 we have

𝑛∑︁
𝑖=1

𝑤𝐽
𝑖 𝑌𝑖𝑌

⊤
𝑖 − 𝐼 =

1

(1− 𝜀)𝑛
∑︁
𝑖∈𝐽

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

=
1

(1− 𝜀)𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑌
⊤
𝑖 −

1

1− 2𝜀
𝐼

−

(︃
1

(1− 𝜀)𝑛
∑︁
𝑖 ̸∈𝐽

𝑌𝑖𝑌
⊤
𝑖 −

(︂
1

1− 𝜀
− 1

)︂
𝐼

)︃
.

Therefore, by the triangle inequality, we have⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝐼
𝑖 𝑌𝑖𝑌

⊤
𝑖 − (1− 𝜀)𝐼

⃦⃦⃦⃦
⃦
2

≤

⃦⃦⃦⃦
⃦ 1

(1− 𝜀)𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑌
⊤
𝑖 −

1

1− 𝜀
𝐼

⃦⃦⃦⃦
⃦
2

+

⃦⃦⃦⃦
⃦ 1

(1− 𝜀)𝑛
∑︁
𝑖 ̸∈𝐽

𝑌𝑖𝑌
⊤
𝑖 −

(︂
1

1− 𝜀
− 1

)︂
𝐼

⃦⃦⃦⃦
⃦
2

.

Observe that the first term on the right hand side does not depend on the choice

of 𝐽 . Let 𝐸1 denote the event that⃦⃦⃦⃦
⃦ 1

(1− 𝜀)𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑌
⊤
𝑖 −

1

1− 𝜀
𝐼

⃦⃦⃦⃦
⃦
2

≤ 𝛾1 . (2.2)

By Lemma 2.1.7, this happens with probability 1− 𝛿 so long as

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝛾21

)︂
.
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For any 𝐽 ⊂ [𝑛] so that |𝐽 | = (1− 𝜀)𝑛, let 𝐸2(𝐽) denote the event that⃦⃦⃦⃦
⃦ 1

(1− 𝜀)𝑛
∑︁
𝑖 ̸∈𝐽

𝑌𝑖𝑌
⊤
𝑖 −

(︂
1

1− 𝜀
− 1

)︂
𝐼

⃦⃦⃦⃦
⃦
2

≤ 𝛾1 .

Fix any such 𝐽 . By multiplying both sides by 𝜌 = (1 − 𝜀)/𝜀, the event 𝐸2(𝐽) is

equivalent to the event that⃦⃦⃦⃦
⃦ 1

𝜀𝑛

∑︁
𝑖 ̸∈𝐽

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
2

> 𝜌𝛾1 .

Let𝐴,𝐵 be as in Lemma 2.1.7. Observe that 𝜌𝛾1 = Ω(log 1/𝜀) ≥ 1 for 𝜀 sufficiently

small. Then, by Lemma 2.1.7, we have that for any fixed 𝐽 ,

Pr

⎡⎣⃦⃦⃦⃦⃦ 1

𝜀𝑛

∑︁
𝑖 ̸∈𝐽

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
2

> 𝜌𝛾1

⎤⎦ ≤ 4 exp (𝐴𝑑−𝐵𝜀𝑛𝜌𝛾) .

Let 𝐻(𝜀) denote the binary entropy function. We now have

Pr

⎡⎣⎛⎝ ⋂︁
𝐽 :|𝐽 |=(1−𝜀)𝑛

𝐸2(𝐽)

⎞⎠𝑐 ⎤⎦
(𝑎)

≤ 4 exp

(︂
log

(︂
𝑛

𝜀𝑛

)︂
+ 𝐴𝑑−𝐵𝜀𝑛𝜌𝛾

)︂
(𝑏)

≤ 4 exp (𝑛𝐻(𝜀) + 𝐴𝑑−𝐵𝜀𝑛𝜌𝛾)
(𝑐)

≤ 4 exp (𝜀𝑛(𝑂(log 1/𝜀)− 𝑛𝜌) + 𝐴𝑑)

(𝑑)

≤ 4 exp (−𝜀𝑛/2 + 𝐴𝑑)
(𝑒)

≤ 𝑂(𝛿) ,

as claimed, where (a) follows by a union bound over all sets 𝐽 of size (1 − 𝜀)𝑛, (b)

follows from the bound log
(︀
𝑛
𝜀𝑛

)︀
≤ 𝜀𝐻(𝜀), (c) follows since 𝐻(𝜀) = 𝑂(𝜀 log 1/𝜀) as

𝜀 → 0, (d) follows from our choice of 𝛾, and (e) follows from our choice of 𝑛. This

completes the proof.

A nearly identical argument (Using Chernoff instead of Bernstein in the above proof)
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yields:

Lemma 2.1.9. Fix 𝐷, 𝜀 and 𝛿 as above. There is a 𝛾2 = 𝑂(𝜀
√︀

log 1/𝜀) such that if

𝑌1, . . . , 𝑌𝑛 are independent samples from 𝐷 and

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝛾22

)︂
,

then

Pr

[︃
∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

𝑤𝑖𝑌𝑖

⃦⃦⃦⃦
⃦
2

≥ 𝛿2

]︃
≤ 𝛿 . (2.3)

It is worth noting that in this case, we get a guarantee of 𝑂(𝜀
√︀
log 1/𝜀) rather than

𝑂(𝜀 log 1/𝜀) in Lemma 2.1.8. This is simply because the sub-Gaussian concentration

bound (i.e. the Chernoff bound) is stronger than the sub-exponential concentration

bound (Bernstein’s inequality). Note that by Cauchy-Schwarz, this implies:

Corollary 2.1.10. Fix 𝐷, 𝜀, 𝛿, 𝛾2 as above. Then, if 𝑌1, . . . , 𝑌𝑛 are independent sam-

ples from 𝐷 and

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝛾22

)︂
,

then

Pr

[︃
∃𝑣 ∈ R𝑑, ∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦
(︃

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖

)︃
𝑣⊤

⃦⃦⃦⃦
⃦
2

≥ 𝛾2‖𝑣‖2

]︃
≤ 𝛿 . (2.4)

We will also require the following, well-known concentration, which says that no

sample from a Gaussian deviates too far from its mean in ℓ2-distance.

Fact 2.1.11. Let 𝐷 be a sub-gaussian distribution with mean 0 and covariance 𝐼.

Fix 𝛿 > 0. Let 𝑋1, . . . , 𝑋𝑛 ∼ 𝐷. Then, with probability 1− 𝛿, we have that ‖𝑋𝑖‖2 ≤

𝑂
(︁√︀

𝑑 log(𝑛/𝛿)
)︁

for all 𝑖 = 1, . . . , 𝑛.

Estimation error in the Frobenius norm

Let 𝑋1, ..., 𝑋𝑛 be 𝑛 i.i.d. samples from 𝒩 (0, 𝐼). In this section we demonstrate a

tight bound on how many samples are necessary such that the sample covariance is
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close to 𝐼 in Frobenius norm. Let ̂︀Σ denote the empirical second moment matrix,

defined to be

̂︀Σ =
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
⊤
𝑖 .

By self-duality of the Frobenius norm, we know that

‖̂︀Σ− 𝐼‖𝐹 = sup
‖𝑈‖𝐹=1

⃒⃒⃒⟨̂︀Σ− 𝐼, 𝑈⟩⃒⃒⃒
= sup

‖𝑈‖𝐹=1

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

tr(𝑋𝑖𝑋
⊤
𝑖 𝑈)− tr(𝑈)

⃒⃒⃒⃒
⃒ .

Since there is a 1/4-net over all PSD matrices with Frobenius norm 1 of size 9𝑑
2

(see e.g. Lemma 1.18 in [RH17]), the Vershynin-type union bound argument combined

with Lemma 2.1.5 immediately gives us the following:

Corollary 2.1.12. There exist universal constants 𝐴,𝐵 > 0 so that for all 𝑡 > 0, we

have

Pr

[︃⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

> 𝑡

]︃
≤ 4 exp

(︀
𝐴𝑑2 −𝐵𝑛min(𝑡, 𝑡2)

)︀
.

By the same union bound technique as used in the proof of Lemma 2.1.8, we obtain:

Corollary 2.1.13. Fix 𝜀, 𝛿 > 0. There is a 𝛾1 = 𝑂(𝜀 log 1/𝜀) such that if 𝑋1, . . . , 𝑋𝑛

are independent samples from 𝒩 (0, 𝐼), with

𝑛 = Ω

(︂
𝑑2 + log 1/𝛿

𝛾21

)︂
,

then

Pr

[︃
∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

≥ 𝛾1

]︃
≤ 𝛿 .

Since the proof is essentially identical to the proof of Lemma 2.1.8, we omit the

proof. In fact, the proof technique there can be used to show something slightly
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stronger, which we will require later. The technique actually shows that if we take

any set of size at most 𝜀𝑛, and take the uniform weights over that set, then the

empirical covariance is not too far away from the truth. More formally:

Corollary 2.1.14. Fix 𝜀, 𝛿 > 0. There is a 𝛾2 = 𝑂(𝜀 log 1/𝜀) such that if 𝑋1, . . . , 𝑋𝑛

are independent samples from 𝒩 (0, 𝐼), with

𝑛 = Ω

(︂
𝑑2 + log 1/𝛿

𝛾22

)︂
,

then

Pr

[︃
∃𝑇 ⊆ [𝑛] : |𝑇 | ≤ 𝜀𝑛 and

⃦⃦⃦⃦
⃦∑︁
𝑖∈𝑇

1

|𝑇 |
𝑋𝑖𝑋

⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

≥ 𝑂

(︂
𝛾2

𝑛

|𝑇 |

)︂]︃
≤ 𝛿 .

We prove this corollary in the Appendix.

Understanding the fourth moment tensor

Our algorithms will be based on understanding the behavior of the fourth moment

tensor of a Gaussian when restricted to various subspaces.

The key result in this section is the following:

Theorem 2.1.15. Let 𝑋 ∼ 𝒩 (0,Σ). Let 𝑀 be the 𝑑2 × 𝑑2 matrix given by 𝑀 =

E[(𝑋 ⊗𝑋)(𝑋 ⊗𝑋)⊤]. Then, as an operator on 𝒮sym, we have

𝑀 = 2Σ⊗2 +
(︀
Σ♭
)︀ (︀

Σ♭
)︀⊤

.

It is important to note that the two terms above are not the same; the first term

is high rank, but the second term is rank one. The proof of this theorem will require

Isserlis’ theorem, and is deferred to Appendix B.

Concentration of the fourth moment tensor

We also need to show that the fourth moment tensor concentrates:
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Theorem 2.1.16. Fix 𝜀, 𝛿 > 0. There is a 𝛾3 = 𝑂(𝜀 log2 1/𝜀) so that if 𝑌𝑖 ∼ 𝒩 (0, 𝐼)

are independent, for 𝑖 = 1, . . . , 𝑛, where we have

𝑛 = ̃︀Ω(︂𝑑2 log5 1/𝛿
𝛾23

)︂
,

and we let 𝑍𝑖 = 𝑌 ⊗2
𝑖 and we let 𝑀4 = E[𝑍𝑖𝑍

⊤
𝑖 ] be the canonical flattening of the true

fourth moment tensor, then we have

Pr

[︃
∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑍𝑖𝑍
⊤
𝑖 −𝑀4

⃦⃦⃦⃦
⃦
𝒮

≥ 𝛾3

]︃
≤ 𝛿 .

To do so will require somewhat more sophisticated techniques than the ones used

so far to bound spectral deviations. At a high level, this is because fourth moments

of Gaussians have a sufficiently larger variance that the union bound techniques used

so far are insufficient. However, we will show that the tails of degree four polynomials

of Gaussians still sufficiently concentrate such that removing points cannot change

the mean by too much. The proof requires slightly fancy machinery and appears in

Appendix E.

2.2 Learning a Gaussian robustly via convex pro-

gramming

This section is dedicated to one of two efficient algorithms for solving Problem 1.4.1

and its two sub-problems, Problem 1.4.2 and Problem 1.4.3. Specifically, our results

are the following:

Theorem 2.2.1. Fix 𝜀, 𝛿 > 0, and let 𝜇 ∈ R𝑑 and let Σ ∈ R𝑑×𝑑 be positive definite.

Given an 𝜀-corrupted set of samples of size 𝑛 from 𝒩 (𝜇,Σ), where

𝑛 = ̃︀Ω(︂𝑑2 log5(1/𝛿)
𝜀2

)︂
,

there is an efficient algorithm which outputs ̂︀𝜇, ̂︀Σ so that with probability 1 − 𝛿 we
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have

𝑑TV

(︁
𝒩 (𝜇,Σ),𝒩 (̂︀𝜇, ̂︀Σ))︁ ≤ 𝑂(𝜀 log 1/𝜀) .

To do this, we solve the robust mean and covariance estimation problem separately.

For each of these subproblems we achieve the following guarantees. For mean esti-

mation, we achieve:

Theorem 2.2.2. Fix 𝜀, 𝛿 > 0, and let 𝜇 ∈ R𝑑. Given an 𝜀-corrupted set of samples

of size 𝑛 from 𝒩 (𝜇, 𝐼), where

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝜀2 log 1/𝜀

)︂
,

there is an efficient algorithm which outputs ̂︀𝜇 so that with probability 1− 𝛿 we have

‖𝜇− ̂︀𝜇‖2 < 𝑂(𝜀
√︀
log 1/𝜀).

We remark that this result can be easily generalized to general isotropic sub-

Gaussian distributions:

Theorem 2.2.3. Fix 𝜀, 𝛿 > 0, and let 𝜇 ∈ R𝑑. Given an 𝜀-corrupted set of samples

of size 𝑛 from 𝐷, where 𝐷 is a sub-Gaussian distribution with covariance matrix 𝐼,

where

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝜀2 log 1/𝜀

)︂
,

there is an efficient algorithm which outputs ̂︀𝜇 so that with probability 1− 𝛿 we have

‖𝜇− ̂︀𝜇‖2 < 𝑂(𝜀
√︀
log 1/𝜀).

For covariance estimation, we achieve:

Theorem 2.2.4. Fix 𝜀, 𝛿 > 0, and let Σ ∈ R𝑑×𝑑 be positive definite. Given an

𝜀-corrupted set of samples of size 𝑛 from 𝒩 (0,Σ), where

𝑛 = ̃︀Ω(︂𝑑2 log5(1/𝛿)
𝜀2

)︂
,
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there is an efficient algorithm which outputs ̂︀Σ so that with probability 1− 𝛿 we have

‖Σ− ̂︀Σ‖Σ < 𝑂(𝜀 log 1/𝜀).

We pause here to make a couple of remarks. First, we note that the mean estimation

algorithm easily generalizes to learn the mean of sub-Gaussian distributions with

identity covariance. Generalizing the results to sub-Gaussian distributions where we

only have an upper bound on the covariance is more difficult. In Chapter 4 we make

partial progress on this problem.

To the best of our knowledge, the covariance estimation algorithms do not easily

generalize to many other settings. This is because the covariance estimation algorithm

heavily leverages the algebraic structure that higher moments of Gaussians have.

We also remark that for both of these settings, the sample complexity we obtain

for the robust versions of the problem matches the sample complexity of non-agnostic

learning, up to logarithmic factors. That is, it is a folklore result that even without

noise, given sample access to 𝒩 (𝜇, 𝐼), to obtain an estimator ̂︀𝜇 which satisfies E[‖𝜇−̂︀𝜇‖2] ≤ 𝜀 requires 𝑛 = Ω(𝑑/𝜀2) samples. Similarly, given sample access to 𝒩 (0,Σ), to

obtain an estimator ̂︀Σ which satisfies E[‖̂︀Σ−Σ‖Σ] ≤ 𝜀 requires 𝑛 = Ω(𝑑2/𝜀2) samples.

In fact, for mean estimation of an isotropic sub-Gaussian random variable, we are able

to exactly match the rate achievable in the non-robust setting, up to constants.

While often in robust statistics, sample complexity is considered a secondary con-

cern1, we note that the type of concentration that yields these sorts of rates will prove

to be very important in our analysis. This is because, intuitively, these concentration

inequalities imply that the empirical statistics still converge even when an 𝜀-fraction

of the points are removed. This is what allows us to prove Lemma 2.1.8, for instance,

which is crucial for our algorithm.

2.2.1 Finding the mean, using a separation oracle

In this section, we consider the problem of approximating 𝜇 given an 𝜀-corrupted set

of 𝑛 samples from𝒩 (𝜇, 𝐼). We remark that everything here generalizes trivially to the
1Orthogonally, the author believes that this lack of concern regarding sample complexity is un-

fortunate; such rates often govern how useful the methods will be in practice!
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setting where the distribution is a sub-Gaussian distribution with identity covariance,

so for simplicity of exposition, we will only consider the case where the distribution is

Gaussian. Throughout this section, we will let 𝜇 ∈ R𝑑 be the true (unknown) mean,

and we let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set of samples from 𝒩 (𝜇, 𝐼).

Our algorithm will be based on working with the following convex set:

𝒞𝛾 =

{︃
𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
2

≤ 𝛾

}︃
.

It is not hard to show that 𝒞𝛾 is non-empty for reasonable values of 𝛾 (and we will

show this later). Moreover we will show that for any set of weights 𝑤 in 𝒞𝛾, the

empirical average

̂︀𝜇 = ̂︀𝜇(𝑤) = 𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖

will be a good estimate for 𝜇. The challenge is that since 𝜇 itself is unknown, there is

not an obvious way to design a separation oracle for 𝒞𝛾 even though it is convex. Our

algorithm will run in two basic steps. First, it will run a very naive outlier detection

to remove any points which are more than 𝑂(
√
𝑑) away from the good points. These

points are sufficiently far away that a very basic test can detect them. Then, with

the remaining points, it will use the approximate separation oracle given below to

approximately optimize with respect to 𝐶𝛾. It will then take the outputted set of

weights and output the empirical mean with these weights. We will explain these

steps in detail below.
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Deterministic Conditions We first lay out a set of determinstic conditions under

which our algorithm will work. Specifically, we will require:

‖𝑋𝑖 − 𝜇‖2 ≤ 𝑂
(︁√︀

𝑑 log(𝑛/𝛿)
)︁
,∀𝑖 ∈ 𝑆good , (2.5)⃦⃦⃦⃦

⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
2

≤ 𝛾1 ∀𝑤 ∈ 𝑆𝑛,2𝜀, and (2.6)

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)

⃦⃦⃦⃦
⃦⃦
2

≤ 𝛾2 ∀𝑤 ∈ 𝑆𝑛,2𝜀 , (2.7)

where

𝛾1 = 𝑂(𝜀 log 1/𝜀), and 𝛾2 = 𝑂(𝜀
√︀

log 1/𝜀) .

The concentration bounds we gave earlier were exactly bounds on the failure proba-

bility of either of these conditions, albeit for 𝑆𝑛,𝜀 instead of 𝑆𝑛,2𝜀. Thus, by increasing

𝜀 by a constant factor we get the same sorts of concentration guarantees. Formally,

we have:

Corollary 2.2.5. Fix 𝜀, 𝛿 > 0, and let 𝛾 = 𝑂(𝜀
√︀
log 1/𝜀). Let 𝑋1, . . . , 𝑋𝑛 be an

𝜀-corrupted set of samples from 𝒩 (𝜇, 𝐼), where

𝑛 = Ω

(︂
𝑑+ log 1/𝛿

𝛾2

)︂
.

Then, (2.5)-(2.7) hold simultaneously with probability at least 1−𝛿, with 𝛾1 = 𝑂(𝜀 log 1/𝜀)

and 𝛾2 = 𝑂(𝜀
√︀

log 1/𝜀).

Proof. This follows by Fact 2.1.11, Lemma 2.1.8, Lemma 2.1.9 and a union bound.

Naive pruning

The first step of our algorithm will be to remove points which have distance which is

much larger than 𝑂(
√
𝑑) from the mean. Our algorithm is very naive: it computes

all pairwise distances between points, and throws away all points which have distance
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more than 𝑂(
√
𝑑) from more than a 2𝜀-fraction of the remaining points.

Algorithm 1 Naive Pruning
1: function NaivePrune(𝑋1, . . . , 𝑋𝑛)
2: For 𝑖, 𝑗 = 1, . . . , 𝑛, define 𝛾𝑖,𝑗 = ‖𝑋𝑖 −𝑋𝑗‖2.
3: for 𝑖 = 1, . . . , 𝑗 do
4: Let 𝐴𝑖 = {𝑗 ∈ [𝑛] : 𝛾𝑖,𝑗 > Ω(

√︀
𝑑 log(𝑛/𝛿))}

5: if |𝐴𝑖| > 2𝜀𝑛 then
6: Remove 𝑋𝑖 from the set.
7: return the pruned set of samples.

Then we have the following fact:

Fact 2.2.6. Suppose that (2.5) holds. Then NaivePrune removes no uncorrupted

points, and moreover, if 𝑋𝑖 is not removed by NaivePrune, we have ‖𝑋𝑖 − 𝜇‖2 ≤

𝑂
(︁√︀

𝑑 log(𝑛/𝛿)
)︁
.

Proof. That no uncorrupted point is removed follows directly from (2.5) and the fact

that there can be at most 2𝜀𝑛 corrupted points. Similarly, if 𝑋𝑖 is not removed

by NaivePrune, that means there must be an uncorrupted 𝑋𝑗 such that ‖𝑋𝑖 −

𝑋𝑗‖2 ≤ 𝑂(
√︀
𝑑 log(𝑛/𝛿)). Then the desired property follows from (2.5) and a triangle

inequality.

Henceforth, for simplicity we shall assume that no point was removed by NaivePrune,

and that for all 𝑖 = 1, . . . , 𝑛, we have ‖𝑋𝑖 − 𝜇‖2 < 𝑂(
√︀
𝑑 log(𝑛/𝛿)). Otherwise, we

can simply work with the pruned set, and it is evident that nothing changes.

The separation oracle

Our main result in this section is an approximate separation oracle for 𝒞𝛾. Observe

that technically, for the ellipsoid algorithm, we need a separation oracle for arbitrary

𝑤, not just 𝑤 ∈ 𝑆𝑛,𝜀. However, since it is trivial to construct a separation oracle for

𝑆𝑛,𝜀, we will only focus on the case where 𝑤 ∈ 𝑆𝑛,𝜀. Thus, throughout this section,

let 𝑤 ∈ 𝑆𝑛,𝜀 and set ̂︀𝜇 = ̂︀𝜇(𝑤) =∑︀𝑛
𝑖=1𝑤𝑖𝑋𝑖. Let Δ = 𝜇− ̂︀𝜇. Our first step is to show

the following key lemma, which states that any set of weights that does not yield a

good estimate for 𝜇 cannot be in the set 𝒞𝛾:
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Lemma 2.2.7. Suppose that (2.6)-(2.7) holds. Suppose that ‖Δ‖2 ≥ Ω(𝛾2). Then⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
2

≥ Ω

(︂
‖Δ‖22
𝜀

)︂
.

We pause to remark that this lemma is a very concrete formalization of the notion

of spectral signatures mentioned in the introduction. It says that if the empirical mean

has been corrupted, then the spectral norm of the empirical covariance must be large.

This immediately gives us a way to check if the empirical mean has been corrupted

(namely, by checking the empirical covariance). In a certain sense, the rest of this

section will be devoted to converting this detection guarantee into a optimization

routine.

Proof. By Fact 2.1.1 and (2.7) we have ‖
∑︀

𝑖∈𝑆good

𝑤𝑖

𝑤𝑔
𝑋𝑖 − 𝜇‖2 ≤ 𝛾2. Now by the

triangle inequality we have

⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖(𝑋𝑖 − 𝜇)

⃦⃦⃦⃦
⃦
2

≥ ‖Δ‖2 −

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)− 𝑤𝑔𝜇

⃦⃦⃦⃦
⃦⃦
2

≥ Ω(‖Δ‖2)

Using the fact that the variance is nonnegative we have

∑︁
𝑖∈𝑆bad

𝑤𝑖

𝑤𝑏

(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ ⪰

(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖

𝑤𝑏

(𝑋𝑖 − 𝜇)

)︃(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖

𝑤𝑏

(𝑋𝑖 − 𝜇)

)︃⊤

,

and therefore⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤
⃦⃦⃦⃦
⃦
2

≥ Ω

(︂
‖Δ‖22
𝑤𝑏

)︂
≥ Ω

(︂
‖Δ‖22
𝜀

)︂
.

On the other hand,⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦⃦
2

≤

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
2

+ 𝑤𝑏

≤ 𝛾1 + 𝑤𝑏.
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where in the last inequality we have used Fact 2.1.1 and (2.6). Hence altogether this

implies that⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
2

≥ Ω

(︂
‖Δ‖22
𝜀

)︂
− 𝑤𝑏 − 𝛾1 ≥ Ω

(︂
‖Δ‖22
𝜀

)︂
,

since Ω
(︁

‖Δ‖22
𝜀

)︁
= Ω(𝜀 log 1/𝜀) > 𝛾1. This completes the proof.

As a corollary, we find that any set of weights in 𝒞𝛾 immediately yields a good

estimate for 𝜇:

Corollary 2.2.8. Suppose that (2.6) and (2.7) hold. Let 𝑤 ∈ 𝒞𝛾 for 𝛾 = 𝑂(𝜀 log 1/𝜀).

Then

‖Δ‖2 ≤ 𝑂(𝜀
√︀

log 1/𝜀)

We now have the tools to give an approximate separation oracle for 𝒞𝛾 with 𝛾 =

𝑂(𝜀 log 1/𝜀).

Theorem 2.2.9. Fix 𝜀 > 0, and let 𝛾 = 𝑂(𝜀 log 1/𝜀). Suppose that (2.6) and (2.7)

hold. Let 𝑤* denote the weights which are uniform on the uncorrupted points. Then

there is a constant 𝑐 > 0 and an algorithm such that:

1. (Completeness) If 𝑤 = 𝑤*, then it outputs “YES”.

2. (Soundness) If 𝑤 ̸∈ 𝒞𝑐𝛾, the algorithm outputs a hyperplane ℓ : R𝑁 → R such

that ℓ(𝑤) ≥ 0 but ℓ(𝑤*) < 0. Moreover, if the algorithm ever outputs a hyper-

plane ℓ, then ℓ(𝑤*) < 0.

We remark that by Corollary 2.1.3, these two facts imply that for any 𝛿 > 0, the

ellipsoid method with this separation oracle will output a 𝑤′ such that ‖𝑤−𝑤′‖∞ <

𝜀/(𝑛
√︀
𝑑 log(𝑛/𝛿)), for some 𝑤 ∈ 𝒞𝑐𝛾 in poly(𝑑, 1/𝜀, log 1/𝛿) steps.

The separation oracle is given in Algorithm 2. Next, we prove correctness for our

approximate separation oracle:
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Algorithm 2 Separation oracle sub-procedure for agnostically learning the mean.
1: function SeparationOracleUnknownMean(𝑤, 𝜀,𝑋1, . . . , 𝑋𝑁)
2: Let ̂︀𝜇 =

∑︀𝑛
𝑖=1𝑤𝑖𝑋𝑖.

3: Let 𝛾 = 𝑂(𝜀 log 1/𝜀).
4: For 𝑖 = 1, . . . , 𝑛, define 𝑌𝑖 = 𝑋𝑖 − ̂︀𝜇.
5: Let 𝜆 be the eigenvalue of largest magnitude of 𝑀 =

∑︀𝑛
𝑖=1𝑤𝑖𝑌𝑖𝑌

⊤
𝑖 − 𝐼.

6: Let 𝑣 be its associated eigenvector.
7: if |𝜆| ≤ 𝑐

2
𝛾 then

8: return “YES".
9: else if 𝜆 > 𝑐

2
𝛾 then

10: return the hyperplane ℓ(𝑢) = (
∑︀𝑛

𝑖=1 𝑢𝑖⟨𝑌𝑖, 𝑣⟩2 − 1)− 𝜆.
11: else
12: return the hyperplane ℓ(𝑢) = 𝜆− (

∑︀𝑛
𝑖=1 𝑢𝑖⟨𝑌𝑖, 𝑣⟩2 − 1).

Proof of Theorem 2.2.9. Again, let Δ = 𝜇 − ̂︀𝜇, and let 𝑀 =
∑︀𝑁

𝑖=1𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝐼. By

expanding out the formula for 𝑀 , we get:

𝑁∑︁
𝑖=1

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝐼 =

𝑁∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇+Δ)(𝑋𝑖 − 𝜇+Δ)⊤ − 𝐼

=
𝑁∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼 +
𝑁∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)Δ⊤

+Δ
𝑁∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)⊤ +ΔΔ⊤

=
𝑁∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼 −ΔΔ⊤ .

Let us now prove completeness.

Claim 2.2.10. Suppose 𝑤 = 𝑤*. Then ‖𝑀‖2 < 𝑐
2
𝛾.

Proof. Recall that 𝑤* are the weights that are uniform on the uncorrupted points.

Because |𝑆bad| ≤ 𝜀𝑛 we have that 𝑤* ∈ 𝑆𝑛,𝜀. We can now use (2.6) to conclude that

𝑤* ∈ 𝒞𝛾1 . Now by Corollary 2.2.8 we have that ‖Δ‖2 ≤ 𝑂(𝜀
√︀

log 1/𝜀). Thus

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼 −ΔΔ⊤

⃦⃦⃦⃦
⃦
2

≤

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
2

+ ‖ΔΔ⊤‖2

≤ 𝛾1 +𝑂(𝜀2 log 1/𝜀) <
𝑐𝛾

2
.
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We now turn our attention to soundness.

Claim 2.2.11. Suppose that 𝑤 ̸∈ 𝐶𝑐𝛾. Then |𝜆| > 𝑐
2
𝛾.

Proof. By the triangle inequality, we have⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼 −ΔΔ⊤

⃦⃦⃦⃦
⃦
2

≥

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
2

−
⃦⃦
ΔΔ⊤⃦⃦

2
.

Let us now split into two cases. If ‖Δ‖2 ≤
√︀
𝑐𝛾/10, then the first term above is at

least 𝑐𝛾 by definition and we can conclude that |𝜆| > 𝑐𝛾/2. On the other hand, if

‖Δ‖2 ≥
√︀
𝑐𝛾/10, by Lemma 2.2.7, we have that

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼 −ΔΔ⊤

⃦⃦⃦⃦
⃦
2

≥ Ω

(︂
‖Δ‖22
𝜀

)︂
− ‖Δ‖22 = Ω

(︂
‖Δ‖22
𝜀

)︂
.

(2.8)

which for sufficiently small 𝜀 also yields |𝜆| > 𝑐𝛾/2.

Now by construction ℓ(𝑤) ≥ 0 (in fact ℓ(𝑤) = 0). All that remains is to show

that ℓ(𝑤*) < 0 always holds. We will only consider the case where the top eigenvalue

𝜆 of 𝑀 is positive. The other case (when 𝜆 < − 𝑐
2
𝛾) is symmetric. We will split the

analysis into two parts. We have⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

(𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤ − 𝐼
⃦⃦⃦⃦
⃦⃦
2

=

⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

(𝑋𝑖 − 𝜇+Δ)(𝑋𝑖 − 𝜇+Δ)⊤ − 𝐼

⃦⃦⃦⃦
⃦⃦
2

≤

⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦⃦
2⏟  ⏞  

≤𝛾1

+2‖Δ‖2

⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

(𝑋𝑖 − 𝜇)

⃦⃦⃦⃦
⃦⃦
2⏟  ⏞  

≤2𝛾2‖Δ‖2 by (2.7)

+‖Δ‖22

(2.9)
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Suppose ‖Δ‖2 ≤
√︀
𝑐𝛾/10. By (2.9) we immediately have:

ℓ(𝑤*) ≤ 𝛾1 + 2𝛾2‖Δ‖2 + ‖Δ‖22 − 𝜆 ≤
𝑐𝛾

5
− 𝜆 < 0 ,

since 𝜆 > 𝑐𝛾/2. On the other hand, if ‖Δ‖2 ≥
√︀
𝑐𝛾/10 then by (2.8) we have

𝜆 = Ω
(︁

‖Δ‖22
𝜀

)︁
. Putting it all together we have:

ℓ(𝑤*) ≤

⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

(𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤ − 𝐼
⃦⃦⃦⃦
⃦⃦
2⏟  ⏞  

≤𝛾1+2𝛾2‖Δ‖2+‖Δ‖22

−𝜆 ,

where in the last line we used the fact that 𝜆 > Ω
(︁

‖Δ‖22
𝜀

)︁
, and ‖Δ‖22 ≥ Ω(𝜀2 log 1/𝜀).

This now completes the proof.

The full algorithm

This separation oracle, along Corollary 2.1.3, implies that we have shown the follow-

ing:

Corollary 2.2.12. Fix 𝜀, 𝛿 > 0, and let 𝛾 = 𝑂(𝜀
√︀
log 1/𝜀). Let 𝑋1, . . . , 𝑋𝑛 be a set

of points satisfying (2.6)-(2.7), for 𝛾1, 𝛾2 ≤ 𝛾. Let 𝑐 be a sufficiently large constant.

Then, there is an algorithm LearnApproxMean(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛) which runs in

time poly(𝑛, 𝑑, 1/𝜀, log 1/𝛿), and outputs a set of weights 𝑤′ ∈ 𝑆𝑛,𝜀 such that there is

a 𝑤 ∈ 𝐶𝑐𝛾 such that ‖𝑤 − 𝑤′‖∞ ≤ 𝜀/(𝑛
√︀
𝑑 log(𝑛/𝛿)).

This algorithm, while an extremely powerful primitive, is technically not suffi-

cient. However, given this, the full algorithm is not too difficult to state: simply

run NaivePrune, then optimize over 𝐶𝑐𝛾 using this separation oracle, and get some

𝑤 which is approximately in 𝐶𝑐𝛾. Then, output
∑︀𝑛

𝑖=1𝑤𝑖𝑋𝑖. For completeness, the

pseudocode for the algorithm is given below. In the pseudocode, we assume that

Ellipsoid(SeparationOracleUnknownMean, 𝜀′) is a convex optimization rou-

tine, which given the SeparationOracleUnknownMean separation oracle and a

target error 𝜀′, outputs a 𝑤′ such that ‖𝑤 − 𝑤′‖∞ ≤ 𝜀′. From the classical theory of
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optimization, we know such a routine exists and runs in polynomial time.

Algorithm 3 Convex programming algorithm for agnostically learning the mean.
1: function LearnMean(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛)
2: Run NaivePrune(𝑋1, . . . , 𝑋𝑛). Let {𝑋𝑖}𝑖∈𝐼 be the pruned set of samples.

/* For simplicity assume 𝐼 = [𝑛] */
3: Let 𝑤′ ← LearnApproxMean(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑁).
4: return

∑︀𝑛
𝑖=1𝑤

′
𝑖𝑋𝑖.

We have:

Theorem 2.2.13. Fix 𝜀, 𝛿 > 0, and let 𝛾 = 𝑂(𝜀
√︀

log 1/𝜀). Let 𝑋1, . . . , 𝑋𝑛 be an

𝜀-corrupted set of samples from 𝒩 (𝜇, 𝐼), where

𝑛 = Ω

(︂
𝑑+ log 1/𝛿

𝛾2

)︂
.

Let ̂︀𝜇 be the output of LearnMean(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛). Then with probability 1−𝛿, we

have ‖̂︀𝜇− 𝜇‖2 ≤ 𝛾.

Proof. Condition on the event that (2.5)-(2.7) hold for the original uncorrupted set of

points. By Corollary 2.2.5, this happens with probability 1− 𝛿. After NaivePrune,

by Fact 2.2.6 we may assume that no uncorrupted points are removed, and all points

satisfy ‖𝑋𝑖 − 𝜇‖2 ≤ 𝑂(
√︀
𝑑 log(𝑛/𝛿)). Let 𝑤′ be the output of the algorithm, and let

𝑤 ∈ 𝐶𝑐𝛾 be such that ‖𝑤 − 𝑤′‖∞ < 𝜀/(𝑛
√︀
𝑑 log(𝑛/𝛿)). By Corollary 2.2.8, we know

that ‖
∑︀𝑛

𝑖=1𝑤𝑖𝑋𝑖 − 𝜇‖2 ≤ 𝑂(𝛾). Hence, we have

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑋𝑖 − 𝜇

⃦⃦⃦⃦
⃦
2

≤

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖 − 𝜇

⃦⃦⃦⃦
⃦
2

+
𝑛∑︁

𝑖=1

|𝑤𝑖 − 𝑤′
𝑖| · ‖𝑋𝑖 − 𝜇‖2 ≤ 𝑂(𝛾) + 𝜀 ,

so the entire error is at most 𝑂(𝛾), as claimed.

2.2.2 An extension, with small spectral noise

For learning of arbitrary Gaussians, we will need a simple extension that allows us

to learn the mean even in the presence of some spectral norm error in the covariance
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matrix. Since the algorithms and proofs are almost identical to the techniques above,

we omit them for conciseness. Formally, we require:

Theorem 2.2.14. Fix 𝜒, 𝜀, 𝛿 > 0, let 𝛾 be as in Theorem 2.2.13, and let 𝑋1, . . . , 𝑋𝑛

be an 𝜀-corrupted set of points from 𝒩 (𝜇,Σ), where ‖Σ− 𝐼‖2 ≤ 𝑂(𝜒), and where

𝑛 = Ω

(︂
𝑑+ log 1/𝛿

𝛾2

)︂
.

There is an algorithm RecoverMeanNoisy(𝑋1, . . . , 𝑋𝑛, 𝜀, 𝛿, 𝛾, 𝜒) which runs in

time poly(𝑑, 1/𝜒, 1/𝜀, log 1/𝛿) and outputs a ̂︀𝜇 so that with probability 1− 𝛿, we have

‖̂︀𝜇− 𝜇‖2 ≤ 𝛾 +𝑂(𝜒).

This extension follows from the observation that we only need spectral guarantees

on our covariance matrix, and whatever error we have in these concentration goes

directly into our error guarantee. Thus, by the same calculations that we had above,

if the eigenvalues are at most 1 + 𝛼, this directly goes linearly into our final error

bound.

2.2.3 Finding the covariance, using a separation oracle

In this section, we consider the problem of learning the covariance of a Gaussian

given corrupted samples. Throughout this section, we let Σ ∈ R𝑑×𝑑 be an (unknown)

positive definite matrix, and we let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set of samples from

𝒩 (0,Σ). Let 𝑈𝑖 = Σ−1/2𝑋𝑖 such that if 𝑋𝑖 ∼ 𝒩 (0,Σ) then 𝑈𝑖 ∼ 𝒩 (0, 𝐼). Moreover

let 𝑍𝑖 = 𝑈⊗2
𝑖 . Our approach will parallel the one given earlier in Section 2.2.1. Again,

we will work with a convex set

𝐶𝛾 =

{︃
𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦
(︃

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖

)︃
− Σ

⃦⃦⃦⃦
⃦
Σ

≤ 𝛾

}︃
.
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and our goal is to design an approximate separation oracle. Our results in this section

will rely on the following deterministic conditions:

‖𝑈𝑖‖22 ≤ 𝑂 (𝑑 log(𝑛/𝛿)) , ∀𝑖 ∈ 𝑆good (2.10)⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖𝑈𝑖𝑈
⊤
𝑖 − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
𝐹

≤ 𝛾1 , (2.11)

⃦⃦⃦⃦
⃦∑︁
𝑖∈𝑇

1

|𝑇 |
𝑈𝑖𝑈

⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

≤ 𝑂

(︂
𝛾2

𝑛

|𝑇 |

)︂
, and (2.12)⃦⃦⃦⃦

⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖𝑍𝑖𝑍
⊤
𝑖 − 𝑤𝑔𝑀4

⃦⃦⃦⃦
⃦⃦
𝒮

≤ 𝛾3 , (2.13)

for all 𝑤 ∈ 𝑆𝑛,𝜀, and all sets 𝑇 ⊆ 𝑆good of size |𝑇 | ≤ 𝜀𝑛. As before, by Fact 2.1.1, the

renormalized weights over the uncorrupted points are in 𝑆𝑛,2𝜀. Hence, we can appeal to

Fact 2.1.11, Corollary 2.1.13, Corollary 2.1.14, and Theorem 2.1.16 with 𝑆𝑛,2𝜀 instead

of 𝑆𝑛,𝜀and get that if we set 𝛾1, 𝛾2 = 𝑂(𝜀
√︀
log 1/𝜀) and 𝛾3 = 𝑂(𝜀 log2 1/𝜀), these

conditions simultaneously hold with probability 1 − 𝛿. Let 𝑤* be the set of weights

which are uniform over the uncorrupted points; by (2.11) for 𝛾 ≥ Ω(𝜀
√︀

log 1/𝜀) we

have that 𝑤* ∈ 𝐶𝛾.

Our main result is that under these conditions, there is an approximate separation

oracle for 𝐶𝛾. As was for mean estimation, in the design of the separation oracle, we

will only consider 𝑤 ∈ 𝑆𝑛,𝜀, since otherwise the separation oracle is trivial. Formally,

we show:

Theorem 2.2.15. Let 𝛾 = 𝑂(𝜀 log 1/𝜀). Suppose that (2.11), (2.12), and 2.13 hold

for 𝛾1, 𝛾2 ≤ 𝑂(𝛾) and 𝛾3 ≤ 𝑂(𝛾 log 1/𝜀). Then, there is a constant 𝑐 > 0 and an

algorithm such that, given any input 𝑤 ∈ 𝑆𝑛,𝜀 we have:

1. (Completeness) If 𝑤 = 𝑤*, the algorithm outputs “YES”.

2. (Soundness) If 𝑤 ̸∈ 𝐶𝑐𝛾, the algorithm outputs a hyperplane ℓ : R𝑚 → R such

that ℓ(𝑤) ≥ 0 but we have ℓ(𝑤*) < 0. Moreover, if the algorithm ever outputs a

hyperplane ℓ, then ℓ(𝑤*) < 0.

81



As in the case of learning an unknown mean, by the classical theory of convex opti-

mization this implies that we will find a point 𝑤 such that ‖𝑤 − 𝑤′‖∞ ≤ 𝜀
poly(𝑛)

for

some 𝑤′ ∈ 𝐶𝑐𝛾, using polynomially many calls to this oracle. We make this more

precise in the following subsubsection.

The pseudocode for the (approximate) separation oracle is given in Algorithm 4.

Observe briefly that this algorithm does indeed run in polynomial time. Lines 2-7

require only taking top eigenvalues and eigenvectors, and so can be done in poly-

nomial time. For any 𝜉 ∈ {−1,+1}, line 8 can be run by sorting the samples by

𝑤𝑖

(︁
‖𝑌𝑖‖2√

𝑑
−
√
𝑑
)︁

and seeing if there is a subset of the top 2𝜀𝑛 samples satisfying the

desired condition, and line 9 can be executed similarly.

Algorithm 4 Convex programming algorithm for agnostically learning the covari-
ance.
1: function SeparationOracleUnknownCovariance(𝑤)
2: Let ̂︀Σ =

∑︀𝑛
𝑖=1𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 .

3: For 𝑖 = 1, . . . , 𝑛, let 𝑌𝑖 = ̂︀Σ−1/2𝑋𝑖 and let 𝑍𝑖 = (𝑌𝑖)
⊗2.

4: Let 𝑣 be the top eigenvector of 𝑀 =
∑︀𝑛

𝑖=1𝑤𝑖𝑍𝑖𝑍
⊤
𝑖 − 2𝐼 restricted to 𝒮, and

let 𝜆 be its associated eigenvalue.
5: if |𝜆| > Ω(𝜀 log2 1/𝜀) then
6: Let 𝜉 = sgn(𝜆).
7: return the hyperplane

ℓ(𝑢) = 𝜉

(︃
𝑛∑︁

𝑖=1

𝑢𝑖⟨𝑣, 𝑍𝑖⟩2 − 2− 𝜆

)︃
.

8: else if there exists a sign 𝜉 ∈ {−1, 1} and a set 𝑇 of samples of size at most
𝜀𝑛 such that

𝛼 = 𝜉
∑︁
𝑖∈𝑇

𝑤𝑖

(︂
‖𝑌𝑖‖22√

𝑑
−
√
𝑑

)︂
>

(1− 𝜀)𝛼𝛾
2

,

then
9: return the hyperplane

ℓ(𝑢) = 𝜉
∑︁
𝑖∈𝑇

𝑢𝑖

(︂
‖𝑌𝑖‖22√

𝑑
−
√
𝑑

)︂
− 𝛼 ,

10: else
11: return “YES”.
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We now turn our attention to proving the correctness of this separation oracle.

We require the following technical lemmata.

Claim 2.2.16. Let 𝑤1, . . . , 𝑤𝑛 be a set of non-negative weights such that
∑︀𝑛

𝑖=1𝑤𝑖 = 1,

and let 𝑎𝑖 ∈ R be arbitrary. Then

𝑛∑︁
𝑖=1

𝑎2𝑖𝑤𝑖 ≥

(︃
𝑛∑︁

𝑖=1

𝑎𝑖𝑤𝑖

)︃2

.

Proof. Let 𝑃 be the distribution where 𝑎𝑖 is chosen with probability 𝑤𝑖. Then

E𝑋∼𝑃 [𝑋] =
∑︀𝑛

𝑖=1 𝑓𝑎𝑖𝑤𝑖 and E𝑋∼𝑃 [𝑋
2] =

∑︀𝑛
𝑖=1 𝑎𝑖𝑤

2
𝑖 . Since Var𝑋∼𝑃 [𝑋] = E𝑋∼𝑃 [𝑋

2]−

E𝑋∼𝑃 [𝑋]2 is always a non-negative quantity, by rearranging the desired conclusion

follows.

Lemma 2.2.17. Fix 𝛾 < 1 and suppose that 𝑀 is symmetric. If ‖𝑀 − 𝐼‖𝐹 ≥ 𝛾 then

‖𝑀−1 − 𝐼‖𝐹 ≥ 𝛾
2
.

Proof. We will prove this lemma in the contrapositive, by showing that if ‖𝑀−1 −

𝐼‖𝐹 < 𝛾
2

then ‖𝑀 − 𝐼‖𝐹 < 𝛾. Since the Frobenius norm is rotationally invariant, we

may assume that 𝑀−1 = diag(1+ 𝜈1, . . . , 1+ 𝜈𝑑), where by assumption
∑︀
𝜈2𝑖 < 𝛾2/4.

By our assumption that 𝛾 < 1, we have |𝜈𝑖| ≤ 1/2 for all 𝑖. Thus

𝑑∑︁
𝑖=1

(︂
1− 1

1 + 𝜈𝑖

)︂2

≤
𝑑∑︁

𝑖=1

4𝜈2𝑖 < 𝛾 ,

where we have used the inequality |1− 1
1+𝑥
| ≤ |2𝑥| which holds for all |𝑥| ≤ 1/2. This

completes the proof.

Lemma 2.2.18. Let 𝑀,𝑁 ∈ R𝑑×𝑑 be arbitrary matrices. Then ‖𝑀𝑁‖𝐹 ≤ ‖𝑀‖2‖𝑁‖𝐹 .

Proof. Let 𝑁1, . . . , 𝑁𝑑 be the columns of 𝑁 . Then

‖𝑀𝑁‖2𝐹 =
𝑑∑︁

𝑖=1

‖𝑀𝑁‖22 ≤ ‖𝑀‖22
𝑑∑︁

𝑖=1

‖𝑁𝑖‖22 = ‖𝑀‖22‖𝑁‖2𝐹 ,

so the desired result follows by taking square roots of both sides.
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Lemma 2.2.19. Let 𝑀 ∈ R𝑑×𝑑. Then,
⃦⃦⃦(︀
𝑀 ♭
)︀ (︀
𝑀 ♭
)︀⊤⃦⃦⃦

𝒮
≤ ‖𝑀 − 𝐼‖2𝐹 .

Proof. By the definition of ‖ · ‖𝒮 , we have

⃦⃦⃦(︀
𝑀 ♭
)︀ (︀
𝑀 ♭
)︀⊤⃦⃦⃦

𝒮
= sup

𝐴♭∈𝒮
‖𝐴‖𝐹=1

(︀
𝐴♭
)︀⊤ (︀

𝑀 ♭
)︀ (︀
𝑀 ♭
)︀⊤
𝐴♭ = sup

𝐴∈𝒮
‖𝐴‖𝐹=1

⟨𝐴,𝑀⟩2 .

By self duality of the Frobenius norm, we know that

⟨𝐴,𝑀⟩ = ⟨𝐴,𝑀 − 𝐼⟩ ≤ ‖𝑀 − 𝐼‖𝐹 ,

since 𝐼♭ ∈ 𝒮⊥. The result now follows.

Proof of Theorem 2.2.15. Throughout this proof, let 𝑤 ∈ 𝑆𝑛,𝜀 be the input to the

separation oracle, and let ̂︀Σ = ̂︀Σ(𝑤) =∑︀𝑛
𝑖=1𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 . Let us first prove completeness.

Observe that by Theorem 2.1.15, we know that restricted to 𝒮, we have that 𝑀4 = 2𝐼.

Therefore, by (2.13) we will not output a hyperplane in line 7. Moreover, by (2.12),

we will not output a hyperplane in line 8. This proves completeness.

Thus it suffices to show soundness. Suppose that 𝑤 ̸∈ 𝒞𝑐𝛾. We will make use of

the following elementary fact:

Fact 2.2.20. Let 𝐴 = Σ−1/2̂︀ΣΣ−1/2 and 𝐵 = ̂︀Σ−1/2Σ̂︀Σ−1/2. Then

‖𝐴−1 − 𝐼‖𝐹 = ‖𝐵 − 𝐼‖𝐹

Proof. In particular 𝐴−1 = Σ1/2̂︀Σ−1Σ1/2. Using this expression and the fact that all

the matrices involved are symmetric, we can write

‖𝐴−1 − 𝐼‖2𝐹 = tr
(︀
(𝐴−1 − 𝐼)⊤(𝐴−1 − 𝐼)

)︀
= tr

(︁
Σ1/2̂︀Σ−1Σ̂︀Σ−1Σ1/2 − 2Σ1/2̂︀Σ−1Σ1/2 − 𝐼

)︁
= tr

(︁̂︀Σ−1/2Σ̂︀Σ−1Σ̂︀Σ−1/2 − 2̂︀Σ−1/2Σ̂︀Σ−1/2 − 𝐼
)︁

= tr
(︀
(𝐵 − 𝐼)⊤(𝐵 − 𝐼)

)︀
= ‖𝐵 − 𝐼‖2𝐹
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where in the third line we have used the fact that the trace of a product of matrices

is preserved under cyclic shifts.

This allows us to show:

Claim 2.2.21. Assume (2.11) holds with 𝛾1 ≤ 𝑂(𝛾) and assume furthermore that

‖𝐴− 𝐼‖𝐹 ≥ 𝑐𝛾. Then, if we let 𝛾′ = (1−𝜀)𝑐
2

𝛾 = Θ(𝛾), we have

⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑍𝑖 − 𝑤𝑏𝐼
♭

⃦⃦⃦⃦
⃦
𝒮

+

⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑍𝑖 − 𝑤𝑏𝐼
♭

⃦⃦⃦⃦
⃦
𝒮⊥

≥ 𝛾′ . (2.14)

Proof. Let 𝐴,𝐵 be as in Fact 2.2.20. Combining Lemma 2.2.17 and Fact 2.2.20 we

have

‖𝐴− 𝐼‖𝐹 ≥ 𝑐𝛾 ⇒ ‖𝐵 − 𝐼‖𝐹 ≥
𝑐𝛾

2
. (2.15)

We can rewrite (2.11) as the expression
∑︀

𝑖∈𝑆good
𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 = 𝑤𝑔Σ

1/2(𝐼+𝑅)Σ1/2 where

𝑅 is symmetric and satisfies ‖𝑅‖𝐹 ≤ 𝛾1. By the definition of ̂︀Σ we have that∑︀𝑁
𝑖=1𝑤𝑖𝑌𝑖𝑌

⊤
𝑖 = 𝐼, and so

⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝑤𝑏𝐼

⃦⃦⃦⃦
⃦
𝐹

=

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
𝐹

= 𝑤𝑔

⃦⃦⃦̂︀Σ−1/2Σ1/2(𝐼 +𝑅)Σ1/2̂︀Σ−1/2 − 𝐼
⃦⃦⃦
𝐹

Furthermore we have

⃦⃦⃦̂︀Σ−1/2Σ1/2𝑅Σ1/2̂︀Σ−1/2
⃦⃦⃦
𝐹
≤ 𝛾1

⃦⃦⃦̂︀Σ−1/2Σ̂︀Σ−1/2
⃦⃦⃦
2
,

by applying Lemma 2.2.18. And putting it all together we have⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝑤𝑏𝐼

⃦⃦⃦⃦
⃦
𝐹

≥ 𝑤𝑔

(︁⃦⃦⃦̂︀Σ−1/2Σ̂︀Σ−1/2 − 𝐼
⃦⃦⃦
𝐹
− 𝛾1

⃦⃦⃦̂︀Σ−1/2Σ̂︀Σ−1/2
⃦⃦⃦
2

)︁

It is easily verified that for 𝑐 > 10, we have that for all 𝛾, if ‖̂︀Σ−1/2Σ̂︀Σ−1/2−𝐼‖𝐹 ≥ 𝑐𝛾,

then

‖̂︀Σ−1/2Σ̂︀Σ−1/2 − 𝐼‖𝐹 ≥ 2𝛾‖̂︀Σ−1/2Σ̂︀Σ−1/2‖2 .
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Hence all this implies that⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝑤𝑏𝐼

⃦⃦⃦⃦
⃦
𝐹

≥ 𝛾′ ,

where 𝛾′ = 𝑐(1−𝜀)
2

𝛾 = Θ(𝛾). The desired result then follows from the Pythagorean

theorem.

Claim 2.2.21 tells us that if 𝑤 ̸∈ 𝐶𝑐𝛾, we know that one of the terms in (2.15)

must be at least 1
2
𝛾′. We first show that if the first term is large, then the algorithm

outputs a separating hyperplane:

Claim 2.2.22. Assume that (2.11)-(2.13) hold with 𝛾1, 𝛾2 ≤ 𝑂(𝛾) and 𝛾3 ≤ 𝑂(𝛾 log 1/𝜀).

Moreover, suppose that ⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑍𝑖 − 𝑤𝑏𝐼
♭

⃦⃦⃦⃦
⃦
𝒮

≥ 1

2
𝛾′ .

Then the algorithm outputs a hyperplane in line 7, and moreover, it is a separating

hyperplane.

Proof. Let us first show that given these conditions, then the algorithm indeed outputs

a hyperplane in line 7. Since 𝐼♭ ∈ 𝑆⊥, the first term is just equal to
⃦⃦∑︀

𝑖∈𝑆bad
𝑤𝑖𝑍𝑖

⃦⃦
𝑆
.

But this implies that there is some 𝑀 ♭ ∈ 𝑆 such that ‖𝑀 ♭‖2 = ‖𝑀‖𝐹 = 1 and such

that

∑︁
𝑖∈𝑆bad

𝑤𝑖⟨𝑀 ♭, 𝑍𝑖⟩ ≥
1

2
𝛾′ ,

which implies that

∑︁
𝑖∈𝑆bad

𝑤𝑖

𝑤𝑏

⟨𝑀 ♭, 𝑍𝑖⟩ ≥
1

2

𝛾′

𝑤𝑏

.

The 𝑤𝑖/𝑤𝑏 are a set of weights satisfying the conditions of Claim 2.2.16 and so this
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implies that

∑︁
𝑖∈𝑆bad

𝑤𝑖⟨𝑀 ♭, 𝑍𝑖⟩2 ≥ 𝑂

(︂
𝛾′2

𝑤𝑏

)︂

≥ 𝑂

(︂
𝛾′2

𝜀

)︂
(2.16)

Let ̃︀Σ = ̂︀Σ−1Σ. By Theorem 2.1.15 and (2.13), we have that

∑︁
𝑖∈𝑆good

𝑤𝑖𝑍𝑖𝑍
⊤
𝑖 = 𝑤𝑔

(︂(︁̃︀Σ♭
)︁(︁̃︀Σ♭

)︁⊤
+ 2̃︀Σ⊗2 +

(︁̃︀Σ1/2
)︁⊗2

𝑅
(︁̃︀Σ1/2

)︁⊗2
)︂
,

where ‖𝑅‖2 ≤ 𝛾3. Hence,⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖𝑍𝑖𝑍
⊤
𝑖 − 2𝐼

⃦⃦⃦⃦
⃦⃦
𝑆

= 𝑤𝑔

⃦⃦⃦⃦(︁̃︀Σ♭
)︁(︁̃︀Σ♭

)︁⊤
+ 2

(︁̃︀Σ⊗2 − 𝐼
)︁
+ (1− 𝑤𝑔)𝐼 +

(︁̃︀Σ1/2
)︁⊗2

𝑅
(︁̃︀Σ1/2

)︁⊗2
⃦⃦⃦⃦
𝑆

≤ ‖̃︀Σ− 𝐼‖2𝐹 + 2‖̃︀Σ− 𝐼‖2 + (1− 𝑤𝑔) + ‖𝑅‖‖̃︀Σ‖2
≤ 3‖̃︀Σ− 𝐼‖2𝐹 + 𝛾‖̃︀Σ‖2 +𝑂(𝜀) .

≤ 𝑂
(︁
𝛾′

2
+ 𝛾′

)︁
, (2.17)

since it is easily verified that 𝛾‖̃︀Σ‖2 ≤ 𝑂(‖̃︀Σ − 𝐼‖𝐹 ) as long as ‖̃︀Σ − 𝐼‖𝐹 ≥ Ω(𝛾),

which it is by (2.15).

Equations 2.16 and 2.17 then together imply that

𝑛∑︁
𝑖=1

𝑤𝑖(𝑀
♭)⊤𝑍𝑖𝑍

⊤
𝑖 (𝑀

♭)− (𝑀 ♭)⊤𝐼𝑀 ♭ ≥ 𝑂

(︂
𝛾2

𝜀

)︂
,

and so the top eigenvalue of 𝑀 is greater in magnitude than 𝜆, and so the algorithm

will output a hyperplane in line 7. Letting ℓ denote the hyperplane output by the

algorithm, by the same calculation as for (2.17), we must have ℓ(𝑤*) < 0, so this is

indeed a separating hyperplane. Hence in this case, the algorithm correctly operates.

Moreover, observe that from the calculations in (2.17), we know that if we ever
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output a hyperplane in line 7, which implies that 𝜆 ≥ Ω(𝜀 log2 1/𝜀), then we must

have that ℓ(𝑤*) < 0.

Now let us assume that the first term on the LHS is less than 1
2
𝛾′, such that the

algorithm does not necessarily output a hyperplane in line 7. Thus, the second term

on the LHS of Equation 2.14 is at least 1
2
𝛾′. We now show that this implies that this

implies that the algorithm will output a separating hyperplane in line 9.

Claim 2.2.23. Assume that (2.11)-(2.13) hold. Moreover, suppose that⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑍𝑖 − 𝑤𝑏𝐼
♭

⃦⃦⃦⃦
⃦
𝒮⊥

≥ 1

2
𝛾′ .

Then the algorithm outputs a hyperplane in line 9, and moreover, it is a separating

hyperplane.

Proof. By the definition of 𝒮⊥, the assumption implies that⃒⃒⃒⃒
⃒ ∑︁
𝑖∈𝑆bad

𝑤𝑖
tr(𝑍♯

𝑖 )√
𝑑
−𝑀𝑏

√
𝑑

⃒⃒⃒⃒
⃒ ≥ 1

2
𝛾′ ,

which is equivalent to the condition that

𝜉
∑︁

𝑖∈𝑆bad

𝑤𝑖

(︂
‖𝑌𝑖‖22√

𝑑
−
√
𝑑

)︂
≥ (1− 𝜀)𝛾′

2
,

for some 𝜉 ∈ {−1, 1}. In particular, the algorithm will output a hyperplane

ℓ(𝑤) = 𝜉
∑︁
𝑖∈𝑆

𝑤𝑖

(︂
‖𝑌𝑖‖22√

𝑑
−
√
𝑑

)︂
− 𝜆

in Step 9, where 𝑆 is some set of size at most 𝜀𝑛, and 𝜆 = 𝑂(𝛾′). Since it will not

affect anything, for without loss of generality let us assume that 𝜉 = 1. The other

case is symmetrical.

It now suffices to show that ℓ(𝑤*) < 0 always. Let 𝑇 = 𝑆 ∩ 𝑆good. By (2.12), we
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know that

∑︁
𝑖∈𝑇

1

|𝑇 |
𝑌𝑖𝑌

⊤
𝑖 − 𝐼 = ̃︀Σ1/2 (𝐼 + 𝐴) ̃︀Σ1/2 − 𝐼 ,

where ‖𝐴‖𝐹 = 𝑂
(︁
𝛾 𝑛
|𝑇 |

)︁
. Hence,

⃦⃦⃦⃦
⃦∑︁
𝑖∈𝑇

1

(1− 𝜀)𝑛
𝑌𝑖𝑌

⊤
𝑖 −

|𝑇 |
(1− 𝜀)𝑛

𝐼

⃦⃦⃦⃦
⃦
𝐹

=
|𝑇 |

(1− 𝜀)𝑛

⃦⃦⃦̃︀Σ1/2 (𝐼 + 𝐴) ̃︀Σ1/2 − 𝐼
⃦⃦⃦
𝐹

≤ |𝑇 |
(1− 𝜀)𝑛

(︁
‖̃︀Σ− 𝐼‖𝐹 + ‖𝐴‖𝐹‖̃︀Σ‖2)︁

≤ |𝑇 |
(1− 𝜀)𝑛

‖̃︀Σ− 𝐼‖𝐹 +𝑂(𝛾)‖̃︀Σ‖2
≤ 𝑂(𝛾𝛾′ + 𝛾) ,

as long as 𝛾′ ≥ 𝑂(𝛾). By self-duality of the Frobenius norm, using the test matrix
1√
𝑑
𝐼, this implies that

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑇

1

(1− 𝜀)𝑛

(︁
‖𝑌𝑖‖2 −

√
𝑑
)︁⃒⃒⃒⃒⃒ ≤ 𝑂(𝛾𝛾′ + 𝛾) < 𝛼

and hence ℓ(𝑤*) < 0, as claimed.

These two claims in conjunction directly imply the correctness of the theorem.

The full algorithm

As before, this separation oracle and Corollary 2.1.3 shows that we have demonstrated

an algorithm FindApproxCovariance with the following properties:

Theorem 2.2.24. Fix 𝜀, 𝛿 > 0, and let 𝛾 = 𝑂(𝜀 log 1/𝜀). Let 𝑐 > 0 be a uni-

versal constant which is sufficiently large. Let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set

of points satisfying (2.11-(2.13), for 𝛾1, 𝛾2 ≤ 𝑂(𝛾) and 𝛾3 ≤ 𝑂(𝛾 log 1/𝜀). Then

FindApproxCovariance(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛) runs in time poly(𝑛, 𝑑, 1/𝜀, log 1/𝛿), and

outputs a 𝑢 such that there is some 𝑤 ∈ 𝐶𝑐𝛾 such that ‖𝑤 − 𝑢‖∞ ≤ 𝜀/(𝑛𝑑 log(𝑛/𝛿)).
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As before, this is not quite sufficient to actually recover the covariance robustly.

Naively, we would just like to output
∑︀𝑛

𝑖=1 𝑢𝑖𝑋𝑖𝑋
⊤
𝑖 . However, this can run into issues

if there are points 𝑋𝑖 such that ‖Σ−1/2𝑋𝑖‖2 is extremely large. We show here that we

can postprocess the 𝑢 such that we can weed out these points. First, observe that we

have the following lemma:

Lemma 2.2.25. Assume 𝑋1, . . . , 𝑋𝑛 satisfy (2.11). Let 𝑤 ∈ 𝑆𝑛,𝜀. Then

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 ⪰ (1−𝑂(𝛾1))Σ .

Proof. This follows since by (2.11), we have that
∑︀

𝑖∈𝑆good
𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 ⪰ 𝑤𝑔(1− 𝛾1)Σ ⪰

(1−𝑂(𝛾1))Σ. The lemma then follows since
∑︀

𝑖∈𝑆bad
𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 ⪰ 0 always.

Now, for any set of weights 𝑤 ∈ 𝑆𝑛,𝜀, let ̃︀𝑤− ∈ R𝑛 be the vector given by ̃︀𝑤−
𝑖 =

max(0, 𝑤𝑖− 𝜀/(𝑛𝑑 log(𝑛/𝛿))), and let 𝑤− be the set of weights given by renormalizing̃︀𝑤−. It is a straightforward calculation that for any 𝑤 ∈ 𝑆𝑛,𝜀, we have 𝑤− ∈ 𝑆𝑛,2𝜀. In

particular, this implies:

Lemma 2.2.26. Let 𝑢 be such that there is 𝑤 ∈ 𝐶𝑐𝛾 such that ‖𝑢−𝑤‖∞ ≤ 𝜀/(𝑛𝑑 log(𝑛/𝛿)).

Then,
∑︀𝑛

𝑖=1 𝑢
−
𝑖 𝑋𝑖𝑋

⊤
𝑖 ⪯ (1 +𝑂(𝛾))Σ.

Proof. By the definition of 𝐶𝑐𝛾, we must have that
∑︀𝑁

𝑖=1𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 ⪯ (1 + 𝑐𝛾)Σ.

Moreover, we must have ̃︀𝑢−𝑖 ≤ 𝑤𝑖 for every index 𝑖 ∈ [𝑛]. Thus we have that∑︀𝑛
𝑖=1 ̃︀𝑢−𝑖 𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 ⪯ (1+𝑐𝛾)Σ, and hence

∑︀𝑁
𝑖=1 𝑢

−
𝑖 𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 ⪯ (1+𝑐𝛾)Σ, since

∑︀𝑁
𝑖=1 𝑢

−
𝑖 𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 ⪯

(1 +𝑂(𝜀))
∑︀𝑁

𝑖=1 ̃︀𝑢−𝑖 𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 .

We now give the full algorithm. The algorithm proceeds as follows: first run

FindApproxCovariance to get some set of weights 𝑢 which is close to some element

of 𝐶𝑐𝛾. We then compute the empirical covariance Σ1 =
∑︀𝑛

𝑖=1 𝑢𝑖𝑋𝑖𝑋
⊤
𝑖 with the

weights 𝑢, and remove any points which have ‖Σ−1/2
1 𝑋𝑖‖22 which are too large. We

shall show that this removes no good points, and removes all corrupted points which

have ‖Σ−1/2𝑋𝑖‖22 which are absurdly large. We then rerun FindApproxCovariance

with this pruned set of points, and output the empirical covariance with the output
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of this second run. Formally, we give the pseudocode for the algorithm in Algorithm

5.

Algorithm 5 Full algorithm for learning the covariance agnostically
1: function LearnCovariance(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑁)
2: Let 𝑢← FindApproxCovariance(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛).
3: Let Σ1 =

∑︀𝑛
𝑖=1 𝑢

−
𝑖 𝑋𝑖𝑋

⊤
𝑖 .

4: for 𝑖 = 1, . . . , 𝑛 do
5: if ‖Σ−1/2

1 𝑋𝑖‖22 ≥ Ω(𝑑 log𝑁/𝛿) then
6: Remove 𝑋𝑖 from the set of samples
7: Let 𝑆 ′ be the set of pruned samples.
8: Let 𝑢′ ← FindApproxCovariance(𝜀, 𝛿, {𝑋𝑖}𝑖∈𝑆′).
9: return

∑︀𝑛
𝑖=1 𝑢

′
𝑖𝑋𝑖𝑋

⊤
𝑖 .

We now show that this algorithm is correct.

Theorem 2.2.27. Let 1/2 ≥ 𝜀 > 0, and 𝛿 > 0. Let 𝛾 = 𝑂(𝜀 log 1/𝜀). Let 𝑋1, . . . , 𝑋𝑛

be a 𝜀-corrupted set of samples from 𝒩 (0,Σ) where

𝑛 = ̃︀Ω(︂𝑑2 log5 1/𝛿
𝜀2

)︂
.

Let ̂︀Σ be the output of LearnCovariance(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛). Then with probability

1− 𝛿, ‖Σ−1/2̂︀ΣΣ−1/2 − 𝐼‖𝐹 ≤ 𝑂(𝛾).

Proof. We first condition on the event that we satisfy (2.10)-(2.13) with 𝛾1, 𝛾2 ≤ 𝑂(𝛾)

and 𝛾3 ≤ 𝑂(𝛾 log 1/𝜀). By our choice of 𝑛, Fact 2.1.11, Corollary 2.1.12, Corollary

2.1.14, and Theorem 2.1.16, and a union bound, we know that this event happens

with probability 1− 𝛿.

By Theorem 2.2.24, Lemma 2.2.25, and Lemma 2.2.26, we have that since 𝜀 is

sufficiently small,

1

2
Σ ⪯ Σ1 ⪯ 2Σ .

In particular, this implies that for every vector 𝑋𝑖, we have

1

2
‖Σ−1/2𝑋𝑖‖22 ≤ ‖Σ

−1/2
1 𝑋𝑖‖22 ≤ 2‖Σ−1/2𝑋𝑖‖22 .
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Therefore, by (2.10), we know that in line 6, we never throw out any uncorrupted

points, and moreover, if 𝑋𝑖 is corrupted with ‖Σ−1/2𝑋𝑖‖22 ≥ Ω(𝑑 log𝑁/𝛿), then it

is thrown out. Thus, let 𝑆 ′ be the set of pruned points. Because no uncorrupted

point is thrown out, we have that |𝑆 ′| ≥ (1− 2𝜀)𝑁 , and moreover, this set of points

still satisfies (2.11)-(2.13)2 and moreover, for ever 𝑖 ∈ 𝑆 ′, we have ‖Σ−1/2𝑋𝑖‖22 ≤

𝑂(𝑑 log𝑁/𝛿). Therefore, by Theorem 2.2.24, we have that there is some 𝑢′′ ∈ 𝐶𝑐|𝐼|

such that ‖𝑢′ − 𝑢′′‖∞ < 𝜀/(𝑁𝑑 log(𝑁/𝛿)). But now if ̂︀Σ =
∑︀

𝑖∈|𝐼| 𝑢
′
𝑖𝑋𝑖𝑋

⊤
𝑖 , we have

‖Σ−1/2̂︀ΣΣ−1/2 − 𝐼‖𝐹 ≤

⃦⃦⃦⃦
⃦∑︁

𝑖∈𝐼

𝑢′′𝑖Σ
−1/2𝑋𝑖𝑋

⊤
𝑖 Σ

−1/2 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

+
∑︁
𝑖∈𝐼

|𝑢′𝑖 − 𝑢′𝑖|‖Σ−1/2𝑋𝑖‖22

≤ 𝑐𝛾 +𝑂(𝜀) ≤ 𝑂(𝛾) ,

which completes the proof.

2.2.4 Learning an arbitrary Gaussian agnostically

We have shown how to agnostically learn the mean of a Gaussian with known co-

variance, and we have shown how to agnostically learn the covariance of a mean zero

Gaussian. In this section, we show how to use these two in conjunction to agnosti-

cally learn an arbitrary Gaussian. Throughout, let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set

of samples from 𝒩 (𝜇,Σ), where both 𝜇 and Σ are unknown. For the sake of simplicity

assume that 𝑛 is even.

For each 𝑖 = 1, . . . , 𝑛/2, let 𝑋 ′
𝑖 = (𝑋𝑖 − 𝑋𝑛/2+𝑖)/

√
2. Observe that if both 𝑋𝑖

and 𝑋𝑛/2+𝑖 are uncorrupted, then 𝑋 ′
𝑖 ∼ 𝒩 (0,Σ). Let 𝑆good

′ ⊆ [𝑛/2] denote the set of

𝑖 ∈ [𝑛/2] so that both 𝑖 ∈ 𝑆good and 𝑖 + 𝑛/2 ∈ 𝑆good, and let 𝑆bad
′ = [𝑛/2] ∖ 𝑆good

′,

and let 𝑤′
𝑔 =

∑︀
𝑖∈𝑆good

′ 𝑤𝑖 and 𝑤′
𝑏 =

∑︀
𝑖∈𝑆bad

′ 𝑤𝑖. Thus observe that 𝑋 ′
𝑖 are an 2𝜀-

corrupted set of samples from 𝒩 (0,Σ) of size 𝑛/2. In analogy with Section 2.2.3, let

𝑈 ′
𝑖 = Σ−1/2𝑋 ′

𝑖 and let 𝑍 ′
𝑖 = (𝑈 ′

𝑖)
⊗2.

Our algorithm will work under the following set of deterministic conditions over

2Technically, the samples satisfy a slightly different set of conditions since we may have thrown
out some corrupted points, and so in particular the number of samples may have changed, but the
meaning should be clear.
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the 𝑋𝑖 and the 𝑋 ′
𝑖:

‖𝑈 ′
𝑖‖22 ≤ 𝑂 (𝑑 log(𝑛/𝛿)) , ∀𝑖 ∈ 𝑆good

′ (2.18)⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

′

𝑤′
𝑖(𝑈

′
𝑖)(𝑈

′
𝑖)

⊤ − 𝑤′
𝑔𝐼

⃦⃦⃦⃦
⃦⃦
𝐹

≤ 𝛾1 , (2.19)

⃦⃦⃦⃦
⃦∑︁
𝑖∈𝑇

1

|𝑇 |
(𝑈 ′

𝑖)(𝑈
′
𝑖)

⊤ − 𝐼

⃦⃦⃦⃦
⃦
𝐹

≤ 𝑂

(︂
𝛾2

𝑛

|𝑇 |

)︂
, and (2.20)⃦⃦⃦⃦

⃦⃦ ∑︁
𝑖∈𝑆good

′

𝑤′
𝑖(𝑍

′
𝑖)(𝑍

′
𝑖)

⊤ − 𝑤′
𝑔𝑀4

⃦⃦⃦⃦
⃦⃦
𝒮

≤ 𝛾3 (2.21)

‖Σ−1/2(𝑋𝑖 − 𝜇)Σ−1/2‖2 ≤ 𝑂
(︁√︀

𝑑 log(𝑛/𝛿)
)︁
,∀𝑖 ∈ 𝑆good , (2.22)⃦⃦⃦⃦

⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
Σ

≤ 𝛾4 ∀𝑤 ∈ 𝑆𝑛,2𝜀, and (2.23)

⃦⃦⃦⃦
⃦⃦Σ−1/2

∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)Σ−1/2

⃦⃦⃦⃦
⃦⃦
2

≤ 𝛾5 ∀𝑤 ∈ 𝑆𝑛,2𝜀 . (2.24)

for all 𝑤′ ∈ 𝑆𝑛/2,2𝜀, and all sets 𝑇 ⊆ 𝑆good
′ of size |𝑇 | ≤ 𝜀𝑛. Here 𝛾1, . . . , 𝛾5 are

parameters, where we will set:

𝛾1, 𝛾2, 𝛾4𝛾5 = 𝑂(𝜀 log(1/𝜀)) , and

𝛾3 = 𝑂(𝜀 log2 1/𝜀) .

By applying the appropriate concentration inequalities and one massive union bound3,

with these settings of parameters one can check that all of these hold simultaneously

with probability 1− 𝛿 so long as

𝑛 = ̃︀Ω(︂𝑑2 log5 1/𝛿
𝜀2

)︂
.

3I’m sorry but I really don’t want to go through and find the reference for all 7 (!) of these; the
interested reader can find the original reference in the original section
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From unknown mean, unknown covariance, to zero Mean, unknown co-

variance

Because the 𝑋 ′
𝑖 are a 2𝜀-corrupted set of samples from 𝒩 (0,Σ), by using the results

from Section 2.2.3, under conditions (2.18)-(2.13), we can recover ̂︀Σ so that

‖Σ−1/2̂︀ΣΣ−1/2 − 𝐼‖𝐹 ≤ 𝑂(𝛾) , (2.25)

where 𝛾 = 𝑂(𝜀 log 1/𝜀).

From unknown Mean, approximate covariance, to approximate recovery

For each 𝑋𝑖, let 𝑋 ′′
𝑖 = ̂︀Σ−1/2𝑋𝑖. Then, it is readily seen that (2.22)-(2.24) imply that

‖(𝑋 ′′
𝑖 − 𝜇)‖2 ≤ 𝑂

(︁√︀
𝑑 log(𝑛/𝛿)

)︁
,∀𝑖 ∈ 𝑆good , (2.26)⃦⃦⃦⃦

⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋
′′
𝑖 − 𝜇)(𝑋 ′′

𝑖 − 𝜇)⊤ − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
2

≤ 𝛾4 +𝑂(𝛾) ∀𝑤 ∈ 𝑆𝑛,2𝜀, and (2.27)

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋
′′
𝑖 − 𝜇)

⃦⃦⃦⃦
⃦⃦
2

≤ 𝛾5 +𝑂(𝛾) ∀𝑤 ∈ 𝑆𝑛,2𝜀 . (2.28)

Let 𝛾′ = 𝑂(𝜀
√︀

log 1/𝜀)+ 𝛾 = 𝑂(𝜀 log 1/𝜀). Then, by using results from Section 2.2.1,

we can recover a ̂︀𝜇 such that ‖̂︀𝜇 − ̂︀Σ−1/2𝜇‖2 ≤ 𝑂(𝛾′). Observe here we are tacitly

using the fact that our algorithms are additively tolerant to spectral noise.

From Parametric Recovery to TV Recovery To briefly recap, we now have

obtained parameters ̂︀𝜇, ̂︀Σ so that:

‖̂︀𝜇− ̂︀Σ−1/2𝜇‖2 ≤ 𝑂(𝛾′) , and ‖̂︀Σ− Σ‖Σ ≤ 𝑂(𝛾) ,

where 𝛾, 𝛾′ = 𝑂(𝜀 log 1/𝜀). We wish to show that these guarantees imply recovery in

statistical distance.
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First, by Fact 1.4.3, we have

𝑑TV(𝒩 (̂︀𝜇, 𝐼),𝒩 (̂︀Σ−1/2𝜇, 𝐼)) ≤ 𝑂(𝜀 log(1/𝜀)) ,

or since TV distance is affine invariant,

𝑑TV(𝒩 (̂︀Σ1/2̂︀𝜇, ̂︀Σ),𝒩 (𝜇, ̂︀Σ)) ≤ 𝑂(𝜀 log(1/𝜀)) ,

which in conjunction with Corollary 1.4.6 and a triangle inequality, implies that

𝑑TV(𝒩 (̂︀Σ1/2̂︀𝜇, ̂︀Σ),𝒩 (𝜇,Σ)) ≤ 𝑂(𝜀 log(1/𝜀)) ,

and thus by following this procedure, whose formal pseudocode is given in Algorithm

6, we have shown the following:

Algorithm 6 Algorithm for learning an arbitrary Gaussian robustly
1: function RecoverRobustGuassian(𝜀, 𝜏,𝑋1, . . . , 𝑋𝑁)
2: For 𝑖 = 1, . . . , 𝑁/2, let 𝑋 ′

𝑖 = (𝑋𝑖 −𝑋𝑁/2+𝑖)/
√
2.

3: Let ̂︀Σ← LearnCovariance(𝜀, 𝜏,𝑋 ′
1, . . . , 𝑋

′
𝑁/2).

4: For 𝑖 = 1, . . . , 𝑁 , let 𝑋 ′′
𝑖 = ̂︀Σ−1/2𝑋𝑖.

5: Let ̂︀𝜇← LearnMean(𝜀, 𝜏,𝑋 ′′
1 , . . . , 𝑋

′′
𝑁).

6: return the Gaussian with mean ̂︀Σ1/2̂︀𝜇, and covariance ̂︀Σ.

Theorem 2.2.28. Fix 𝜀, 𝛿 > 0. Let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set of samples from

𝒩 (𝜇,Σ), where 𝜇,Σ are both unknown, and

𝑛 = ̃︀Ω(︂𝑑2 log5 1/𝛿
𝜀2

)︂
.

There is a polynomial-time algorithm RecoverRobustGaussian(𝜀, 𝜏,𝑋1, . . . , 𝑋𝑛)

which with probability 1− 𝛿, outputs a ̂︀Σ, ̂︀𝜇 such that

𝑑TV(𝒩 (̂︀Σ1/2̂︀𝜇, ̂︀Σ),𝒩 (𝜇,Σ)) ≤ 𝑂(𝜀 log(1/𝜀)) .
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Chapter 3

Convex Programming II: Robust

Learning With Sparsity

Under the Moon we stand — at last

At Seasons change — where will we be?

I long to hear your Voice once more —

I did not know — in those days past

How Fortune was so kind to me —

3.1 Robust estimation in other norms

We view the mean estimation results presented in this chapter as a specific case of

a more general phenomena in robust estimation. At a high level, the main technical

work in this chapter is to learn the mean of a Gaussian in a “sparsity-inducing” norm,

rather than ℓ2. It turns out that for this specific norm, efficient robust mean estima-

tion is possible, albeit at statistical cost. This begs the following natural question:

In what norms is robust mean estimation possible?

More specifically, we leave the following as a very interesting open question: given
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a class of distributions 𝒟, and a norm ‖ · ‖, estimate 𝑓(𝜀), where

𝑓(𝜀) = min̂︀𝜇 max
𝐷,𝐷′:

𝐷∈𝒟,𝑑TV(𝐷,𝐷′)≤𝜀

E
𝑋1,...,𝑋𝑛∼𝐷

[‖𝜇− ̂︀𝜇(𝑋1, . . . , 𝑋𝑛)‖] ,

where the minimum is taken over all estimators ̂︀𝜇. In other words, give a simple

characterization of what is the best rate achievable by any estimator for robust mean

estimation of 𝒟 in ‖ · ‖. Another interesting (and much harder) question is to char-

acterize the best rate achievable for any efficient algorithm.

3.1.1 Generalizing spectral signatures

As a first attempt to understand this problem, let’s understand what the natural

generalization of spectral signatures are to any norm. Given a norm ‖ · ‖, recall that

the dual norm of ‖ · ‖, denoted ‖ · ‖*, is defined to be

‖𝑢‖* = sup
‖𝑣‖=1

⟨𝑢, 𝑣⟩ ,

and recall that (‖ · ‖*)* = ‖ · ‖. Now let’s phrase the intuition of spectral signatures

in terms of this language, for more general norms.

Suppose we have a distribution 𝐷 with mean 𝜇, and an 𝜀-corrupted data set

𝑋1, . . . , 𝑋𝑛 from 𝐷 with empirical mean ̂︀𝜇. Now suppose that ‖𝜇 − ̂︀𝜇‖ > 𝛾(𝜀)

is large. This means that there exists some dual vector 𝑣 with ‖𝑣‖* = 1 so that

⟨𝑣, 𝜇− ̂︀𝜇⟩ > 𝛾(𝜀). Expanding slightly, we have

⟨𝑣, 𝜇− ̂︀𝜇⟩ = |𝑆good|
𝑛

⟨
𝑣,

1

𝑆good

∑︁
𝑖∈𝑆good

𝑋𝑖 − 𝜇

⟩
+
|𝑆bad|
𝑛

⟨
𝑣,

1

|𝑆bad|
∑︁

𝑖∈𝑆bad

𝑋𝑖 − 𝜇

⟩
.

(3.1)

Now suppose that we have concentration of the uncorrupted points to the mean, that

is, ⃦⃦⃦⃦
⃦⃦ 1

𝑆good

∑︁
𝑖∈𝑆good

(𝑋𝑖 − 𝜇)

⃦⃦⃦⃦
⃦⃦ < 𝑂(𝛾(𝜀)) . (3.2)
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This implies that

|𝑆bad|
𝑛

⟨
𝑣,

1

|𝑆bad|
∑︁

𝑖∈𝑆bad

𝑋𝑖 − 𝜇

⟩
> Ω (𝛾(𝜀)) , (3.3)

so since |𝑆bad|/𝑛 = 𝜀, we have

1

|𝑆bad|
∑︁

𝑖∈𝑆bad

⟨𝑣,𝑋𝑖 − 𝜇⟩ > Ω

(︂
𝛾(𝜀)

𝜀

)︂
.

Notice that this implies that

1

|𝑆bad|
∑︁

𝑖∈𝑆bad

⟨𝑣,𝑋𝑖 − ̂︀𝜇⟩ = 1

|𝑆bad|
∑︁

𝑖∈𝑆bad

⟨𝑣,𝑋𝑖 − 𝜇⟩+ ⟨𝑣, 𝜇− ̂︀𝜇⟩
> Ω

(︂
𝛾(𝜀)

𝜀

)︂
+ ⟨𝑣, 𝜇− ̂︀𝜇⟩

≥ Ω

(︂
𝛾(𝜀)

𝜀

)︂
+ ‖𝜇− ̂︀𝜇‖

> Ω

(︂
𝛾(𝜀)

𝜀

)︂
.

Thus by Jensen’s inequality we have

1

|𝑆bad|
∑︁

𝑖∈𝑆bad

⟨𝑣,𝑋𝑖 − ̂︀𝜇⟩2 > Ω

(︂
𝛾(𝜀)

𝜀

)︂2

.

Thus, this implies that

max
‖𝑣‖*=1

𝑣⊤̂︀Σ𝑣 > Ω

(︂
𝛾(𝜀)2

𝜀

)︂
. (3.4)

Equation 3.4 is the natural generalization of spectral signatures to general norms. Our

derivation above says that if every subset of size (1 − 𝜀)𝑛 of the uncorrupted points

converges to error 𝛾(𝜀) in ‖ · ‖, then the presence of outliers induces a deviation in

the second moment of the order in Equation 3.4. Thus, if a deviation in the second

moment of this order cannot happen without corruption, then this gives us a way to

detect if the mean is being corrupted.

However, the main problem with Equation 3.4 is that this maximization problem
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is in general difficult to compute. When ‖ · ‖ = ‖ · ‖2 we were lucky because spectral

methods suffice. Thus, to adapt the machinery of spectral signatures to efficient

robust learning in general norms seems to require a non-trivial amount of problem-

specific thought. We leave it as an interesting open question to give a systematic way

of doing so. In the remainder of this chapter, we will show how we do so to solve

robust mean estimation under sparsity. It will turn out that the similar, but more

involved, ideas also allow us to attack robust sparse PCA.

3.2 Robust sparse estimation

In the last couple of decades, there has been a large amount of work in machine

learning and statistics on how to exploit sparsity in high dimensional data analysis.

Motivated by the ever-increasing quantity and dimensionality of data, the goal at a

high level is to utilize the underlying sparsity of natural data to extract meaningful

guarantees using a number of samples that is sublinear in the dimensionality of the

data. In this chapter, we will consider the unsupervised setting, where we have sample

access to some distribution with some underlying sparsity, and our goal is to recover

this distribution by exploiting this structure. Two natural and well-studied problems

in this setting that attempt to exploit sparsity are sparse mean estimation and sparse

PCA. In both problems, the shared theme is that we assume that one wishes to find

a distinguished sparse direction of a Gaussian data set. However, the algorithms

inspired by this line of work tend to be quite brittle—it can be shown that they fail

when the model is slightly perturbed.

This raises the natural “meta-question”:

Question 3.2.1. Do the statistical gains (achievable by computationally efficient

algorithms) for sparse estimation problems persist in the presence of noise?

More formally: Suppose we are asked to solve some estimation task given samples

from some distribution𝐷 with some underlying sparsity constraint (e.g. sparse PCA).

Suppose now an 𝜀-fraction of the samples are corrupted. Can we still solve the same
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sparse estimation problem? Understanding this question—in a couple of fundamental

settings—is the main focus of this chapter.

Interestingly, new gaps between computational and statistical rates seem to emerge

in the presence of noise. In particular, while the sparse mean estimation problem was

previously quite simple to solve, the efficient algorithms which achieve the minimax

rate for this problem break down in the presence of this adversarial noise. More

concretely, it seems that the efficient algorithms which are robust to noise run into

the same computational issues as those which plague sparse PCA. A very interest-

ing question is whether this phenomenon is inherent to any computationally efficient

algorithm.

3.2.1 Our contribution

We study the natural robust versions of two classical, well-studied statistical tasks

involving sparsity, namely, sparse mean estimation, and sparse PCA.

Robust sparse mean estimation Here, we get a set of 𝑑-dimensional samples

from 𝒩 (𝜇, 𝐼), where 𝜇 is 𝑘-sparse, and an 𝜀-fraction of the points are corrupted

adversarially. Our goal then is to recover 𝜇. Our main contribution is the following:

Theorem 3.2.2 (informal, see Theorem 3.3.1). There is an efficient algorithm, which

given a set of 𝜀-corrupted samples of size ̃︀𝑂(𝑘2 log 𝑑
𝜀2

) from 𝒩 (𝜇, 𝐼) where 𝜇 is 𝑘-sparse,

outputs a ̂︀𝜇 so that with high probability, ‖̂︀𝜇− 𝜇‖2 ≤ 𝜀
√︀

log 1/𝜀.

The recovery guarantee we achieve, namely 𝑂(𝜀
√︀

log 1/𝜀), is off by the optimal

guarantee by only a factor of
√︀

log 1/𝜀. Moreover, results of [DKS16d] imply that

our bound is tight for any efficient SQ algorithm. One can show that information

theoretically, it suffices to take 𝑂(𝑘 log 𝑑
𝜀2

) samples to learn the mean to ℓ2 error 𝑂(𝜀),

even with corrupted data. Without model misspecification, this problem is quite

simple algorithmically: it turns out that the truncated empirical mean achieves the

information theoretically optimal rate. However, efficient algorithms for this task

break down badly given noise, and to our knowledge there is no simple way of fixing
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them. Very interestingly, the rate we achieve is off from this information theoretic

rate by a 𝑘2 vs 𝑘 factor—the same computational vs. statistical gap that arises in

sparse PCA. This phenomenon only seems to appear in the presence of noise, and we

conjecture that this is inherent:

Conjecture 3.2.1. Any efficient algorithm for robust sparse mean estimation needs̃︀Ω(𝑘2 log 𝑑
𝜀2

) samples.

In Appendix C.3 we give some intuition for why it seems to be true. At a high

level, it seems that any technique to detect outliers for the mean must look for sparse

directions in which the variance is much larger than it should be; at which point the

problem faces the same computational difficulties as sparse PCA. We leave closing

this gap as an interesting open problem.

Robust sparse PCA Here, we study the natural robust analogue of the spiked

covariance model. Classically, two problems are studied in this setting. The detection

problem is given as follows: given sample access to the distributions, we are asked to

distinguish between 𝒩 (0, 𝐼), and 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤) where 𝑣 is a 𝑘-sparse unit vector.

That is, we wish to understand if we can detect the presence of any sparse principal

component. Our main result is the following:

Theorem 3.2.3 (informal, see Theorem 3.3.2). Fix 𝜌 > 0, and let 𝜂 = 𝑂(𝜀
√︀

log 1/𝜀).

If 𝜌 > 𝜂, there is an efficient algorithm, which given a set of 𝜀-corrupted samples of

size 𝑂(𝑘
2 log 𝑑
𝜌2

) which distinguishes between 𝒩 (0, 𝐼), and 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤) with high

probability.

The condition that 𝜀 = ̃︀𝑂(𝜌) is necessary (up to log factors), as otherwise the

problem is impossible information theoretically. Observe that this (up to log factors)

matches the optimal rate for computationally efficient detection for sparse PCA with-

out noise (under reasonable complexity theoretic assumptions, see [BR13, WBS16]),

and so it seems that noise does not introduce an additional gap here. The recovery

problem is similar, except now we want to recover the planted spike 𝑣, i.e. find a 𝑢
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minimizing

𝐿(𝑢, 𝑣) =
1√
2

⃦⃦
𝑢𝑢⊤ − 𝑣𝑣⊤

⃦⃦
2
, (3.5)

which turns out to be the natural measure for this problem. For this, we show:

Theorem 3.2.4 (informal, see Theorem 3.3.3). Fix 𝜀 > 0 and 0 < 𝜌 = 𝑂(1), and let

𝜂 = 𝑂(𝜀
√︀

log 1/𝜀). There is an efficient algorithm, which given a set of 𝜀-corrupted

samples of size 𝑂(𝑘
2 log 𝑑
𝜂2

) from 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤), outputs a 𝑢 so that 𝐿(𝑢, 𝑣) = 𝑂
(︁

𝜂
𝜌

)︁
with high probability.

This rate is non-trivial—in particular, it provides guarantees for recovery of 𝑣

when the number of samples we take is at the detection threshold. Moreover, up

to log factors, our rate is optimal for computationally efficient algorithms–[WBS16]

gives an algorithm with rate roughly 𝑂(𝜀/𝜌), and show that this is necessary.

Techniques We first introduce a simple way to describe the optimization problems

used for solving sparse mean estimation and sparse PCA. This approach is very

similar to the approach taken by [CRPW12] for solving under-determined linear

systems. We observe that any set 𝒮 in a Hilbert space naturally induces a dual norm

‖𝑥‖*𝒮 = max𝑦∈𝒮 |⟨𝑥, 𝑦⟩|, and that well-known efficient algorithms for sparse mean

estimation and sparse PCA simply compute this norm, and the corresponding dual

witness 𝑦 ∈ 𝒮 which maximizes this norm, for appropriate choices of 𝒮. These norms

give us a language to only consider deviations in directions we care about, which allows

us to prove concentration bounds which are not true for more traditional norms.

We now describe our techniques for robust sparse mean estimation. Our starting

point is the convex programming approach of Chapter 2. We assign each sample

point a weight, which morally corresponds to our belief about whether the point is

corrupted, and we optimize these weights. In the previous chapter, the approach was

to find weights so that the empirical covariance with these weights looked like the

identity in spectral norm.

Unfortunately, such an approach fundamentally fails for us because the spectrum

of the covariance will never concentrate for us with the number of samples we take.
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Instead, we utilize a novel connection to sparse PCA. We show that if instead we find

weights so that the empirical covariance with these weights looks like the identity in

the dual norm induced by a natural SDP for sparse PCA (in the noiseless setting),

then this suffices to show that the truncated empirical mean with these weights is

close to the truth.

Essentially, by robustly learning the mean in another norm (i.e. not Euclidean

norm) which respects sparsity, we are able to recover the mean. This is where the

connection to robust learning in general norms comes in. Ideally, if we could follow

the procedure given above exactly, then we could almost exactly recover the same sta-

tistical guarantees for this problem with the same number of samples, as if there were

no adversarial noise. However, the maximization problem that directly arises from

following the procedure, while information theoretically sufficient, is computationally

difficult.

To circumvent this, we relax the maximization problem. We show that in fact the

dual norm induced by the SDP for sparse PCA gives a reasonable proxy for it, and

that this dual norm maximization problem can be solved efficiently, albeit at a slight

cost in the number of samples. This in turns suffices to allow us to (approximately)

find a point in the desired feasible set of points, which we show suffices to recover the

true mean.

We now turn to robust sparse PCA. We first consider the detection problem, which

is somewhat easier technically. Here, we again use the dual norm induced by the SDP

for sparse PCA. We show that if we can find weights on the samples (as before) so

that the empirical covariance with these samples has minimal dual norm, then the

value of the dual norm gives us a distinguisher between the spiked and non-spiked

case. To find such a set of weights, we observe that norms are convex, and thus our

objective is convex. Thus, as before, to optimize over this set it suffices to give a

separation oracle, which again the SDP for sparse PCA allows us to do.

We now turn our attention to the recovery problem. Here, the setup is very

similar, except now we simultaneously find a set of weights and an “explainer” matrix

𝐴 so that the empirical covariance with these weights is “maximally explained” by

104



𝐴, in a norm very similar to the one induced by the sparse PCA SDP. Utilizing that

norms are convex, we show that this can be done via a convex program using the

types of techniques described above, and that the top eigenvector of the optimal 𝐴

gives us the desired solution. While the convex program would be quite difficult to

write down in one shot, it is quite easily expressible using the abstraction of dual

norms.

3.2.2 Related work

As mentioned previously, there has been a large amount of work on various ways

to exploit sparsity for machine learning and statistics. In the supervised setting,

perhaps the most well-known of these is compressive sensing and its variants (see

[CW08, HTW15] for more details). We do not attempt to provide an exhaustive

overview the field here. Other well-known problems in the same vein include general

classes of linear inverse problems, see [CRPW12] and matrix completion ([CR09]).

The question of estimating a sparse mean is very related to a classical statistical

model known as the Gaussian sequence model, and the reader is referred to [Tsy08,

Joh13, RH17] for in-depth surveys on the area. This problem has also garnered

a lot of attention recently in various distributed and memory-limited settings, see

[GMN14, SD15, BGM+16]. The study of sparse PCA was initiated in [Joh01] and

since yielded a very rich algorithmic and statistical theory ([dEGJL07, dBG08, AW09,

WTH09, JNRS10, ACCD11, LZ12, Ma13, BJNP13, CMW+13, OMH+14, GWL14,

CRZ+16, PWBM16, BMV+18]). In particular, we highlight a very interesting line of

work [BR13, KNV+15, MW15, WGL16, WBS16, HKP+17], which give evidence that

any computationally efficient estimator for sparse PCA must suffer a sub-optimal

statistical rate rate. We conjecture that a similar phenomenon occurs when we inject

noise into the sparse mean estimation problem.

3.3 Definitions

We will now formally define the algorithmic problems we consider.
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Robust sparse mean estimation Here, we assume we get an 𝜀-corrupted set of

samples from 𝒩 (𝜇, 𝐼), where 𝜇 is 𝑘-sparse. Our goal is to recover 𝜇 in ℓ2. It is

not hard to show that there is an exponential time estimator which achieves ratẽ︀𝑂(𝑘 log 𝑑/𝜀2), and moreover, this rate is optimal (see Appendix C.1). However, this

algorithm requires highly exponential time. We show:

Theorem 3.3.1 (Efficient robust sparse mean estimation). Fix 𝜀, 𝛿 > 0, and let 𝑘 be

fixed. Let 𝜂 = 𝑂(𝜀
√︀

log 1/𝜀). Given an 𝜀-corrupted set of samples 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑

from 𝒩 (𝜇, 𝐼), where 𝜇 is 𝑘-sparse, and

𝑛 = Ω

(︃
min(𝑘2, 𝑑) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜂2

)︃
,

there is a poly-time algorithm which outputs ̂︀𝜇 so that w.p. 1− 𝛿, we have ‖𝜇− ̂︀𝜇‖2 ≤
𝑂(𝜂).

It is well-known that information theoretically, the best error one can achieve is

Θ(𝜀), as achieved by Fact C.1.1. We show that it is possible to efficiently match

this bound, up to a
√︀

log 1/𝜀 factor. Interestingly, our rate differs from that in Fact

C.1.1: our sample complexity is (roughly) ̃︀𝑂(𝑘2 log 𝑑/𝜀2) versus 𝑂(𝑘 log 𝑑/𝜀2). We

conjecture this is necessary for any efficient algorithm.

Robust sparse PCA We will consider both the detection and recovery problems

for sparse PCA. We first focus detection problem for sparse PCA. Here, we are given a

signal-to-noise ratio (SNR, see e.g. [Twi17]) 𝜌 > 0, and an 𝜀-corrupted set of samples

from a 𝑑-dimensional distribution 𝐷, where 𝐷 can is either 𝒩 (0, 𝐼) or 𝒩 (0, 𝐼+𝜌𝑣𝑣⊤)

for some 𝑘-sparse unit vector 𝑣. Our goal is to distinguish between the two cases,

using as few samples as possible. It is not hard to show that information theoretically,

𝑂(𝑘 log 𝑑/𝜌2) samples suffice for this problem, with an inefficient algorithm (see Ap-

pendix C.1). Our first result is that efficient robust sparse PCA detection is possible,

at effectively the best computationally efficient rate:

Theorem 3.3.2 (Robust sparse PCA detection). Fix 𝜌, 𝛿, 𝜀 > 0. Let 𝜂 = 𝑂(𝜀
√︀

log 1/𝜀).

Then, if 𝜂 = 𝑂(𝜌), and we are given a we are given a 𝜀-corrupted set of samples from
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either 𝒩 (0, 𝐼) or 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤) for some 𝑘-sparse unit vector 𝑣 of size

𝑛 = Ω

(︃
min(𝑑, 𝑘2) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜌2

)︃

then there is a polynomial time algorithm which succeeds with probability 1 − 𝛿 for

detection.

It was shown in [BR13] that even without noise, at least 𝑛 = Ω(𝑘2 log 𝑑/𝜀2) sam-

ples are required for any polynomial time algorithm for detection, under reasonable

complexity theoretic assumptions. Up to log factors, we recover this rate, even in the

presence of noise.

We next consider the recovery problem. Here, we are given an 𝜀-corrupted set

of samples from 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤), and our goal is to output a 𝑢 minimizing 𝐿(𝑢, 𝑣),

where 𝐿(𝑢, 𝑣) = 1√
2
‖𝑢𝑢⊤− 𝑣𝑣⊤‖2. For the recovery problem, we recover the following

efficient rate:

Theorem 3.3.3 (Robust sparse PCA recovery). Fix 𝜀, 𝜌 > 0. Let 𝜂 be as in Theorem

3.3.2. There is an efficient algorithm, which given a set of 𝜀-corrupted samples of size

𝑛 from 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤), where

𝑛 = Ω

(︃
min(𝑑, 𝑘2) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜂2

)︃
,

outputs a 𝑢 so that

𝐿(𝑢, 𝑣) = 𝑂

(︂
(1 + 𝜌)𝜂

𝜌

)︂
.

In particular, observe that when 𝜂 = 𝑂(𝜌), so when 𝜀 = ̃︀𝑂(𝜌), this implies that we

recover 𝑣 to some small constant error. Therefore, given the same number of samples

as in Theorem 3.3.2, this algorithm begins to provide non-trivial recovery guarantees.

Thus, this algorithm has the right “phase transition” for when it begins to work, as

this number of samples is likely necessary for any computationally efficient algorithm.

Moreover, our rate itself is likely optimal (up to log factors), when 𝜌 = 𝑂(1). In the
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non-robust setting, [WBS16] showed a rate of (roughly) 𝑂(𝜀/𝜌) with the same number

of samples, and that any computationally efficient algorithm cannot beat this rate.

We leave it as an interesting open problem to show if this rate is achievable or not in

the presence of error when 𝜌 = 𝜔(1).

3.4 Concentration for sparse estimation problems via

dual norms

In this section we give a clean way of proving concentration bounds for various objects

which arise in sparse PCA and sparse mean estimation problems. We do so by

observing they are instances of a very general “meta-algorithm” we call dual norm

maximization. This will prove crucial to proving the correctness of our algorithms

for robust sparse recovery. While this may sound similar to the “dual certificate”

techniques often used in the sparse estimation literature, these techniques are actually

quite different.

Definition 3.4.1 (Dual norm maximization). Let ℋ be a Hilbert space with inner

product ⟨·, ·⟩. Fix any set 𝑆 ⊆ ℋ. Then the dual norm induced by 𝑆, denoted ‖ · ‖*𝑆,

is defined by ‖𝑥‖*𝑆 = sup𝑦∈𝑆 |⟨𝑥, 𝑦⟩|. The dual norm maximizer of 𝑥, denoted 𝑑𝑆(𝑥),

is the vector 𝑑𝑆(𝑥) = argmax𝑣∈𝑆 |⟨𝑣, 𝑥⟩|.

In particular, we will use the following two sets. Equip the space of symmetric

𝑑 × 𝑑 matrices with the trace inner product, i.e., ⟨𝐴,𝐵⟩ = tr(𝐴𝐵), so that it is a

Hilbert space, and let

𝒰𝑘 = {𝑢 ∈ R𝑑 : ‖𝑢‖2 = 1, ‖𝑢‖0 = 𝑘} (3.6)

𝒳𝑘 = {𝑋 ∈ R𝑑×𝑑 : tr(𝑋) = 1, ‖𝑋‖1 ≤ 𝑘,𝑋 ⪰ 0} . (3.7)

We show in Appendix C.2.1 that existing well-known algorithms for sparse mean

recovery and sparse PCA without noise can be naturally written in this fashion.

Another detail we will largely ignore in this paper is the fact that efficient algo-
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rithms for these problems can only approximately solve the dual norm maximization

problem. However, we explain in Appendix C.2.2 why this does not affect us in any

meaningful way. Thus, for the rest of the paper we will assume we have access to the

exact maximizer, and the exact value of the norm.

3.4.1 Concentration for dual norm maximization

We now show how to derive very strong concentration results for the dual norm max-

imization problem for 𝒰𝑘 and 𝒳𝑘. Conceptually, we view these concentration results

as being the major distinction between sparse estimation and non-sparse estimation

tasks. Indeed, these results are crucial for adapting the convex programming frame-

work for robust estimation to sparse estimation tasks. Additionally, they allow us to

give an easy proof that the 𝐿1 relaxation works for sparse PCA.

Corollary 3.4.1. Let 𝑛 be a positive integer, and let 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (0, 𝐼). Then

there are universal constants 𝐴,𝐵 > 0 so that for all 𝑡 > 0, we have

Pr

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝑋𝑖

⃦⃦⃦⃦
⃦
*

𝒰𝑘

> 𝑡

⎤⎦ ≤ 4 exp

(︂
𝐴

(︂
𝑘 + log

(︂
𝑑

𝑘

)︂)︂
−𝐵𝑛𝑡2

)︂
.

Proof. Fix a set of 𝑘 coordinates 𝑆 ⊆ [𝑑], and let 𝑉𝑆 denote the space of unit vectors

supported on 𝑆. By Lemma 2.1.4 and a net argument, we have that

Pr

[︃
∃𝑣 ∈ 𝑉𝑆 :

⃒⃒⃒⃒
⃒
⟨
𝑣,

1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

⟩⃒⃒⃒⃒
⃒ > 𝑡

]︃
≤ 4 exp

(︀
𝐴𝑘 −𝐵𝑛𝑡2

)︀
.

with probability 1− 𝛿. The result then follows by further union bounding over all
(︀
𝑑
𝑘

)︀
sets of 𝑘 coordinates.

The second concentration bound, which bounds deviation in 𝒳𝑘 norm, uses ideas

which are similar at a high level, but requires a bit more technical work.

Theorem 3.4.2. Let 𝑛 be a positive integer, and let 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (0, 𝐼). Then
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there are universal constants 𝐴,𝐵 > 0 so that for all 𝑡 > 0, we have

Pr

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
*

𝒳𝑘

> 𝑡

⎤⎦ ≤ 4 exp

(︂
𝐴

(︂
min(𝑑, 𝑘2) + log

(︂
𝑑2

𝑘2

)︂)︂
−𝐵𝑛min(𝑡, 𝑡2)

)︂
.

Let us first introduce the following definition.

Definition 3.4.2. A symmetric sparsity pattern is a set 𝑆 of indices (𝑖, 𝑗) ∈ [𝑑]× [𝑑]

so that if (𝑖, 𝑗) ∈ 𝑆 then (𝑗, 𝑖) ∈ 𝑆. We say that a symmetric matrix 𝑀 ∈ R𝑑×𝑑

respects a symmetric sparsity pattern 𝑆 if supp(𝑀) = 𝑆.

We also let 𝒜𝑘 denote the set of symmetric matrices 𝑀 ∈ R𝑑×𝑑 with ‖𝑀‖0 ≤ 𝑘2 and

‖𝑀‖𝐹 ≤ 1. With these definition, we now show:

Lemma 3.4.3. For all 𝑡 > 0, we have

Pr

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
*

𝒜𝑘

> 𝑡

⎤⎦
≤ 4 exp

(︂
𝐴

(︂
min(𝑑, 𝑘2) + log

(︂
𝑑2

𝑘2

)︂)︂
−𝐵𝑛min(𝑡, 𝑡2)

)︂
.

Proof. Fix any symmetric sparsity pattern 𝑆 so that |𝑆| ≤ 𝑘2. By classical arguments

one can show that there is a (1/3)-net over all symmetric matrices 𝑋 with ‖𝑋‖𝐹 = 1

respecting 𝑆 of size at most 9𝑂(min(𝑑,𝑘2)). By Lemma 2.1.5 and a basic net argument,

we know that

Pr

[︃
∃𝑀 ∈ 𝒲𝑘 s.t. supp(𝑀) = 𝑆 :

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

⟨︀
𝑀,𝑋𝑖𝑋

⊤
𝑖

⟩︀
− ⟨𝑀, 𝐼⟩

⃒⃒⃒⃒
⃒ > 𝑡

]︃
≤ 4 exp

(︀
𝐴min(𝑑, 𝑘2)−𝐵𝑛min(𝑡, 𝑡2)

)︀
.

The claim then follows by further union bounding over all𝑂
(︁(︀

𝑑2

𝑘2

)︀)︁
symmetric sparsity

patterns 𝑆 with |𝑆| ≤ 𝑘2.

We will also require the following structural lemma.
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Lemma 3.4.4. Any positive semi-definite matrix 𝑋 ∈ R𝑑×𝑑 so that tr(𝑋) ≤ 1 and

‖𝑋‖1 ≤ 𝑘 can be written as

𝑋 =

𝑂(𝑛2/𝑘2)∑︁
𝑖=1

𝑌𝑖 ,

where each 𝑌𝑖 is symmetric, have
∑︀𝑂(𝑛2/𝑘2)

𝑖=1 ‖𝑌𝑖‖𝐹 ≤ 4, and each 𝑌𝑖 is 𝑘2-sparse.

Proof. Observe that since 𝑋 is positive semi-definite, then ‖𝑋‖𝐹 ≤ tr(𝑋) ≤ 1. For

simplicity of exposition, let us ignore that the 𝑌𝑖 must be symmetric for this proof.

We will briefly mention how to in addition ensure that the 𝑌𝑖 are symmetric at the

end of the proof. Sort the entries of 𝑋 in order of decreasing |𝑋𝑖𝑗|. Let 𝑌𝑖 be the

matrix whose nonzeroes are the 𝑖𝑘2 + 1 through (𝑖 + 1)𝑘2 largest entries of 𝑋, in

the same positions as they appear in 𝑋. Then we clearly have that
∑︀
𝑌𝑖 = 𝑋𝑖, and

each 𝑌𝑖 is exactly 𝑘2-sparse.1 Thus it suffices to show that
∑︀
‖𝑌𝑖‖𝐹 ≤ 4. We have

‖𝑌1‖𝐹 ≤ ‖𝑋‖𝐹 ≤ 1. Additionally, we have ‖𝑌𝑖+1‖𝐹 ≤ 1⊤|𝑌𝑖|1
𝑘

, which follows simply

because every nonzero entry of 𝑌𝑖+1 is at most the smallest entry of 𝑌𝑖, and each has

exactly 𝑘2 nonzeros (except potentially the last one, but it is not hard to see this

cannot affect anything). Thus, in aggregate we have

𝑂(𝑛2/𝑘2)∑︁
𝑖=1

‖𝑌𝑖‖𝐹 ≤ 1 +

𝑂(𝑛2/𝑘2)∑︁
𝑖=2

‖𝑌𝑖‖𝐹 ≤ 1 +

𝑂(𝑛2/𝑘2)∑︁
𝑖=1

1⊤|𝑌𝑖|1
𝑘

= 1 +
1⊤|𝑋|1
𝑘

≤ 2 ,

which is stronger than claimed.

However, as written it is not clear that the 𝑌𝑖’s must be symmetric, and indeed

they do not have to be. The only real condition we needed was that the 𝑌𝑖’s (1) had

disjoint support, (2) summed to 𝑋, (3) are each Θ(𝑘2) sparse (except potentially the

last one), and (4) the largest entry of 𝑌𝑖+1 is bounded by the smallest entry of 𝑌𝑖.

It should be clear that this can be done while respecting symmetry by doubling the

number of 𝑌𝑖, which also at most doubles the bound in the sum of the Frobenius

norms. We omit the details for simplicity.
1Technically the last 𝑌𝑖 may not be 𝑘2 sparse but this is easily dealt with, and we will ignore this

case here
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Proof of Theorem 3.4.2. We show that that for any symmetric matrix 𝑀 , we have

‖𝑀‖*𝒳𝑘
≤ 4 · ‖𝑀‖*𝒜𝑘

.

Then, the desired conclusion follows from Lemma 3.4.3.

Indeed, by Lemma 3.4.4, for all 𝑋 ∈ 𝒳𝑘, we have that

𝑋 =

𝑂(𝑑2/𝑘2)∑︁
𝑖=1

𝑌𝑖 ,

where each 𝑌𝑖 is symmetric, have
∑︀𝑂(𝑑2/𝑘2)

𝑖=1 ‖𝑌𝑖‖𝐹 ≤ 4, and each 𝑌𝑖 is 𝑘2-sparse. Thus,

|⟨𝑋,𝑀⟩| ≤
𝑂(𝑑2/𝑘2)∑︁

𝑖=1

|⟨𝑌𝑖,𝑀⟩|

=

𝑂(𝑑2/𝑘2)∑︁
𝑖=1

‖𝑌𝑖‖𝐹
⃒⃒⃒⃒⟨

𝑌𝑖
‖𝑌𝑖‖𝐹

,𝑀

⟩⃒⃒⃒⃒
(𝑎)

≤
𝑂(𝑑2/𝑘2)∑︁

𝑖=1

‖𝑌𝑖‖𝐹‖𝑀‖*𝒲𝑘

(𝑏)

≤ 4 · ‖𝑀‖*𝒜𝑘
,

where (a) follows since 𝑌𝑖/‖𝑌𝑖‖𝐹 ∈ 𝒜𝑘, and (b) follows from the bound on the sum of

the Frobenius norms of the 𝑌𝑖.

3.4.2 Concentration for 𝑆𝑛,𝜀

We will require the following concentration inequalities for weighted sums of Gaus-

sians, where the weights come from 𝑆𝑛,𝜀, as these objects will naturally arise in our al-

gorithms. These follow from the same union bound technique as used in Lemma 2.1.8,

so we will omit the details of the proofs.

Theorem 3.4.5. Fix 𝜀 ≤ 1/2 and 𝛿 ≤ 1, and fix 𝑘 ≤ 𝑑. There is a 𝜂1 = 𝑂(𝜀
√︀

log 1/𝜀)
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so that for any 𝜂 > 𝜂1, if 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (0, 𝐼) and

𝑛 = Ω

(︃
min(𝑑, 𝑘2) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜂2

)︃
,

then

Pr

⎡⎣∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖

⃦⃦⃦⃦
⃦
*

𝒰𝑘

≥ 𝜂

⎤⎦ ≤ 𝛿 .

Proof of Theorem 3.4.5. This follows from the exact same technique as the proof of

Lemma 2.1.8, but using Corollary 3.4.1 rather than Lemma 2.1.4.

Theorem 3.4.6. Fix 𝜀 ≤ 1/2 and 𝛿 ≤ 1, and fix 𝑘 ≤ 𝑑. There is a 𝜂 = 𝑂(𝜀 log 1/𝜀)

so that if 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (0, 𝐼) and

𝑛 = Ω

(︃
min(𝑑, 𝑘2) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜂2

)︃
,

then we have

Pr

⎡⎣∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
*

𝒳𝑘

≥ 𝜂

⎤⎦ ≤ 𝛿 .

Again, this follows from the exact same techniques as the proof of Lemma 2.1.8, and

using Theorem 3.4.2.

3.5 A robust algorithm for robust sparse mean esti-

mation

This section is dedicated to the description of an algorithm RecoverRobustSMean

for robustly learning Gaussian sequence models, and the proof of the following theo-

rem:
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Theorem 3.5.1. Fix 𝜀,⊤> 0. Let 𝜂 = 𝑂(𝜀
√︀
log 1/𝜀). Given an 𝜀-corrupted set of

samples of size 𝑛 from 𝒩 (𝜇, 𝐼), where 𝜇 is 𝑘-sparse

𝑛 = Ω

(︃
min(𝑘2, 𝑑) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜂2

)︃
,

then RecoverRobustSMean outputs a ̂︀𝜇 so that with probability 1 − 𝛿, we have

‖̂︀𝜇− 𝜇‖2 ≤ 𝑂(𝜂).

Our algorithm builds upon the convex programming framework developed in the

previous chapter. Roughly speaking, the algorithm proceeds as follows. First, it

does a simple naive pruning step to remove all points which are more than roughly

Ω(
√
𝑑) away from the mean. Then, for an appropriate choice of 𝛿, it will attempt to

(approximately) find a point within the following convex set:

𝐶𝜏 =

⎧⎨⎩𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
*

𝒳𝑘

≤ 𝜏

⎫⎬⎭ . (3.8)

The main difficulty with finding a point in 𝐶𝜏 is that 𝜇 is unknown. Recall that a key

insight from Chapter 2 is that it suffices to create an (approximate) separation oracle

for the feasible set, as then we may use classical convex optimization algorithms (i.e.

ellipsoid or cutting plane methods) to find a feasible point. In their setting (for a

different 𝐶𝜏 ), it turns out that a simple spectral algorithm suffices to give such a

separation oracle.

Our main contribution is the design of separation oracle for 𝐶𝜏 , which requires

more sophisticated techniques. In particular, we will ideas developed in analogy to

hard thresholding and SDPs similar to those developed for sparse PCA to design such

an oracle.
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3.5.1 Deterministic conditions

Throughout this section, we will condition on the following three deterministic events

occurring:

NaivePrune(𝑋1, . . . , 𝑋𝑛, 𝛿) succeeds, (3.9)⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)

⃦⃦⃦⃦
⃦⃦
*

𝒰𝑘

≤ 𝜂1 , ∀𝑤 ∈ 𝑆𝑛,2𝜀 , and (3.10)

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

𝑤𝑖(𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)⊤ − 𝑤𝑔𝐼

⃦⃦⃦⃦
⃦⃦
*

𝒳𝑘

≤ 𝜂2 , ∀𝑤 ∈ 𝑆𝑛,2𝜀 , (3.11)

where

𝜂1 := 𝑂(𝜀
√︀

log 1/𝜀) and 𝜂2 := 𝑂(𝜀 log 1/𝜀) . (3.12)

Let 𝜂 := max(𝜂1, 𝜂2). When 𝑛 = Ω

(︂
min(𝑘2,𝑑)+log (𝑘

2

𝑑2)+log 1/𝛿

𝜂2

)︂
these events simultane-

ously happen with probability at least 1−𝑂(𝛿) by Fact 2.2.6, Theorem 3.4.5, Theorem

3.4.6 and a union bound, and the observation that if 𝑤 ∈ 𝑆𝑛,𝜀, then 𝑤/𝑤𝑔 restricted

to the indices in 𝑆good is in 𝑆(1−𝜀)𝑛,2𝜀.

3.5.2 The separation oracle

Our main result in this section is the description of a polynomial time algorithm

RobustSMeanOracle and the proof of the following theorem of its correctness:

Theorem 3.5.2. Fix 𝜀 > 0 sufficiently small. Suppose that (3.10) and (3.11) hold.

Let 𝑤* denote the set of weights which are uniform over the uncorrupted points. Then,

there is a constant 1 ≤ 𝑐 ≤ 21 so that RobustSMeanOracle satisfies:

1. (Completeness) If 𝑤 = 𝑤*, RobustSMeanOracle outputs “YES”.

2. (Soundness) If 𝑤 ̸∈ 𝐶𝑐𝜂 the algorithm outputs a hyperplane ℓ : R𝑛 → R so that

ℓ(𝑤) ≥ 0 but ℓ(𝑤*) < 0. Moreover, if the algorithm ever outputs a hyperplane,

we have ℓ(𝑤*) < 0.
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Plugging these guarantees into an ellipsoid (or cutting-plane) method e.g. as given

in [GLS88], we obtain the following:

Corollary 3.5.3. Fix 𝜀 > 0 sufficiently small. Suppose that (3.10) and (3.11)

hold. There is an algorithm ApproxRecoverRobustSMean which queries Ro-

bustSMeanOracle at most poly(𝑑, 1/𝜀, log 1/𝛿) times, and so runs in time poly(𝑑, 1/𝜀, 1/𝛿)

which outputs a 𝑤′ so that ‖𝑤 − 𝑤′‖∞ ≤ 𝜀/(𝑛
√︀
𝑑 log 𝑛/𝛿), for some 𝑤 ∈ 𝐶𝑐𝜏 .

Our separation oracle, formally described in Algorithm 7, proceeds as follows.

Given 𝑤 ∈ 𝑆𝑛,𝜀, it forms ̂︀𝜇 = ̂︀𝜇(𝑤) =∑︀𝑤𝑖𝑋𝑖. It then forms the matrix ̂︀Σ = ̂︀Σ(𝑤) =∑︀
𝑤𝑖(𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤, and computes 𝐴 = 𝑑𝒳𝑘

(̂︀Σ). The algorithm then checks if⃒⃒⃒
⟨𝐴, ̂︀Σ⟩⃒⃒⃒ > 𝐶 for appropriately chosen threshold 𝐶. If it does not, the algorithm

outputs “YES”. Otherwise, the algorithm outputs a separating hyperplane given by

this matrix 𝐴.

Algorithm 7 Separation oracle for robust sparse mean estimation.
1: function RobustSMeanOracle(𝑋1, . . . , 𝑋𝑛, 𝑤)
2: Let ̂︀𝜇 =

∑︀
𝑤𝑖𝑋𝑖

3: Let ̂︀Σ =
∑︀
𝑤𝑖(𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤

4: Let 𝐴 = 𝑑𝒳𝑘
(̂︀Σ)

5: if |⟨𝐴, ̂︀Σ− 𝐼⟩| ≥ 20𝜂2 then
6: Let 𝜎 = sgn

(︁
⟨𝐴, ̂︀Σ− 𝐼⟩)︁

7: return the hyperplane ℓ given by

ℓ(𝑤) = 𝜎 ·

(︃
𝑛∑︁

𝑖=1

𝑤𝑖

⟨︀
𝐴, (𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤⟩︀− 1

)︃
− |⟨𝐴, ̂︀Σ− 𝐼⟩| .

8: else
9: return “YES”

10: end

We require the following lemma:

Lemma 3.5.4. Let 𝑢 ∈ R𝑑. Then (‖𝑢‖*𝒰𝑘
)2 ≤ ‖𝑢𝑢⊤‖*𝒳𝑘

≤ 4(‖𝑢‖*𝒰𝑘
)2.

Proof. Let 𝑣 = 𝑑𝒰𝑘
(𝑢). Then since 𝑣𝑣⊤ ∈ 𝒳𝑘, we have that (‖𝑢𝑢⊤‖*𝒳𝑘

) ≥ ⟨𝑣𝑣⊤, 𝑢𝑢⊤⟩ =

⟨𝑢, 𝑣⟩2 = (‖𝑢‖*𝒰𝑘
)2. This proves the first inequality.
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To prove the other inequality, we first prove the intermediate claim that

sup
𝑀∈𝒴𝑘2

𝑢⊤𝑀𝑢 ≤ (‖𝑢‖*𝒰𝑘
)2 ,

where 𝒴𝑘2 is the set of symmetric matrices 𝑀 with at most 𝑘2-non-zeroes satisfying

‖𝑀‖𝐹 = 1. Indeed, fix any 𝑀 ∈ 𝒴𝑘. Let 𝑆 ⊆ [𝑛] be the set of non-zeroes of 𝑑𝒰𝑘
(𝑢).

This is exactly the set of the 𝑘 largest elements in 𝑢, sorted by absolute value. Let

𝑃 be the symmetric sparsity pattern respected by 𝑀 . Fix an arbitrary bijection

𝜑 : 𝑃 ∖ (𝑆 × 𝑆)→ (𝑆 × 𝑆) ∖ 𝑃 , and let 𝑀 ′ be the following matrix:

𝑀 ′
𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝑖𝑗 if (𝑖, 𝑗) ∈ 𝑃

⋂︀
(𝑆 × 𝑆) ,

sgn (𝑢𝑖𝑢𝑗)𝑀𝜑−1(𝑖,𝑗) if (𝑖, 𝑗) ∈ (𝑆 × 𝑆) ∖ 𝑃 ,

0 otherwise.

Then we claim that 𝑢⊤𝑀𝑢 ≤ 𝑢⊤𝑀 ′𝑢. Indeed, we have

𝑢⊤𝑀 ′𝑢− 𝑢⊤𝑀𝑢 =
∑︁

(𝑖,𝑗)∈𝑃∖(𝑆×𝑆)

|𝑀𝑖𝑗(𝑢𝑢
⊤)𝜑(𝑖,𝑗)| −𝑀𝑖𝑗(𝑢𝑢

⊤)𝑖,𝑗

≥
∑︁

(𝑖,𝑗)∈𝑃∖(𝑆×𝑆)

|𝑀𝑖,𝑗|
(︀
|(𝑢𝑢⊤)𝜑(𝑖,𝑗)| − |(𝑢𝑢⊤)𝑖,𝑗|

)︀
≥ 0 ,

from the definition of 𝑆. Moreover, for any 𝑀 respecting 𝑆 × 𝑆 with ‖𝑀‖𝐹 = 1,

it is not hard to see that 𝑢⊤𝑀𝑢 ≤ (‖𝑢‖*𝒰𝑘
)2. This is because now the problem is

equivalent to restricting our attention to the coordinates in 𝑆, and asking for the

symmetric matrix 𝑀 ∈ R𝑆×𝑆 with ‖𝑀‖𝐹 = 1 maximizing 𝑢⊤𝑆𝑀𝑢𝑆, where 𝑢𝑆 is 𝑢

restricted to the coordinates in 𝑆. This is clearly maximized by 𝑀 = 1
‖𝑢𝑆‖22

𝑢𝑆𝑢
⊤
𝑆 ,

which yields the desired expression, since ‖𝑢𝑆‖2 = ‖𝑢‖𝒰𝑘
.

We can now prove the original lemma. By Lemma 3.4.4 we may write 𝐴 =∑︀𝑂(𝑛2/𝑘2)
𝑖=1 𝑌𝑖 where each 𝑌𝑖 is symmetric, 𝑘2-sparse, and have

∑︀𝑂(𝑛2/𝑘2)
𝑖=1 ‖𝑌𝑖‖𝐹 ≤ 4.
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We therefore have

𝑢⊤𝐴𝑢 =

𝑂(𝑛2/𝑘2)∑︁
𝑖=1

𝑢⊤𝑌𝑖𝑢

=

𝑂(𝑛2/𝑘2)∑︁
𝑖=1

‖𝑌𝑖‖𝐹 (‖𝑢‖*𝒰𝑘
)2

≤ 4(‖𝑢‖*𝒰𝑘
)2 ,

as claimed, where the second line follows from the arguments above.

Throughout the rest of this section, let 𝑌𝑖 = 𝑋𝑖 − 𝜇, so that so that 𝑌𝑖 ∼ 𝒩 (0, 𝐼)

if 𝑖 ∈ 𝑆good. We first prove the following crucial proposition:

Proposition 3.5.5. Let 𝑤 ∈ 𝑆𝑛,𝜀, and let 𝜏 ≥ 𝜂1. Assuming (3.10) and (3.11) hold,

if ‖
∑︀𝑛

𝑖=1𝑤𝑖𝑌𝑖‖*𝒰𝑘
≥ 3𝜏1, then

⃦⃦∑︀𝑛
𝑖=1𝑤𝑖𝑌𝑖𝑌

⊤
𝑖 − 𝐼

⃦⃦*
𝒳𝑘
≥ 𝜏2

𝜀
.

Proof. Observe that (3.10) and a triangle inequality together imply that

⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

𝑤𝑖𝑌𝑖

⃦⃦⃦⃦
⃦
*

𝒰𝑘

≥ 2𝜏 .

By definition, this implies there is a 𝑘-sparse unit vector 𝑢 so that
⃒⃒
⟨𝑢,
∑︀

𝑖∈𝑆bad
𝑤𝑖𝑌𝑖⟩

⃒⃒
≥

2𝜏 . WLOG assume that ⟨𝑢,
∑︀

𝑖∈𝑆bad
𝑤𝑖𝑌𝑖⟩ ≥ 𝜂 (if the sign is negative a symmetric

argument suffices). This is equivalent to the statement that

∑︁
𝑖∈𝑆bad

𝑤𝑖

𝑤𝑏
⟨𝑢, 𝑌𝑖⟩ ≥

2𝜏

𝑤𝑏
.

Observe that the 𝑤𝑖/𝑤
𝑏 are a set of non-negative weights summing to 1. Hence, by

Lemma 2.2.16, we have

∑︁
𝑖∈𝑆bad

𝑤𝑖

𝑤𝑏
⟨𝑢, 𝑌𝑖⟩2 ≥

(︂
2𝜏

𝑤𝑏

)︂2

.

Let 𝐴 = 𝑢𝑢⊤. Observe that 𝐴 ∈ 𝒳𝑘. Then the above inequality is equivalent to the
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statement that

∑︁
𝑖∈𝑆bad

𝑤𝑖𝑌
⊤
𝑖 𝐴𝑌𝑖 ≥

𝜏 2

𝑤𝑏
≥ 4𝜏 2

𝜀
.

Moreover, by (3.11), we have⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖∈𝑆good

𝑤𝑖𝑌
⊤
𝑖 𝐴𝑌𝑖 − 𝐼

⃒⃒⃒⃒
⃒⃒ ≤ 𝜂 ,

and together these two inequalities imply that

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖𝐴𝑌𝑖 ≥
4𝜏 2

𝜀
− 𝜂 ≥ 𝜏 2

𝜀
,

as claimed. The final inequality follows from the definition of 𝜂, and since 4 > 2.

Proof of Theorem 3.5.2. Completeness follows from (3.11). We will now show sound-

ness. Suppose 𝑤 ̸∈ 𝐶21𝜂. We wish to show that we will output a separating hy-

perplane. From the description of the algorithm, this is equivalent to showing that

‖̂︀Σ − 𝐼‖𝒳𝑘
≥ 20𝜂2. Let ̂︀𝜇 = ̂︀𝜇(𝑤) = ∑︀𝑛

𝑖=1𝑤𝑖𝑋𝑖, and let Δ = 𝜇 − ̂︀𝜇. By elementary

manipulations, we may write⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤ − 𝐼
⃦⃦⃦⃦
⃦
𝒳𝑘

=

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑌𝑖 +Δ)(𝑌𝑖 +Δ)⊤ − 𝐼

⃦⃦⃦⃦
⃦
𝒳𝑘

(𝑎)
=

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 +ΔΔ⊤ − 𝐼

⃦⃦⃦⃦
⃦
𝒳𝑘

(𝑏)

≥

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
𝒳𝑘

−
⃦⃦
ΔΔ⊤⃦⃦

𝒳𝑘

(𝑐)

≥

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
𝒳𝑘

− 4 ‖Δ‖2𝒰𝑘
,

where (a) follows since
∑︀𝑛

𝑖=1𝑤𝑖𝑌𝑖 = Δ by definition, (b) follows from a triangle

inequality, and (c) follows from Lemma 3.5.4. If ‖Δ‖𝒰𝑘
≤ √𝜂2/2, then the RHS is at

least 20𝜂2 since the second term is at most 𝜂2, and the first term is at least 21𝜂 since
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we assume that 𝑤 ̸∈ 𝐶21𝜂. Conversely, if ‖Δ‖𝒰𝑘
≥
√︀
𝜂2/2, then by Proposition 3.5.5,

we have ‖
∑︀𝑛

𝑖=1𝑤𝑖𝑌𝑖𝑌𝑖 − 𝐼‖𝒳𝑘
≥ ‖Δ‖2𝒳𝑘

/(6𝜀) > 48‖Δ‖2𝒳𝑘
as long as 𝜀 ≤ 1/288. This

implies that the RHS is at least 40‖Δ‖𝒳 2
𝑘
≥ 20𝜂, as claimed.

Hence, this implies that if 𝑤 ̸∈ 𝐶4𝜂, then we output a hyperplane ℓ. It is clear by

construction that ℓ(𝑤) ≥ 0; thus, it suffices to show that if we output a hyperplane,

that ℓ(𝑤*) < 0. Letting ̃︀𝜇 = 1
(1−𝜀)𝑛

∑︀
𝑖∈𝑆good

𝑤𝑖𝑌𝑖, we have

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤ − 𝐼 =

1

(1− 𝜀)𝑛
∑︁

𝑖∈𝑆good

(𝑌𝑖 +Δ)(𝑌𝑖 +Δ)⊤ − 𝐼

=
1

(1− 𝜀)𝑛

⎛⎝ ∑︁
𝑖∈𝑆good

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⎞⎠+Δ̃︀𝜇⊤ + ̃︀𝜇Δ⊤ +ΔΔ⊤

=
1

(1− 𝜀)𝑛

⎛⎝ ∑︁
𝑖∈𝑆good

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⎞⎠+ (Δ + ̃︀𝜇)(Δ + ̃︀𝜇)⊤ − ̃︀𝜇̃︀𝜇⊤ .

Hence by the triangle inequality and Lemma 3.5.4, we have

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)⊤ − 𝐼

⃦⃦⃦⃦
⃦
𝒳𝑘

≤

⃦⃦⃦⃦
⃦⃦ 1

1(1− 𝜀)𝑛
∑︁

𝑖∈𝑆good

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦⃦
*

𝒳𝑘

+ 4
(︀
‖Δ+ ̃︀𝜇‖*𝒰𝑘

)︀2
+ 4

(︀
‖̃︀𝜇‖*𝒰𝑘

)︀2
≤

⃦⃦⃦⃦
⃦⃦ 1

1(1− 𝜀)𝑛
∑︁

𝑖∈𝑆good

𝑌𝑖𝑌
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦⃦
𝒳𝑘

+ 8
(︀
‖Δ‖*𝒰𝑘

)︀2
+ 8

(︀
‖̃︀𝜇‖*𝒰𝑘

)︀2
+ 4

(︀
‖̃︀𝜇‖*𝒰𝑘

)︀2
≤ 13𝜂2 + 8

(︀
‖Δ‖*𝒰𝑘

)︀2
, (3.13)

by (3.10) and (3.11).

Observe that to show that ℓ(𝑤*) < 0 it suffices to show that

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖 − ̂︀𝜇)(𝑋𝑖 − ̂︀𝜇)− 𝐼

⃦⃦⃦⃦
⃦
*

𝒳𝑘

<
⃦⃦⃦̂︀Σ− 𝐼 ⃦⃦⃦*

𝒳𝑘

. (3.14)

If ‖Δ‖*𝒰𝑘
≤
√︀
𝜂2/2, then this follows since the quantity on the RHS is at least 20𝜂
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by assumption, and the quantity on the LHS is at most 17𝜂 by (3.13). If ‖Δ‖*𝒰𝑘
≥√︀

𝜂/2, then by Proposition 3.5.5, the RHS of (3.14) is at least
(︀
‖Δ‖*𝒰𝑘

)︀2
/(3𝜀), which

dominates the LHS as long as ‖Δ‖*𝒰𝑘
≥ 𝜂1 and 𝜀 ≤ 1/288, which completes the

proof.

3.5.3 Putting it all together

We now have the ingredients to prove our main theorem. Given what we have, our

full algorithm RecoverRobustSMean is straightforward: first run NaivePrune,

then run ApproxRecoverRobustSMean on the pruned points to output some

set of weights 𝑤. We then output ‖̂︀𝜇‖𝒰𝑘
𝑑𝒰𝑘

(̂︀𝜇). The algorithm is formally defined in

Algorithm 8.

Algorithm 8 An efficient algorithm for robust sparse mean estimation
1: function RecoverRobustSMean(𝑋1, . . . , 𝑋𝑛, 𝜀, 𝛿)
2: Let 𝑆 be the set output by NaivePrune(𝑋1, . . . , 𝑋𝑛, 𝛿). WLOG assume
𝑆 = [𝑛].

3: Let 𝑤′ = ApproxRecoverRobustSMean(𝑋1, . . . , 𝑋𝑛, 𝜀, 𝛿).
4: Let ̂︀𝜇 =

∑︀𝑛
𝑖=1𝑤

′
𝑖𝑋𝑖.

5: return ‖̂︀𝜇‖*𝒰𝑘
𝑑𝒰𝑘

(̂︀𝜇)
Proof of Theorem 3.5.1. Let us condition on the event that (3.9), (3.10), and (3.11) all

hold simultaneously. As previously mentioned, when 𝑛 = Ω

(︂
min(𝑘2,𝑑)+log (𝑘

2

𝑑2)+log 1/𝛿

𝜂2

)︂
these events simultaneously happen with probability at least 1−𝑂(𝛿). For simplicity

of exposition, let us assume that NaivePrune does not remove any points. This

is okay since if it succeeds, it never removes any good points, so if it removes any

points, it can only help us. Moreover, since it succeeds, we know that ‖𝑋𝑖 − 𝜇‖2 ≤

𝑂(
√︀
𝑑 log(𝑛/𝛿)) for all 𝑖 ∈ [𝑛]. By Corollary 3.5.3, we know that there is some

𝑤 ∈ 𝐶21𝜂 so that ‖𝑤 − 𝑤′‖∞ ≤ 𝜀/(𝑛
√︀
𝑑 log 𝑛/𝛿). We have

‖̂︀𝜇− 𝜇‖𝒰𝑘
=

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑋𝑖 − ̂︀𝜇

⃦⃦⃦⃦
⃦
*

𝒰𝑘

≤

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖 − ̂︀𝜇
⃦⃦⃦⃦
⃦
*

𝒰𝑘

+
𝑛∑︁

𝑖=1

|𝑤𝑖 − 𝑤′
𝑖| ‖𝑋𝑖 − 𝜇‖2

≤ 𝑂(𝜂) +𝑂(𝜀) ,
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by Proposition 3.5.5. We now show that this implies that if we let 𝜇′ = ‖̂︀𝜇‖*𝒰𝑘
𝑑𝒰𝑘

(̂︀𝜇),
then ‖𝜇′ − 𝜇‖2 ≤ 𝑂(𝜂). Let 𝑆 be the support of 𝜇′, and let 𝑇 be the support of 𝜇.

Then we have

‖𝜇′ − 𝜇‖22 =
∑︁

𝑖∈𝑆∩𝑇

(𝜇′
𝑖 − 𝜇𝑖)

2 +
∑︁
𝑖∈𝑆∖𝑇

(𝜇′
𝑖)
2 +

∑︁
𝑖∈𝑇∖𝑆

𝜇2
𝑖 .

Observe that
∑︀

𝑖∈𝑆∩𝑇 (𝜇
′
𝑖− 𝜇𝑖)

2 +
∑︀

𝑖∈𝑆∖𝑇 (𝜇
′
𝑖)
2 ≤

(︀
‖̂︀𝜇− 𝜇‖*𝒰𝑘

)︀2, since 𝜇 was originally

nonzero on the entries in 𝑆 ∖ 𝑇 . Moreover, for all 𝑖 ∈ 𝑇 ∖ 𝑆 and 𝑗 ∈ 𝑆 ∖ 𝑇 , we have

(𝜇′
𝑖)
2 ≤ (𝜇′

𝑗)
2. Thus we have

∑︁
𝑖∈𝑇∖𝑆

𝜇2
𝑖 ≤ 2

⎛⎝∑︁
𝑖∈𝑇∖𝑆

(𝜇− 𝜇′
𝑖)
2 +

∑︁
𝑖∈𝑆∖𝑇

(𝜇′
𝑗)

2

⎞⎠ ≤ 2
(︀
‖̂︀𝜇− 𝜇‖*𝒰𝑘

)︀2
.

Therefore we have ‖𝜇′−𝜇‖22 ≤ 3
(︀
‖̂︀𝜇− 𝜇‖*𝒰𝑘

)︀2, which implies that ‖𝜇′−𝜇‖2 ≤ 𝑂(𝜂1),

as claimed.

3.6 An algorithm for robust sparse PCA detection

In this section, we give an efficient algorithm for detecting a spiked covariance matrix

in the presence of adversarial noise. Throughout this section, let 𝜂 = 𝑂(𝜀 log 1/𝜀) be

as in (3.12), and let 𝜌 = 𝑂(𝜂).

Our algorithm is fairly straightforward: we ask for the set of weights 𝑤 ∈ 𝑆𝑛,𝜀

so that the empirical second moment with these weights has minimal deviation from

the identity in the dual 𝒳𝑘 norm. We may write this as a convex program. Then, we

check the value of the optimal solution of this convex program. If this value is small,

then we say it is 𝒩 (0, 𝐼). if this value is large, then we say it is 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤). We

refer to the former as Case 1 and the latter as Case 2. The formal description of this

algorithm is given in Algorithm 9.
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Algorithm 9 Detecting a spiked covariance model, robustly
1: function DetectRobustSPCA(𝑋1, . . . , 𝑋𝑛, 𝜀, 𝛿, 𝜌)
2: Let 𝛾 be the value of the solution

min
𝑤∈𝑆𝑛,𝜀

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖𝑋
⊤
𝑖 − 𝐼)

⃦⃦⃦⃦
⃦
*

𝒳𝑘

(3.15)

3: if 𝛾 < 𝜌/2 then return Case 1 else return Case 2

3.6.1 Implementing DetectRobustSPCA

We first show that the algorithm presented above can be efficiently implemented.

Indeed, one can show that by taking the dual of the SDP defining the ‖ · ‖*𝒳𝑘
norm,

this problem can be re-written as an SDP with (up to constant factor blowups)

the same number of constraints and variables, and therefore we may solve it using

traditional SDP solver techniques.

Alternatively, one may observe that to optimize Algorithm 10 via ellipsoid or

cutting plane methods, it suffices to, given 𝑤 ∈ 𝑆𝑛,𝜀, produce a separating hyperplane

for the constraint (3.15). This is precisely what dual norm maximization allows us to

do efficiently. It is straightforward to show that the volume of 𝑆𝑛,𝜀 × 𝒳𝑘 is at most

exponential in the relevant parameters. Therefore, by the classical theory of convex

optimization, (see e.g. [GLS88]), for any 𝜉, we may find a solution 𝑤′ and 𝛾′ so that

‖𝑤′ − 𝑤*‖∞ ≤ 𝜉 and 𝛾′ so that |𝛾 − 𝛾′| < 𝜉 for some exact minimizer 𝑤*, where 𝛾 is

the true value of the solution, in time poly(𝑑, 𝑛, 1/𝜀, log 1/𝜉),

As mentioned in Section C.2.2, neither approach will in general give exact solu-

tions, however, both can achieve inverse polynomial accuracy in the parameters in

polynomial time. We will ignore these issues of numerical precision throughout the

remainder of this section, and assume we work with exact 𝛾.

Observe that in general it may be problematic that we don’t have exact access to

the minimizer 𝑤*, since some of the 𝑋𝑖 may be unboundedly large (in particular, if it’s

corrupted) in norm. However, we only use information about 𝛾. Since 𝛾 lives within

a bounded range, and our analysis is robust to small changes to 𝛾, these numerical

issues do not change anything in the analysis.
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3.6.2 Proof of Theorem 3.3.2

We now show that Algorithm 10 provides the guarantees required for Theorem 3.3.2.

We first show that if we are in Case 1, then 𝛾 is small:

Lemma 3.6.1. Let 𝜌, 𝛿 > 0. Let 𝜀, 𝜂 be as in Theorem 3.3.2. Let 𝑋1, . . . , 𝑋𝑛 be an

𝜀-corrupted set of samples from 𝒩 (0, 𝐼) of size 𝑛, where 𝑛 is as in Theorem 3.3.2.

Then, with probability 1− 𝛿, we have 𝛾 ≤ 𝜌/2.

Proof. Let 𝑤 be the uniform weights over the uncorrupted points. Then it from

Theorem 3.4.2 that ‖
∑︀

𝑤 𝑤𝑖(𝑋𝑖𝑋
⊤
𝑖 − 𝐼)‖*𝒳𝑘

≤ 𝑂(𝜂) with probability 1 − 𝛿. Since

𝑤 ∈ 𝑆𝑛,𝜀, this immediately implies that 𝛾 ≤ 𝑂(𝜌). By setting constants appropriately,

we obtain the desired guarantee.

We now show that if we are in Case 2, then 𝛾 must be large:

Lemma 3.6.2. Let 𝜌, 𝛿 > 0. Let 𝜀, 𝜂, 𝑛 be as in Theorem 3.3.2. Let 𝑋1, . . . , 𝑋𝑛 be

an 𝜀-corrupted set of samples from 𝒩 (0, 𝐼) of size 𝑛. Then, with probability 1− 𝛿, we

have 𝛾 ≥ (1 − 𝜀)𝜌 − (2 + 𝜌)𝜂. In particular, for 𝜀 sufficiently small, and 𝜂 = 𝑂(𝜌),

we have that 𝛾 > 𝜌/2.

Proof. Let Σ = 𝐼 + 𝜌𝑣𝑣⊤, and let 𝑌𝑖 = Σ−1/2𝑋𝑖, so that if 𝑌𝑖 is uncorrupted, then

𝑌𝑖 ∼ 𝒩 (0, 𝐼). Let 𝑤* be the optimal solution to (3.15). By Theorem 3.4.6, we

have that with probability 1 − 𝛿, we can write
∑︀𝑛

𝑖=1𝑤
*
𝑖 𝑌𝑖𝑌

⊤
𝑖 = 𝑤𝑔(𝐼 + 𝑁) + 𝐵,

where ‖𝑁‖*𝒳𝑘
≤ 𝜂2, and 𝐵 =

∑︀
𝑖∈𝑆bad

𝑤*
𝑖 𝑌𝑖𝑌

⊤
𝑖 . Therefore, we have

∑︀𝑛
𝑖=1𝑤

*𝑋𝑖𝑋
⊤
𝑖 =

𝑤𝑔(Σ + Σ1/2𝑁Σ1/2) + Σ1/2𝐵Σ1/2 . By definition, we have

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖𝑋

⊤
𝑖 − 𝐼)

⃦⃦⃦⃦
⃦
*

𝒳𝑘

≥ ⟨𝑤𝑔(Σ + Σ1/2𝑁Σ1/2) + Σ1/2𝐵Σ1/2 − 𝐼, 𝑣𝑣⊤⟩

≥ 𝑤𝑔⟨(Σ + Σ1/2𝑁Σ1/2), 𝑣𝑣⊤⟩ − 1

= 𝑤𝑔(1 + 𝜌) + 𝑤𝑔𝑣⊤Σ1/2𝑁Σ1/2𝑣 − 1

≥ (1− 𝜀)𝜌+ (1− 𝜀)𝑣⊤Σ1/2𝑁Σ1/2𝑣 − 𝜀 .
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It thus suffices to show that |𝑣⊤Σ1/2𝑁Σ1/2𝑣| < (1+ 𝜌)𝜂. Since 𝑣 is an eigenvector for

Σ with eigenvalue 1 + 𝜌, we have that Σ1/2𝑣 =
√
𝜌+ 1 · 𝑣 and thus

𝑣⊤Σ1/2𝑁Σ1/2𝑣 = (1 + 𝜌)𝑣⊤𝑁𝑣 = (1 + 𝜌)⟨𝑁, 𝑣𝑣⊤⟩ ≤ (1 + 𝜌)‖𝑁‖*𝒳𝑘
≤ (1 + 𝜌)𝜂 .

Lemmas 3.6.1 and 3.6.2 together imply the correctness of DetectRobustSPCA

and Theorem 3.3.2.

3.7 An algorithm for robust sparse PCA recovery

In this section, we prove Theorem 3.3.3. As in the previous section, let 𝜂 = 𝑂(𝜀 log 1/𝜀)

be as in (3.12), and let 𝜌 = 𝑂(𝜂).

We give some intuition here. Perhaps the first naive try would be to simply run

the same SDP in (3.15), and hope that the dual norm maximizer gives you enough

information to recover the hidden spike. This would more or less correspond to the

simplest modification SDP of the sparse PCA in the non-robust setting that one could

hope gives non-trivial information in this setting. However, this cannot work, for the

following straightforward reason: the value of the SDP is always at least 𝑂(𝜌), as we

argued in Section 3.6. Therefore, the noise can pretend to be some other sparse vector

𝑢 orthogonal to 𝑣, so that the covariance with noise looks like 𝑤𝑔(𝐼+𝜌𝑣𝑣⊤)+𝑤𝑔𝜌𝑢𝑢⊤,

so that the value of the SDP can be minimized with the uniform set of weights. Then

it is easily verified that both 𝑣𝑣⊤ and 𝑢𝑢⊤ are dual norm maximizers, and so the dual

norm maximizer does not uniquely determine 𝑣.

To circumvent this, we simply add an additional slack variable to the SDP, which

is an additional matrix in 𝒳𝑘, which we use to try to maximally explain away the

rank-one part of 𝐼 + 𝜌𝑣𝑣⊤. This forces the value of the SDP to be very small, which

allows us to show that the slack variable actually captures 𝑣.
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3.7.1 The algorithm

Our algorithms and analyses will make crucial use of the following convex set, which

is a further relaxation of 𝒳𝑘:

𝒲𝑘 =
{︀
𝑋 ∈ R𝑑×𝑑 : tr(𝑋) ≤ 2, ‖𝑋‖2 ≤ 1, ‖𝑋‖1 ≤ 3𝑘,𝑋 ⪰ 0

}︀
.

Our algorithm, given formally in Algorithm 10, will be the following. We solve a

convex program which simultaneously chooses a weights in 𝑆𝑛,𝜀 and a matrix 𝐴 ∈ 𝒲𝑘

to minimize the 𝒲𝑘 distance between the sample covariance with these weights, and

𝐴. Our output is then just the top eigenvector of 𝐴.

Algorithm 10 Learning a spiked covariance model, robustly
1: function RecoverRobustSPCA(𝑋1, . . . , 𝑋𝑛, 𝜀, 𝛿, 𝜌)
2: Let 𝑤*, 𝐴* be the solution to

argmin
𝑤∈𝑆𝑛,𝜀,𝐴∈𝒳𝑘

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖𝑋
⊤
𝑖 − 𝐼)− 𝜌𝐴

⃦⃦⃦⃦
⃦
*

𝒲2𝑘

(3.16)

3: Let 𝑢 be the top eigenector of 𝐴*

4: return The 𝑑𝒰𝑘
(𝑢)‖𝑢‖*𝒰𝑘

, i.e., the vector with all but the top 𝑘 coordinates of
𝑣 zeroed out.

This algorithm can be run efficiently for the same reasons as explained for Detec-

tRobustSPCA. For the rest of the section we will assume that we have an exact

solution for this problem. As before, we only use information about 𝐴, and since 𝐴

comes from a bounded space, and our analysis is robust to small perturbations in 𝐴,

this does not change anything.

3.7.2 More concentration bounds

Before we can prove correctness of our algorithm, we require a couple of concentration

inequalities for the set 𝒲𝑘.
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Lemma 3.7.1. Let 𝑛 be a positive integer. Let 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (0, 𝐼). Then

Pr

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
*

𝒲𝑘

> 𝑡

⎤⎦
≤ 4 exp

(︂
𝐴

(︂
min(𝑑, 𝑘2) + log

(︂
𝑑2

𝑘2

)︂)︂
−𝐵𝑛min(𝑡, 𝑡2)

)︂
.

Proof. It suffices to show that for any symmetric matrix𝑀 ∈ R𝑑×𝑑, we have ‖𝑀‖*𝒲𝑘
≤

𝐶 · ‖𝑀‖*𝒜𝑘
, as then the desired conclusion follows from Lemma 3.4.3. The proof is

identical to the proof of Theorem 3.4.2 given Lemma 3.4.3, so we omit it for clarity.

By the same techniques as in the proofs of Theorems 3.4.5 and 3.4.6, we can show

the following bound. Because of this, we omit the proof for conciseness.

Corollary 3.7.2. Fix 𝜀, 𝛿 > 0. Let 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (0, 𝐼) where 𝑛 is as in Theorem

3.4.6. Then there is an 𝜂 = 𝑂(𝜀 log 1/𝜀) so that

Pr

⎡⎣∃𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
*

𝒲𝑘

≥ 𝜂

⎤⎦ ≤ 𝛿 .

3.7.3 Proof of Theorem 3.3.3

In the rest of this section we will condition on the following deterministic event

happening:

∀𝑤 ∈ 𝑆𝑛,𝜀 :

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 − 𝐼

⃦⃦⃦⃦
⃦
*

𝒲2𝑘

≤ 𝜂 , (3.17)

where 𝜂 = 𝑂(𝜀 log 1/𝜀). By Corollary 3.7.2, this holds if we take

𝑛 = Ω

(︃
min(𝑑, 𝑘2) + log

(︀
𝑑2

𝑘2

)︀
+ log 1/𝛿

𝜂22

)︃

samples.

The rest of this section is dedicated to the proof of the following theorem, which

immediately implies Theorem 3.3.3.
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Theorem 3.7.3. Fix 𝜀, 𝛿, and let 𝜂 be as in (3.17). Assume that (3.17) holds.

Let ̂︀𝑣 be the output of RecoveryRobustSPCA(𝑋1, . . . , 𝑋𝑛, 𝜀, 𝛿, 𝜌). Then 𝐿(̂︀𝑣, 𝑣) ≤
𝑂(
√︀
(1 + 𝜌)𝜂/𝜌).

Our proof proceeds in a couple of steps. Let Σ = 𝐼 + 𝜌𝑣𝑣⊤ denote the true

covariance. We first need the following, technical lemma:

Lemma 3.7.4. Let 𝑀 ∈ 𝒲𝑘. Then Σ1/2𝑀Σ1/2 ∈ (1 + 𝜌)𝒲𝑘.

Proof. Clearly, Σ1/2𝑀Σ1/2 ⪰ 0. Moreover, since Σ1/2 = 𝐼+(
√
1 + 𝜌−1)𝑣𝑣⊤, we have

that the maximum value of any element of Σ1/2 is upper bounded by
√
1 + 𝜌. Thus,

we have ‖Σ1/2𝑀Σ1/2‖1 ≤ (1 + 𝜌)‖𝑀‖1. We also have

tr(Σ1/2𝑀Σ1/2) = tr(Σ𝑀)

= tr(𝑀) + 𝜌𝑣⊤𝑀𝑣 ≤ 1 + 𝜌 ,

since ‖𝑀‖ ≤ 1. Thus Σ1/2𝑀Σ1/2 ∈ (1 + 𝜌)𝒲𝑘, as claimed.

Let 𝑤*, 𝐴* be the output of our algorithm. We first claim that the value of the

optimal solution is quite small:

Lemma 3.7.5. ⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤*
𝑖 (𝑋𝑖𝑋

⊤
𝑖 − 𝐼)− 𝜌𝐴*

⃦⃦⃦⃦
⃦
*

𝒲2𝑘

≤ 𝜂(1 + 𝜌) .

Proof. Indeed, if we let 𝑤 be the uniform set of weights over the good points, and we

let 𝐴 = 𝑣𝑣⊤, then by (3.17), we have

𝑛∑︁
𝑖=1

𝑤𝑖𝑋𝑖𝑋
⊤
𝑖 = Σ1/2(𝐼 +𝑁)Σ1/2 ,
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where ‖𝑁‖*𝒳𝑘
≤ 𝜂, and Σ = 𝐼 + 𝜌𝑣𝑣⊤. Thus we have that

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=1

𝑤𝑖(𝑋𝑖𝑋
⊤
𝑖 − 𝐼)− 𝜌𝑣𝑣⊤

⃦⃦⃦⃦
⃦
*

𝒲2𝑘

= ‖Σ1/2𝑁Σ1/2‖*𝒲2𝑘

= max
𝑀∈𝒲𝑘

⃒⃒
tr(Σ1/2𝑁Σ1/2𝑀)

⃒⃒
= max

𝑀∈𝒲𝑘

⃒⃒
tr(𝑁Σ1/2𝑀Σ1/2)

⃒⃒
≤ (1 + 𝜌)‖𝑁‖*𝒲2𝑘

,

by Lemma 3.7.4.

We now show that this implies the following:

Lemma 3.7.6. 𝑣⊤𝐴*𝑣 ≥ 1− (2 + 3𝜌)𝜂/𝜌.

Proof. By (3.17), we know that we may write
∑︀𝑛

𝑖=1𝑤𝑖(𝑋𝑖𝑋
⊤
𝑖 − 𝐼) = 𝑤𝑔𝜌𝑣𝑣⊤ + 𝐵 −

(1−𝑤𝑔)𝐼+𝑁 , where 𝐵 =
∑︀

𝑖∈𝑆bad
𝑤𝑖𝑋𝑖𝑋

⊤
𝑖 , and ‖𝑁‖*𝒲𝑘

≤ (1+𝜌)𝜂. Thus, by Lemma

3.7.5 and the triangle inequality, we have that

⃦⃦
𝑤𝑔𝜌𝑣𝑣⊤ +𝐵 − 𝜌𝐴

⃦⃦*
𝒲𝑘
≤ 𝜂 + ‖𝑁‖*𝒲𝑘

+ (1− 𝑤𝑔)‖𝐼‖*𝒲𝑘
+ (1− 𝑤𝑔)‖𝜌𝐴‖*𝒲𝑘

≤ (1 + 𝜌)𝜂 + 𝜀+ 𝜌𝜀

≤ (1 + 2𝜌)𝜂 + 𝜀 .

Now, since 𝑣𝑣⊤ ∈ 𝒲𝑘, the above implies that

|𝑤𝑔𝜌+ 𝑣⊤𝐵𝑣 − 𝜌𝑣⊤𝐴*𝑣| ≤ (1 + 2𝜌)𝜂 + 𝜀 ,

which by a further triangle inequality implies that

|𝜌(1− 𝑣⊤𝐴*𝑣) + 𝑣⊤𝐵𝑣| ≤ (1 + 2𝜌)𝜂 + 𝜀+ 𝜀𝜌 ≤ (2 + 3𝜌)𝜂 .

Since 0 ≤ 𝑣⊤𝐴*𝑣 ≤ 1 (since 𝐴 ∈ 𝒳𝑘) and 𝐵 is PSD, this implies that in fact, we have

0 ≤ 𝜌(1− 𝑣⊤𝐴*𝑣) ≤ (2 + 3𝜌)𝜂 .
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Hence 𝑣⊤𝐴*𝑣 ≥ 1− (2 + 3𝜌)𝜂/𝜌, as claimed.

Let 𝛾 = (2 + 3𝜌)𝜂/𝜌. The lemma implies that the top eigenvalue of 𝐴* is at

least 1 − 𝛾. Moreover, since 𝐴* ∈ 𝒳𝑘, as long as 𝛾 ≤ 1/2, this implies that the top

eigenvector of 𝐴* is unique up to sign. By the constraint that 𝜂 ≤ 𝑂(min(𝜌, 1)),

for an appropriate choice of constants, we that 𝛾 ≤ 1/10, and so this condition is

satisfied. Recall that 𝑢 is the top eigenvector of 𝐴*. Since tr(𝐴*) = 1 and 𝐴* is PSD,

we may write 𝐴* = 𝜆1𝑢𝑢
⊤ + 𝐴1, where 𝑢 is the top eigenvector of 𝐴*, 𝜆1 ≥ 1 − 𝛾,

and ‖𝐴1‖ ≤ 𝛾. Thus, by the triangle inequality, this implies that

‖𝜌(𝑣𝑣⊤ − 𝜆1𝑢𝑢⊤) +𝐵‖*𝒳2𝑘
≤ 𝑂(𝜌𝛾)

which by a further triangle inequality implies that

‖𝜌(𝑣𝑣⊤ − 𝑢𝑢⊤) +𝐵‖*𝒳2𝑘
≤ 𝑂(𝜌𝛾) . (3.18)

We now show this implies the following intermediate result:

Lemma 3.7.7. (𝑣⊤𝑢)2 ≥ 1−𝑂(𝛾).

Proof. By Lemma 3.7.6, we have that 𝑣⊤𝐴*𝑣 = 𝜆1(𝑣
⊤𝑢)2 + 𝑣⊤𝐴1𝑣 ≥ 1 − 𝛾. In

particular, this implies that (𝑣⊤𝑢)2 ≥ (1− 2𝛾)/𝜆1 ≥ 1− 3𝛾, since 1− 𝛾 ≤ 𝜆 ≤ 1.

We now wish to control the spectrum of 𝐵. For any subsets 𝑆, 𝑇 ⊆ [𝑑], and for

any vector 𝑥 and any matrix 𝑀 , let 𝑥𝑆 denote 𝑥 restricted to 𝑆 and 𝑀𝑆,𝑇 denote the

matrix restricted to the rows in 𝑆 and the columns in 𝑇 . Let 𝐼 be the support of 𝑢,

and let 𝐽 be the support of the largest 𝑘 elements of 𝑣.

Lemma 3.7.8. ‖𝐵𝐼,𝐼‖2 ≤ 𝑂(𝜌𝛾).

Proof. Observe that the condition (3.18) immediately implies that

‖𝜌(𝑣𝐼𝑣⊤𝐼 − 𝑢𝐼𝑢⊤𝐼 ) +𝐵𝐼,𝐼‖2 ≤ 𝑐𝜌𝛾 , (3.19)
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for some 𝑐, since any unit vector 𝑥 supported on 𝐼 satisfies 𝑥𝑥⊤ ∈ 𝒳2𝑘. Suppose

that ‖𝐵𝐼,𝐼‖ ≥ 𝐶𝛾 for some sufficiently large 𝐶. Then (3.19) immediately implies

that ‖𝜌(𝑣𝐼𝑣⊤𝐼 − 𝑢𝐼𝑢
⊤
𝐼 )‖2 ≥ (𝐶 − 𝑐)𝜌𝛾. Since (𝑣𝐼𝑣

⊤
𝐼 − 𝑢𝐼𝑢

⊤
𝐼 ) is clearly rank 2, and

satisfies tr(𝑣𝐼𝑣
⊤
𝐼 − 𝑢𝐼𝑢⊤𝐼 ) = 1− ‖𝑢𝐼‖22 ≥ 0, this implies that the largest eigenvalue of

𝑣𝐼𝑣
⊤
𝐼 − 𝑢𝐼𝑢⊤𝐼 is positive. Let 𝑥 be the top eigenvector of 𝑣𝐼𝑣⊤𝐼 − 𝑢𝐼𝑢⊤𝐼 . Then, we have

𝑥⊤(𝑣𝐼𝑣
⊤
𝐼 − 𝑢𝐼𝑢⊤𝐼 )𝑥+ 𝑥⊤𝐵𝑥 = (𝐶 − 𝑐)𝜌𝛾 + 𝑥⊤𝐵𝑥 ≥ (𝐶 − 𝑐)𝜌𝛾 by the PSD-ness of 𝐵.

If 𝐶 > 𝑐, this contradicts (3.19), which proves the theorem.

This implies the following corollary:

Corollary 3.7.9. ‖𝑢𝐼‖22 ≥ 1−𝑂(𝛾).

Proof. Lemma 3.7.8 and (3.19) together imply that ‖𝑣𝐼𝑣⊤𝐼 − 𝑢𝐼𝑢
⊤
𝐼 ‖2 ≤ 𝑂(𝛾). The

desired bound then follows from a reverse triangle inequality.

We now show this implies a bound on 𝐵𝐽∖𝐼,𝐽∖𝐼 :

Lemma 3.7.10. ‖𝐵𝐽∖𝐼,𝐽∖𝐼‖2 ≤ 𝑂(𝜌𝛾).

Proof. Suppose ‖𝐵𝐽∖𝐼,𝐽∖𝐼‖ ≥ 𝐶𝛾 for some sufficiently large 𝐶. Since 𝑢 is zero on 𝐽 ∖𝐼,

(3.18) implies that

‖𝜌𝑣𝐽∖𝐼𝑣⊤𝐽∖𝐼 +𝐵𝐽∖𝐼,𝐽∖𝐼‖2 ≤ 𝑐𝜌𝛾 ,

for some universal 𝑐. By a triangle inequality, this implies that ‖𝑣𝐽∖𝐼‖22 = ‖𝑣𝐽∖𝐼𝑣⊤𝐽∖𝐼‖2 ≥

(𝐶 − 𝑐)𝛾. Since 𝑣 is a unit vector, this implies that ‖𝑣𝐼‖22 ≤ 1− (𝐶 − 𝑐)𝛾, which for

a sufficiently large 𝐶, contradicts Corollary 3.7.9.

We now invoke the following general fact about PSD matrices:

Lemma 3.7.11. Suppose 𝑀 is a PSD matrix, written in block form as

𝑀 =

⎛⎝ 𝐶 𝐷

𝐷⊤ 𝐸

⎞⎠ .

Suppose furthermore that ‖𝐶‖2 ≤ 𝜉 and ‖𝐸‖2 ≤ 𝜉. Then ‖𝑀‖2 ≤ 𝑂(𝜉).

131



Proof. It is easy to see that ‖𝑀‖2 ≤ 𝑂(max(‖𝐶‖2, ‖𝐷‖2, ‖𝐸‖2)). Thus it suffices

to bound the largest singular value of 𝐷. For any vectors 𝜑, 𝜓 with appropriate

dimension, we have that

(𝜑⊤ − 𝜓⊤) 𝑀

⎛⎝ 𝜑

−𝜓

⎞⎠ = 𝜑⊤𝐴𝜑− 2𝜑⊤𝐷𝜓 + 𝜓⊤𝐶𝜓 ≥ 0 ,

which immediately implies that the largest singular value of 𝐷 is at most (‖𝐴‖2 +

‖𝐵‖2)/2, which implies the claim.

Therefore, Lemmas 3.7.8 and 3.7.10 together imply:

Corollary 3.7.12. ‖𝑣𝐼∪𝐽𝑣⊤𝐼∪𝐽 − 𝑢𝐼∪𝐽𝑢⊤𝐼∪𝐽‖2 ≤ 𝑂(𝛾) .

Proof. Observe (3.18) immediately implies that ‖𝜌(𝑣𝐼∪𝐽𝑣⊤𝐼∪𝐽−𝑢𝐼∪𝐽𝑢⊤𝐼∪𝐽)+𝐵𝐼∪𝐽,𝐼∪𝐽‖2 ≤

𝑂(𝜌𝛾), since |𝐼∪𝐽 | ≤ 2𝑘. Moreover, Lemmas 3.7.8 and 3.7.10 with Lemma 3.7.11 im-

ply that ‖𝐵𝐼∪𝐽,𝐼∪𝐽‖2 ≤ 𝑂(𝜌𝛾), which immediately implies the statement by a triangle

inequality.

Finally, we show this implies ‖𝑣𝑣⊤ − 𝑢𝐽𝑢⊤𝐽 ‖2 ≤ 𝑂(𝛾), which is equivalent to the

theorem.

Proof of Theorem 3.7.3. We will in fact show the slightly stronger statement, that

‖𝑢𝑢⊤ − 𝑣𝐽𝑣⊤𝐽 ‖𝐹 ≤ 𝑂(𝛾). Observe that since 𝑢𝑢⊤ − 𝑣𝑣⊤ is rank 2, Corollary 3.7.12

implies that ‖𝑣𝐼∪𝐽𝑣⊤𝐼∪𝐽−𝑢𝐼∪𝐽𝑢⊤𝐼∪𝐽‖𝐹 ≤ 𝑂(𝛾), since for rank two matrices, the spectral

and Frobenius norm are off by a constant factor. We have

‖𝑢𝑢⊤ − 𝑣𝑣⊤‖2𝐹 =
∑︁

(𝑖,𝑗)∈𝐼∩𝐽×𝐼∩𝐽

(𝑢𝑖𝑢𝑗 − 𝑣𝑖𝑣𝑗)2 +
∑︁

(𝑖,𝑗)∈𝐼×𝐼∖𝐽×𝐽

(𝑣𝑖𝑣𝑗)
2 +

∑︁
(𝑖,𝑗)∈𝐽×𝐽∖𝐼×𝐼

(𝑢𝑖𝑢𝑗)
2 .

We haveÂă

∑︁
(𝑖,𝑗)∈𝐼∩𝐽×𝐼∩𝐽

(𝑢𝑖𝑢𝑗 − 𝑣𝑖𝑣𝑗)2 +
∑︁

(𝑖,𝑗)∈𝐽×𝐽∖𝐼×𝐼

(𝑢𝑖𝑢𝑗)
2 ≤ ‖𝑣𝐼∪𝐽𝑣⊤𝐼∪𝐽 − 𝑢𝐼∪𝐽𝑢⊤𝐼∪𝐽‖2 ≤ 𝑂(𝛾) ,
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by Corollary 3.7.12. Moreover, we have that

∑︁
(𝑖,𝑗)∈𝐼×𝐼∖𝐽×𝐽

(𝑣𝑖𝑣𝑗)
2 ≤ 2

⎛⎝ ∑︁
(𝑖,𝑗)∈𝐼×𝐼∖𝐽×𝐽

(𝑣𝑖𝑣𝑗 − 𝑢𝑖𝑢𝑗)2 +
∑︁

(𝑖,𝑗)∈𝐼×𝐼∖𝐽×𝐽

(𝑢𝑖𝑢𝑗)
2

⎞⎠
≤ 2

⎛⎝‖𝑣𝐼∪𝐽𝑣⊤𝐼∪𝐽 − 𝑢𝐼∪𝐽𝑢⊤𝐼∪𝐽‖2 + ∑︁
(𝑖,𝑗)∈𝐼×𝐼∖𝐽×𝐽

(𝑢𝑖𝑢𝑗)
2

⎞⎠
≤ 2

⎛⎝‖𝑣𝐼∪𝐽𝑣⊤𝐼∪𝐽 − 𝑢𝐼∪𝐽𝑢⊤𝐼∪𝐽‖2 + ∑︁
(𝑖,𝑗)∈𝐽×𝐽∖𝐼×𝐼

(𝑢𝑖𝑢𝑗)
2

⎞⎠
≤ 𝑂(𝛾) .

since 𝐽 × 𝐽 contains the 𝑘2 largest entries of 𝑢𝑢⊤. This completes the proof.
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Chapter 4

Convex Programming III: Sum of

Squares and Clustering Mixture

Models

Someday, the cold rain will become

warm tears and wash away.

It’s alright. This downpour

is just a passing storm.

In this section, we will explore connections between the ideas we’ve been devel-

oping in this thesis, and a number of other problems in high dimensional statistical

estimation. In particular, we give new algorithms for the following problems.

1. Learning Δ-separated mixture models: Given 𝑛 samples 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑

from a mixture of 𝑘 probability distributions 𝐷1, . . . , 𝐷𝑘 on R𝑑 with means

𝜇1, . . . , 𝜇𝑘 ∈ R𝑑 and covariances Σ1, . . . ,Σ𝑘 ⪯ 𝐼, where ‖𝜇𝑖−𝜇𝑗‖2 ≥ Δ, estimate

𝜇1, . . . , 𝜇𝑘.1

2. Robust mean estimation: Perhaps our favorite problem at this point: given

1A mixture model consists of probability distributions 𝐷1, . . . , 𝐷𝑘 on R𝑑 and mixing weights
𝜆1, . . . , 𝜆𝑘 ≥ 0 with

∑︀
𝑖≤𝑘 𝜆𝑖 = 1. The distribution 𝐷𝑖 has mean 𝜇𝑖. Each sample 𝑥𝑗 is generated by

first sampling a component 𝑖 ∈ [𝑘] according to the weights 𝜆, then sampling 𝑥𝑗 ∼ 𝐷𝑖.
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𝑛 vectors 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑, of which a (1 − 𝜀)-fraction are samples from a

probability distribution 𝐷 with mean 𝜇 and covariance Σ ⪯ 𝐼 and the remaining

𝜀-fraction are arbitrary vectors (which may depend on the (1−𝜀)𝑛 samples from

𝐷), estimate 𝜇.

Mixture models, and especially Gaussian mixture models (where𝐷1, . . . , 𝐷𝑘 are Gaus-

sian distributions) have been studied since Pearson in 1894 [Pea94]. Work in theoret-

ical computer science dates at least to the pioneering algorithm of Dasgupta in 1999

[Das99], which has been followed by numerous other algorithms and lower bounds

[Wu83, DS07, AK05, VW02, KK10, AM05, FSO06, KMV10, BS10b, MV10, HK13,

ABG+14, BCMV14, DK14, SOAJ14, HP15b, XHM16, GHK15, LS17, RV17, DTZ17].

Though outwardly rather different, mixture model learning and robust estimation

share some underlying structure. An algorithm for either must identify or otherwise

recover information about one or several structured subsets of a number of samples

𝑋1, . . . , 𝑋𝑛 ∈ R𝑑. In the mixture model case, each collection of all the samples from

each distribution 𝐷𝑖 is a structured subset. In the robust estimation case there is

just one structured subset: the (1 − 𝜀)𝑛 samples drawn from the distribution 𝐷.2

Our algorithms are based on new techniques for identifying such structured subsets

of points in large data sets.

For mixture models, a special case of our main result yields the first progress in

more than 15 years on efficiently clustering mixtures of separated spherical Gaussians.

The question here is: if 𝐷1, . . . , 𝐷𝑘 are all Gaussian with covariance identity, what

is the minimum cluster separation Δ which allows for a polynomial-time algorithm

to estimate 𝜇1, . . . , 𝜇𝑘 from poly(𝑘, 𝑑) samples from the mixture model? When 𝑘 =

𝑑, the guarantees of the previous best algorithms for this problem, which require

Δ ≥ 𝑂(𝑘1/4), are captured by a simple greedy clustering algorithm, sometimes called

single-linkage clustering : when Δ ≥ 𝑂(𝑘1/4), with high probability every pair of

samples from the same cluster is closer in Euclidean distance than every pair of

samples from differing clusters.

2The recent work [CSV17] codifies this similarity by unifying both these problems into what they
call a list-decodable learning setting.
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We break this single-linkage clustering barrier: for every 𝛾 > 0 we give a poly(𝑘, 𝑑)-

time algorithm for this problem when Δ > 𝑘𝛾. Our results extend to any 𝑘 and 𝑑. In

this more general setting the previous-best algorithms combine spectral dimension re-

duction (by projecting the samples to the top eigenvectors of an empirical covariance

matrix) with single-linkage clustering [VW02]. These algorithms require separation

Δ ≥ 𝑂(min(𝑑, 𝑘)1/4), while our algorithms continue to tolerate separation Δ > 𝑘𝛾 for

any 𝛾 > 0.3

Our algorithm relies on novel use of higher moments (in fact, 𝑂(1/𝛾) moments)

of the underlying distributions 𝐷𝑖. Our main technical contribution is a new algo-

rithmic technique for finding either a structured subset of data points or the empir-

ical mean of such a subset when the subset consists of independent samples from

a distribution 𝐷 which has bounded higher-order moments and there is a simple

certificate of this boundedness. This technique leverages the Sum of Squares (SoS)

hierarchy of semidefinite programs (SDPs), and in particular a powerful approach for

designing SoS-based algorithms in machine learning settings, developed and used in

[BKS14, BKS15, GM15, BM16, HSS15, MSS16, PS17].

This SoS approach to unsupervised learning rests on a notion of simple identi-

fiability proofs: the main step in designing an algorithm using SoS to recover some

parameters 𝜃 from samples 𝑥1, . . . , 𝑥𝑛 ∼ 𝑝(𝑥 | 𝜃) is to prove in a restricted proof system

that 𝜃 is likely to be uniquely identifiable from 𝑥1, . . . , 𝑥𝑛. We develop this thoroughly

later on, but roughly speaking one may think of this as requiring the identifiability

proof to use only simple inequalities, such as Cauchy-Schwarz and Hölder’s inequality,

applied to low-degree polynomials. The simple identifiability proofs we construct for

both the mixture models and robust estimation settings are heavily inspired by the

robust estimation algorithms studied throughout this thesis.

3In the years since an algorithm obtaining Δ ≥ 𝑂(min(𝑑, 𝑘)1/4) was achieved by [VW02]
there has been progress in extending similar results for more general clustering settings. In
fact, the algorithm of [VW02] already tolerates isotropic, log-concave distributions, and allows
for each component to have a distinct variance 𝜎2

𝑖 ∈ R, with the separation condition becoming
‖𝜇𝑖 − 𝜇𝑗‖2 > max(𝜎𝑖, 𝜎𝑗)min(𝑑, 𝑘)1/4. Later works such as [AM05, KK10, AS12] continued to gen-
eralize these results to broader clustering settings. Most related to the present work are spectral
algorithms which weaken log-concavity to a bounded-covariance assumption, at the cost of requiring
separation Δ >

√
𝑘.
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4.1 Results

Both of the problems we study have a long history; for now we just note some high-

lights and state our main results.

Mixture models The problem of learning mixture models dates to Pearson in

1894, who invented the method of moments in order to separate a mixture of two

Gaussians [Pea94]. Mixture models have since become ubiquitous in data analysis

across many disciplines [TSM85, MP04]. In recent years, computer scientists have

devised many ingenious algorithms for learning mixture models as it became clear that

classical statistical methods (e.g. maximum likelihood estimation) often suffer from

computational intractability, especially when there are many mixture components or

the components are high dimensional.

A highlight of this work is a series of algorithmic results when the components of

the mixture model are Gaussian [Das99, DS07, AK05, VW02]. Here the main question

is: how small can the cluster separation Δ be such that there exists an algorithm

to estimate 𝜇1, . . . , 𝜇𝑘 from samples 𝑥1, . . . , 𝑥𝑛 in poly(𝑘, 𝑑) time (hence also using

𝑛 = poly(𝑘, 𝑑) samples)? Focusing for simplicity on spherical Gaussian components

(i.e. with covariance equal to the identity matrix 𝐼) and with number of components

similar to the ambient dimension of the data (i.e. 𝑘 = 𝑑) and uniform mixing weights

(i.e. every cluster has roughly the same representation among the samples), the best

result in previous work gives a poly(𝑘)-time algorithm when Δ ≥ 𝑘1/4.

Separation Δ = 𝑘1/4 represents a natural algorithmic barrier: when Δ ≥ 𝑘1/4,

every pair of samples from the same cluster are closer to each other in Euclidean

distance than are every pair of samples from distinct clusters (with high probability),

while this is no longer true if Δ < 𝑘1/4. Thus, when Δ ≥ 𝑘1/4, a simple greedy

algorithm correctly clusters the samples into their components (this algorithm is

sometimes called single-linkage clustering). On the other hand, standard information-

theoretic arguments show that the means remain approximately identifiable from

poly(𝑘, 𝑑) samples when Δ is as small as 𝑂(
√
log 𝑘), but these methods yield only
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exponential-time algorithms.4 Nonetheless, despite substantial attention, this Δ =

𝑘1/4 barrier representing the breakdown of single-linkage clustering has stood for

nearly 20 years.

We prove the following main theorem, breaking the single-linkage clustering bar-

rier.

Theorem 4.1.1 (Informal, special case for uniform mixture of spherical Gaussians).

For every 𝛾 > 0 there is an algorithm with running time (𝑑𝑘)𝑂(1/𝛾2) using at most

𝑛 ≤ 𝑘𝑂(1)𝑑𝑂(1/𝛾) samples which, given samples 𝑥1, . . . , 𝑥𝑛 from a uniform mixture of 𝑘

spherical Gaussians 𝒩 (𝜇𝑖, 𝐼) in 𝑑 dimensions with means 𝜇1, . . . , 𝜇𝑘 ∈ R𝑑 satisfying

‖𝜇𝑖 − 𝜇𝑗‖2 ≥ 𝑘𝛾 for each 𝑖 ̸= 𝑗, returns estimators �̂�1, . . . , �̂�𝑘 ∈ R𝑑 such that ‖�̂�𝑖 −

𝜇𝑖‖2 ≤ 1/ poly(𝑘) (with high probability).

We pause here to make several remarks about this theorem. Our algorithm makes

novel use of higher order moments of Gaussian (and sub-Gaussian) distributions.

Most previous work for efficiently learning well-separated mixtures either used only

second-order moment information, and required separation Δ ≥ Ω(
√
𝑘), or made mild

use of log-concavity to improve this to 𝑘1/4, whereas we use 𝑂(1/𝛾) moments.

The guarantees of our theorem hold well beyond the Gaussian setting; the theorem

applies to any mixture model with 𝑘𝛾 separation and whose component distributions

𝐷1, . . . , 𝐷𝑘 are what we term 𝑂(1/𝛾)-explicitly bounded. We define this notion for-

mally below, but roughly speaking, a 𝑡-explicitly bounded distribution 𝐷 has 𝑡-th

moments obeying a subgaussian-type bound—that is, for every unit vector 𝑢 ∈ R𝑑

one has E𝑌∼𝐷 |⟨𝑌, 𝑢⟩|𝑡 ≤ 𝑡𝑡/2—and there is a certain kind of simple certificate of this

fact, namely a low-degree Sum of Squares proof. Among other things, this means the

theorem also applies to mixtures of symmetric product distributions with bounded

moments.

For mixtures of distributions with sufficiently-many bounded moments (such as

Gaussians), our guarantees go even further. We show that using 𝑑𝑂(log 𝑘)2 time and

4Recent and sophisticated arguments show that the means are identifiable (albeit inefficiently)
with error depending only on the number of samples and not on the separation Δ even when
Δ = 𝑂(

√
log 𝑘) [RV17].
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𝑑𝑂(log 𝑘) samples, we can recover the means to error 1/ poly(𝑘) even if the separation

is only 𝐶
√
log 𝑘 for some universal constant 𝐶. Strikingly, [RV17] show that any

algorithm that can learn the means nontrivially given separation 𝑜(
√
log 𝑘) must

require super-polynomial samples and time. Our results show that just above this

threshold, it is possible to learn with just quasipolynomially many samples and time.

Finally, throughout the paper we state error guarantees roughly in terms of ob-

taining 𝜇𝑖 with ‖�̂�𝑖 − 𝜇𝑖‖2 ≤ 1/ poly(𝑘) ≪ 𝑘𝛾, meaning that we get ℓ2 error which

is much less than the true separation. In the special case of spherical Gaussians,

we note that we can use our algorithm as a warm-start to recent algorithms due to

[RV17], and achieve error 𝛿 using poly(𝑚, 𝑘, 1/𝛿) additional runtime and samples for

some polynomial independent of 𝛾.

Robust mean estimation While previously in this thesis, we are able to give

essentially tight results for mean estimation when the distribution is Gaussian, or

subgaussian with isotropic covariance, the state of affairs for general sub-Gaussian

distributions is somewhat worse. For general sub-Gaussian distributions with un-

known variance Σ ⪯ 𝐼, the best known efficient algorithms achieve only 𝑂(𝜀1/2)

error (see Chapter 5, also [SCV18]). We substantially improve this, under a slightly

stronger condition than sub-Gaussianity. Recall that a distribution 𝐷 with mean 𝜇

over R𝑑 is sub-Gaussian if for every unit vector 𝑢 and every 𝑡 ∈ N even, the following

moment bound holds:

E
𝑋∼𝐷
⟨𝑢,𝑋 − 𝜇⟩𝑡 ≤ 𝑡𝑡/2 .

Informally stated, our algorithms will work under the condition that this moment

bound can be certified by a low degree SoS proof, for all 𝑠 ≤ 𝑡. We call such distribu-

tions 𝑡-explicitly bounded (we are ignoring some parameters, see Definition 4.3.1 for

a formal definition). This class captures many natural sub-Gaussian distributions,

such as Gaussians, product distributions of sub-Gaussians, and rotations thereof (see

Appendix D.1.1). For such distributions, we show:
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Theorem 4.1.2 (informal, see Theorem 4.6.1). Fix 𝜀 > 0 sufficiently small and let

𝑡 ≥ 4. Let 𝐷 be a 𝑂(𝑡)-explicitly bounded distribution over R𝑑 with mean 𝜇*. There

is an algorithm with sample complexity 𝑑𝑂(𝑡)(1/𝜀)𝑂(1) running time (𝑑𝑡𝜀)𝑂(𝑡) such that

given an 𝜀-corrupted set of samples of sufficiently large size from 𝐷, outputs 𝜇 so that

with high probability ‖𝜇− 𝜇*‖2 ≤ 𝑂(𝜀1−1/𝑡).

As with mixture models, we can push our statistical rates further, if we are willing

to tolerate quasipolynomial runtime and sample complexity. In particular, we can

obtain error 𝑂(𝜀
√︀

log 1/𝜀) with 𝑑𝑂(log 1/𝜀) samples and 𝑑𝑂(log 1/𝜀)2 time.

4.1.1 Related work

Mixture models The literature on mixture models is vast so we cannot attempt

a full survey here. The most directly related line of work to our results studies

mixtures models under mean-separation conditions, and especially mixtures of Gaus-

sians, where the number 𝑘 of components of the mixture grows with the dimension

𝑑 [Das99, DS07, AK05, VW02]. The culmination of these works is the algorithm

of Vempala and Wang, which used spectral dimension reduction to improve on the

𝑑1/4 separation required by previous works to 𝑘1/4 in ℓ2 distance for 𝑘 ≤ 𝑑 spherical

Gaussians in 𝑑 dimensions. Concretely, they show the following:

Theorem 4.1.3 ([VW02], informal). There is a constant 𝐶 > 0 and an algorithm

with running time poly(𝑘, 𝑑) such that for every 𝜇1, . . . , 𝜇𝑘 ∈ R𝑑 and 𝜎1, . . . , 𝜎𝑘 > 0,

satisfying

‖𝜇𝑖 − 𝜇𝑗‖2 > 𝐶max(𝜎𝑖, 𝜎𝑗)𝑘
1/4 log1/4(𝑑)

with high probability the algorithm produces estimates 𝜇1, . . . , 𝜇𝑘 with ‖𝜇𝑖 − 𝜇𝑖‖2 ≤

1/ poly(𝑘), given poly(𝑘, 𝑑) samples from a mixture 1
𝑘

∑︀
𝑖≤𝑘𝒩 (𝜇𝑖, 𝜎𝑖𝐼).

The theorem extends naturally to isotropic log-concave distributions; our main

theorem generalizes to distributions with explicitly bounded moments. These families

of distributions are not strictly comparable.
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Other works have relaxed the requirement that the underlying distributions be

Gaussian [KK10, AM05]; to second-moment moment boundedness instead of to log-

concavity; these algorithms typically tolerate separation of order
√
𝑘 rather than

𝑘1/4. Our work can be thought of as a generalization of these algorithms to use

boundedness of higher moments. One recent work in this spirit uses SDPs to cluster

mixture models under separation assumptions [MVW17]; the authors show that a

standard SDP relaxation of 𝑘-means achieves guarantees comparable to previously-

known specially-tailored mixture model algorithms.

Information-theoretic sample complexity: Recent work of [RV17] considers the

Gaussian mixtures problem in an information-theoretic setting: they show that there

is some constant 𝐶 so that if the means are pairwise separated by at least 𝐶
√
log 𝑘,

then the means can be recovered to arbitrary accuracy (given enough samples). They

give an efficient algorithm which, warm-started with sufficiently-good estimates of the

means, improves the accuracy to 𝛿 using poly(1/𝛿, 𝑑, 𝑘) additional samples. However,

their algorithm for providing this warm start requires time exponential in the dimen-

sion 𝑑. Our algorithm requires somewhat larger separation but runs in polynomial

time. Thus by combining the techniques in the spherical Gaussian setting we can

estimate the means with ℓ2 error 𝛿 in polynomial time using an extra poly(1/𝛿, 𝑑, 𝑘)

samples, when the separation is at least 𝑘𝛾, for any 𝛾 > 0.

Fixed number of Gaussians in many dimensions: Other works address parameter

estimation for mixtures of 𝑘 ≪ 𝑑 Gaussians (generally 𝑘 = 𝑂(1) and 𝑑 grows) under

weak identifiability assumptions [KMV10, BS10b, MV10, HP15b]. In these works the

only assumptions are that the component Gaussians are statistically distinguishable;

the goal is to recover their parameters of the underlying Gaussians. It was shown in

[MV10] that algorithms in this setting provably require exp(𝑘) samples and running

time. The question addressed in our paper is whether this lower bound is avoidable

under stronger identifiability assumptions. A related line of work addresses proper

learning of mixtures of Gaussians [FSO06, DK14, SOAJ14, LS17], where the goal is

to output a mixture of Gaussians which is close to the unknown mixture in total-

variation distance, avoiding the exp(𝑘) parameter-learning sample-complexity lower
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bound. These algorithms achieve poly(𝑘, 𝑑) sample complexity, but they all require

exp(𝑘) running time, and moreover, do not provide any guarantee that the parameters

of the distributions output are close to those for the true mixture.

Tensor-decomposition methods: Another line of algorithms focus on settings

where the means satisfy algebraic non-degeneracy conditions, which is the case for

instance in smoothed analysis settings [HK13, ABG+14, GHK15]. These algorithms

are typically based on finding a rank-one decomposition of the empirical 3rd or 4th

moment tensor of the mixture; they heavily use the special structure of these mo-

ments for Gaussian mixtures. One paper we highlight is [BCMV14], which also uses

much higher moments of the distribution. They show that in the smoothed analy-

sis setting, the ℓth moment tensor of the distribution has algebraic structure which

can be algorithmically exploited to recover the means. Their main structural result

holds only in the smoothed analysis setting, where samples from a mixture model on

perturbed means are available.

In contrast, we do not assume any non-degeneracy conditions and use moment

information only about the individual components rather than the full mixture, which

always hold under separation conditions. Moreover, our algorithms do not need to

know the exact structure of the 3rd or 4th moments. In general, clustering-based

algorithms like ours seem more robust to modelling errors than algebraic or tensor-

decomposition methods.

Expectation-maximization (EM): EM is the most popular algorithm for Gaussian

mixtures in practice, but it is notoriously difficult to analyze theoretically. The works

[DS07, BWY14, DTZ17, XHM16] offer some theoretical guarantees for EM, but non-

convergence results are a barrier to strong theoretical guarantees [Wu83].

SoS algorithms for unsupervised learning SoS algorithms for unsupervised

learning obtain the best known polynomial-time guarantees for many problems, in-

cluding dictionary learning, tensor completion, and others [BKS14, BKS15, GM15,

HSS15, MSS16, BM16, PS17]. While the running times of such algorithms are of-

ten large polynomials, due to the need to solve large SDPs, insights from the SoS
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algorithms have often been used in later works obtaining fast polynomial running

times [HSSS16, SS17, HKP+17]. This lends hope that in light of our results there is a

practical algorithm to learn mixture models under separation 𝑘1/4−𝜀 for some 𝜀 > 0.

4.1.2 Organization

In Section 4.2 we discuss at a high level the ideas in our algorithms and SoS proofs.

In Section 4.3 we give standard background on SoS proofs. Section 4.4 discusses

the important properties of the family of polynomial inequalities we use in both

algorithms. Section 4.5 and Section 4.6 state our algorithms formally and analyze

them. Finally, Section 4.7 describes the polynomial inequalities our algorithms employ

in more detail.

4.2 Techniques

In this section we give a high-level overview of the main ideas in our algorithms.

First, we describe the proofs-to-algorithms methodology developed in recent work on

SoS algorithms for unsupervised learning problems. Then we describe the core of our

algorithms for mixture models and robust estimation: a simple proof of identifiability

of the mean of a distribution 𝐷 on R𝑑 from samples 𝑋1, . . . , 𝑋𝑛 when some fraction

of the samples may not be from 𝐷 at all.

4.2.1 Proofs to algorithms for machine learning: the SoS method

The Sum of Squares (SoS) hierarchy is a powerful tool in optimization, originally

designed to approximately solve systems of polynomial equations via a hierarchy

of increasingly strong but increasingly large semidefinite programming (SDP) relax-

ations (see [BS14] and the references therein). There has been much recent interest in

using the SoS method to solve unsupervised learning problems in generative models

[BKS14, BKS15, GM15, HSS15, MSS16, PS17]. .

By now there is an established method for designing such SoS-based algorithms,
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which we employ in this paper. Consider a generic statistical estimation setting:

there is a vector 𝜃* ∈ R𝑘 of parameters, and given some samples 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑

sampled iid according to 𝑝(𝑥 | 𝜃*), one wants to recover some 𝜃(𝑥1, . . . , 𝑥𝑛) such that

‖𝜃* − 𝜃‖ ≤ 𝛿 (for some appropriate norm ‖ · ‖ and 𝛿 ≥ 0). One says that 𝜃* is iden-

tifiable from 𝑥1, . . . , 𝑥𝑛 if, for any 𝜃 with ‖𝜃* − 𝜃‖ > 𝛿, one has Pr(𝑥1, . . . , 𝑥𝑛 | 𝜃) ≪

Pr(𝑥1, . . . , 𝑥𝑛 | 𝜃*). Often mathematical arguments for identifiability proceed via con-

centration of measure arguments culminating in a union bound over every possible

𝜃 with ‖𝜃* − 𝜃‖ > 𝛿. Though this would imply 𝜃 could be recovered via brute-force

search, this type of argument generally has no implications for efficient algorithms.

The SoS proofs-to-algorithms method prescribes designing a simple proof of iden-

tifiability of 𝜃 from samples 𝑥1, . . . , 𝑥𝑛. Here “simple” has a formal meaning: the

proof should be captured by the low-degree SoS proof system. The SoS proof system

can reason about equations and inequalities among low-degree polynomials. Briefly,

if 𝑝(𝑦1, . . . , 𝑦𝑚) and 𝑞(𝑦1, . . . , 𝑦𝑚) are polynomials with real coefficients, and for every

𝑦 ∈ R𝑚 with 𝑝(𝑦) ≥ 0 it holds also that 𝑞(𝑦) ≥ 0, the SoS proof system can deduce

that 𝑝(𝑦) ≥ 0 implies 𝑞(𝑦) ≥ 0 if there is a simple certificate of this implication:

polynomials 𝑟(𝑦), 𝑠(𝑦) which are sums-of-squares, such that 𝑞(𝑦) = 𝑟(𝑦) · 𝑞(𝑦) + 𝑠(𝑦).

(Then 𝑟, 𝑠 form an SoS proof that 𝑝(𝑦) ≥ 0 implies 𝑞(𝑦) ≥ 0.)

Remarkably, many useful polynomial inequalities have such certificates. For exam-

ple, the usual proof of the Cauchy-Schwarz inequality ⟨𝑦, 𝑧⟩2 ≤ ‖𝑦‖22‖𝑧‖22, where 𝑦, 𝑧

are 𝑚-dimensional vectors, actually shows that the polynomial ‖𝑦‖22‖𝑧‖22−⟨𝑦, 𝑧⟩2 is a

sum-of-squares in 𝑦 and 𝑧. The simplicity of the certificate is measured by the degree

of the polynomials 𝑟 and 𝑠; when these polynomials have small (usually constant) de-

gree there is hope of transforming SoS proofs into polynomial-time algorithms. This

transformation is possible because (under mild assumptions on 𝑝 and 𝑞) the set of

low-degree SoS proofs is in fact captured by a polynomial-size semidefinite program.

Returning to unsupervised learning, the concentration/union-bound style of iden-

tifiability proofs described above are almost never captured by low-degree SoS proofs.

Instead, the goal is to design

1. A system of constant-degree polynomial equations and inequalties𝒜 = {𝑝1(𝜃) =
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0, . . . , 𝑝𝑚(𝜃) = 0, 𝑞1(𝜃) ≥ 0, . . . , 𝑞𝑚(𝜃) ≥ 0}, where the polynomials 𝑝 and 𝑞

depend on the samples 𝑥1, . . . , 𝑥𝑛, such that with high probability 𝜃* satisfies

all the equations and inequalities.

2. A low-degree SoS proof that 𝒜 implies ‖𝜃 − 𝜃*‖2 ≤ 𝛿 for some small 𝛿 and

appropriate norm ‖ · ‖2.

Clearly these imply that any solution 𝜃 of 𝒜 also solves the unsupervised learning

problem. It is in general NP-hard to find a solution to a system of low-degree poly-

nomial equations and inequalities.

However, the SoS proof (2) means that such a search can be avoided. Instead,

we will relax the set of solutions 𝜃 to 𝒜 to a simple(er) convex set: the set of pseu-

dodistributions satisfying 𝒜. We define pseudodistributions formally later, for now

saying only that they are the convex duals of SoS proofs which use the axioms 𝒜.

By this duality, the SoS proof (2) implies not only that any solution 𝜃 to 𝒜 is a

good choice of parameters but also that a good choice of parameters can be extracted

from any pseudodistribution satisfying 𝒜. (We are glossing over for now that this

last step requires some SDP rounding algorithm, since we use only standard rounding

algorithms in this paper.)

Thus, the final SoS algorithms from this method take the form: solve an SDP to

find a pseudodistribution which satisfies 𝒜 and round it to obtain a estimate 𝜃 of 𝜃*.

To analyze the algorithm, use the SoS proof (2) to prove that ‖𝜃 − 𝜃*‖2 ≤ 𝛿.

4.2.2 Hölder’s inequality and identifiability from higher mo-

ments

Now we discuss the core ideas in our simple SoS identifiability proofs. We have not

yet formally defined SoS proofs, so our goal will just be to construct identifiability

proofs which are (a) phrased in terms of inequalities of low-degree polynomials and (b)

provable using only simple inequalities, like Cauchy-Schwarz and Hölder’s inequalities,

leaving the formalities for later.
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We consider an idealized version of situations we encounter in both the mixture

model and robust estimation settings. Let 𝜇* ∈ R𝑑. Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 have the

guarantee that for some 𝑇 ⊆ [𝑛] of size |𝑇 | = 𝛼𝑛, the vectors {𝑋𝑖}𝑖∈𝑇 are iid samples

from 𝒩 (𝜇*, 𝐼), a spherical Gaussian centered at 𝜇*; for the other vectors we make no

assumption. The goal is to estimate the mean 𝜇*.

The system 𝒜 of polynomial equations and inequalities we employ will be designed

so that a solution to 𝒜 corresponds to a subset of samples 𝑆 ⊆ [𝑛] of size |𝑆| = |𝑇 | =

𝛼𝑛. We accomplish this by identifying 𝑆 with its 0/1 indicator vector in R𝑛 (this is

standard). The inequalities in 𝒜 will enforce the following crucial moment property

on solutions: if 𝜇 = 1
|𝑆|
∑︀

𝑖∈𝑆 𝑋𝑖 is the empirical mean of samples in 𝑆 and 𝑡 ∈ N,

then

1

|𝑆|
∑︁
𝑖∈𝑆

⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ≤ 2 · 𝑡𝑡/2 · ‖𝑢‖𝑡2 for all 𝑢 ∈ R𝑑 . (4.1)

This inequality says that every one-dimensional projection 𝑢 of the samples in 𝑆, cen-

tered around their empirical mean, has a sub-Gaussian empirical 𝑡-th moment. (The

factor 2 accounts for deviations in the 𝑡-th moments of the samples.) By standard

concentration of measure, if 𝛼𝑛 ≫ 𝑑𝑡 the inequality holds for 𝑆 = 𝑇 . It turns out

that this property can be enforced by polynomials of degree 𝑡. (Actually our final

construction of 𝒜 will need to use inequalities of matrix-valued polynomials but this

can be safely ignored here.)

Intuitively, we would like to show that any 𝑆 which satisfies 𝒜 has empirical mean

close to 𝜇* using a low-degree SoS proof,. This is in fact true when 𝛼 = 1 − 𝜀 for

small 𝜀, which is at the core of our robust estimation algorithm. However, in the

mixture model setting, when 𝛼 = 1/(# of components), for each component 𝑗 there

is a subset 𝑇𝑗 ⊆ [𝑛] of samples from component 𝑗 which provides a valid solution

𝑆 = 𝑇𝑗 to 𝒜. The empirical mean of 𝑇𝑗 is close to 𝜇𝑗 and hence not close to 𝜇𝑖 for

any 𝑖 ̸= 𝑗.

We will prove something slightly weaker, which still demonstrates the main idea

in our identifiability proof.
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Lemma 4.2.1. With high probability, for every 𝑆 ⊆ [𝑛] which satisfies (4.1), if

𝜇 = 1
|𝑆|
∑︀

𝑖∈𝑆 𝑋𝑖 is the empirical mean of samples in 𝑆, then ‖𝜇 − 𝜇*‖2 ≤ 4𝑡1/2 ·

(|𝑇 |/|𝑆 ∩ 𝑇 |)1/𝑡.

Notice that a random 𝑆 ⊆ [𝑛] of size 𝛼𝑛 will have |𝑆 ∩ 𝑇 | ≈ 𝛼2𝑛. In this case

the lemma would yield the bound ‖𝜇 − 𝜇*‖2 ≤ 4𝑡1/2

𝛼1/𝑡 . Thinking of 𝛼 ≪ 1/𝑡, this

bound improves exponentially as 𝑡 grows. In the 𝑑-dimensional 𝑘-component mixture

model setting, one has 1/𝛼 = poly(𝑘), and thus the bound becomes ‖𝜇 − 𝜇*‖2 ≤

4𝑡1/2 · 𝑘𝑂(1/𝑡). In a mixture model where components are separated by 𝑘𝜀, such an

estimate is nontrivial when ‖𝜇 − 𝜇*‖2 ≪ 𝑘𝜀, which requires 𝑡 = 𝑂(1/𝜀). This is the

origin of the quantitative bounds in our mixture model algorithm.

We turn to the proof of Lemma 4.2.1. As we have already emphasized, the crucial

point is that this proof will be accomplished using only simple inequalities, avoiding

any union bound over all possible subsets 𝑆.

Proof of Lemma 4.2.1. Let 𝑤𝑖 be the 0/1 indicator of 𝑖 ∈ 𝑆. To start the argument,

we expand in terms of samples:

|𝑆 ∩ 𝑇 | · ‖𝜇− 𝜇*‖22 =
∑︁
𝑖∈𝑇

𝑤𝑖‖𝜇− 𝜇*‖22

=
∑︁
𝑖∈𝑇

𝑤𝑖⟨𝜇* − 𝜇, 𝜇* − 𝜇⟩ (4.2)

=
∑︁
𝑖∈𝑇

𝑤𝑖 [⟨𝑋𝑖 − 𝜇, 𝜇* − 𝜇⟩+ ⟨𝜇* −𝑋𝑖, 𝜇
* − 𝜇⟩] . (4.3)

The key term to bound is the first one; the second amounts to a deviation term. By
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Hölder’s inequality and for even 𝑡,

∑︁
𝑖∈𝑇

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇* − 𝜇⟩ ≤

(︃∑︁
𝑖∈𝑇

𝑤𝑖

)︃ 𝑡−1
𝑡

·

(︃∑︁
𝑖∈𝑇

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇* − 𝜇⟩𝑡
)︃1/𝑡

≤

(︃∑︁
𝑖∈𝑇

𝑤𝑖

)︃ 𝑡−1
𝑡

·

⎛⎝∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇* − 𝜇⟩𝑡
⎞⎠1/𝑡

≤

(︃∑︁
𝑖∈𝑇

𝑤𝑖

)︃ 𝑡−1
𝑡

· 2𝑡1/2 · ‖𝜇* − 𝜇‖2

= |𝑆 ∩ 𝑇 |
𝑡−1
𝑡 · 2𝑡1/2 · ‖𝜇* − 𝜇‖2 .

The second line follows by adding the samples from [𝑛] ∖𝑇 to the sum; since 𝑡 is even

this only increases its value. The third line uses the moment inequality (4.1). The

last line just uses the definition of 𝑤.

For the second, deviation term, we use Hölder’s inequality again:

∑︁
𝑖∈𝑇

𝑤𝑖⟨𝜇* −𝑋𝑖, 𝜇
* − 𝜇⟩ ≤

(︃∑︁
𝑖∈𝑇

𝑤𝑖

)︃ 𝑡−1
𝑡

·

(︃∑︁
𝑖∈𝑇

⟨𝜇* −𝑋𝑖, 𝜇
* − 𝜇⟩𝑡

)︃1/𝑡

.

The distribution of 𝜇* −𝑋𝑖 for 𝑖 ∈ 𝑇 is 𝒩 (0, 𝐼). By standard matrix concentration,

if |𝑇 | = 𝛼𝑛≫ 𝑑𝑡,

∑︁
𝑖∈𝑇

[︀
(𝑋𝑖 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑋𝑖 − 𝜇*)⊗𝑡/2

]︀⊤ ⪯ 2|𝑇 | E
𝑌∼𝒩 (0,𝐼)

(︀
𝑌 ⊗𝑡/2

)︀ (︀
𝑌 ⊗𝑡/2

)︀⊤
with high probability and hence, using the quadratic form at (𝜇* − 𝜇)⊗𝑡/2,

∑︁
𝑖∈𝑇

⟨𝜇* −𝑋𝑖, 𝜇
* − 𝜇⟩𝑡 ≤ 2|𝑇 |𝑡𝑡/2 · ‖𝜇* − 𝜇‖𝑡2 .

Putting these together and simplifying constants, we have obtained that with high

probability,

|𝑆 ∩ 𝑇 | · ‖𝜇− 𝜇*‖22 ≤ 4𝑡1/2|𝑇 |1/𝑡 · |𝑆 ∩ 𝑇 |(𝑡−1)/𝑡 · ‖𝜇− 𝜇*‖2
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which simplifies to

|𝑆 ∩ 𝑇 |1/𝑡 · ‖𝜇− 𝜇*‖2 ≤ 4𝑡1/2|𝑇 |1/𝑡 .

4.2.3 From identifiability to algorithms

We now discuss how to use the ideas described above algorithmically for learning

well-separated mixture models. The high level idea for robust estimation is simi-

lar. Given Lemma 4.2.1, a naive algorithm for learning mixture models would be

the following: find a set of points 𝑇 of size roughly 𝑛/𝑘 that satisfy the moment

bounds described, and simply output their empirical mean. Since by a simple count-

ing argument this set must have nontrivial overlap with the points from some mixture

component, Lemma 4.2.1 guarantees that the empirical mean is close to mean of this

component.

However, in general finding such a set of points is algorithmically difficult. In

fact, it would suffice to find a distribution over such sets of points (since then one

could simply sample from this distribution), however, this is just as computationally

difficult. The critical insight is that because of the proof of Lemma 4.2.1 only uses facts

about low degree polynomials, it suffices to find an object which is indistinguishable

from such a distribution, considered as a functional on low-degree polynomials.

The natural object in this setting is a pseudo-distribution. Pseudo-distributions

form a convex set, and for a set of low-degree polynomial equations and inequalities

𝒜, it is possible to find a pseudo-distribution which is indistinguishable from a distri-

bution over solutions to 𝒜 (as such a functional) in polynomial time via semidefinite

programming (under mild assumptions on 𝒜). More specifically, the set of SoS proofs

using axioms 𝒜 is a semidefinite program (SDP), and the above pseudodistributions

form the dual SDP. (We will make these ideas more precise in the next two sections.)

Our algorithm then proceeds via the following general framework: find an appro-

priate pseudodistribution via convex optimization, then leverage our low-degree sum

of squares proofs to show that information about the true clusters can be extracted

from this object by a standard SDP rounding procedure.
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4.3 Preliminaries

Throughout the paper we let 𝑑 be the dimensionality of the data, and we will be

interested in the regime where 𝑑 is at least a large constant. We also let ‖𝑣‖2 denote

the ℓ2 norm of a vector 𝑣, and ‖𝑀‖𝐹 to denote the Frobenius norm of a matrix 𝑀 . We

will also give randomized algorithms for our problems that succeed with probability

1−poly(1/𝑘, 1/𝑑); by standard techniques this probability can be boosted to 1−𝜉 by

increasing the sample and runtime complexity by a mulitplicative log 1/𝜉. Moreover,

in accordance with some conventions from the SoS literature, we will often drop the

brackets on the outside of expectations.

We now formally define the class of distributions we will consider throughout this

paper. At a high level, we will consider distributions which have bounded moments,

for which there exists a low degree SoS proof of this moment bound. Formally:

Definition 4.3.1. Let 𝐷 be a distribution over R𝑑 with mean 𝜇. For 𝑐 ≥ 1, 𝑡 ∈ N,

we say that 𝐷 is 𝑡-explicitly bounded with variance proxy 𝜎 if for every even 𝑠 ≤ 𝑡

there is a degree 𝑠 SoS proof (see Section 4.3.1 for a formal definition) of

⊢𝑠 𝐸𝑌∼𝐷𝑘
⟨(𝑌 − 𝜇) , 𝑢⟩𝑠 ≤ (𝜎𝑠)𝑠/2‖𝑢‖𝑠2 .

Equivalently, the polynomial 𝑝(𝑢) = (𝜎𝑠)𝑠/2‖𝑢‖𝑠2 − 𝐸𝑌∼𝐷𝑘
⟨(𝑌 − 𝜇) , 𝑢⟩𝑠 should be a

sum-of-squares. In our typical use case, 𝜎 = 1, we will omit it and call the distribution

𝑡-explicitly bounded.

Throughout this paper, since all of our problems are scale invariant, we will assume

without loss of generality that 𝜎 = 1. This class of distributions captures a number of

natural classes of distributions. Intuitively, if 𝑢 were truly a vector in R𝑘 (rather than

a vector of indeterminants), then this exactly captures sub-Gaussian type moment.

Our requirement is simply that these types of moment bounds not only hold, but also

have a SoS proof.

We remark that our results also hold for somewhat more general settings. It is

not particularly important that the 𝑠-th moment bound has a degree 𝑠 proof; our
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techniques can tolerate degree 𝑂(𝑠) proofs. Our techniques also generally apply for

weaker moment bounds. For instance, our techniques naturally extend to explicitly

bounded sub-exponential type distributions in the obvious way. We omit these details

for simplicity.

As we show in Appendix D.1.1, this class still captures many interesting types

of nice distributions, including Gaussians, product distributions with sub-Gaussian

components, and rotations therof. With this definition in mind, we can now formally

state the problems we consider in this paper:

Learning well-separated mixture models We first define the class of mixture

models for which our algorithm works:

Definition 4.3.2 (𝑡-explicitly bounded mixture model with separation Δ). Let 𝜇1, . . . , 𝜇𝑘 ∈

R𝑑 satisfy ‖𝜇𝑖 − 𝜇𝑗‖2 > Δ for every 𝑖 ̸= 𝑗, and let 𝐷1, . . . , 𝐷𝑘 have means 𝜇1, . . . , 𝜇𝑘,

so that each 𝐷𝑖 is 𝑡-explicitly bounded. Let 𝜆1, . . . , 𝜆𝑘 ≥ 0 satisfy
∑︀

𝑖∈[𝑘] 𝜆𝑖 = 1.

Together these define a mixture distribution on R𝑑 by first sampling 𝑖 ∼ 𝜆, then

sampling 𝑥 ∼ 𝐷𝑖.

The problem is then:

Problem 4.3.1. Let𝐷 be a 𝑡-explicitly bounded mixture model in R𝑑 with separation

Δ with 𝑘 components. Given 𝑘,Δ, and 𝑛 independent samples from 𝐷, output̂︀𝜇1, . . . , ̂︀𝜇𝑚 so that with probability at least 0.99, there exists a permutation 𝜋 : [𝑘]→

[𝑘] so that ‖𝜇𝑖 − ̂︀𝜇𝜋(𝑖)‖2 ≤ 𝛿 for all 𝑖 = 1, . . . , 𝑘.

Robust mean estimation We consider the same basic model of corruption as we

do throughout this thesis. The problem we consider in this setting is the following:

Problem 4.3.2 (Robust mean estimation). Let 𝐷 be an 𝑂(𝑡)-explicitly bounded

distribution over R𝑑 wih mean 𝜇. Given 𝑡, 𝜀, and an 𝜀-corrupted set of samples from

𝐷, output ̂︀𝜇 satisfying ‖𝜇− ̂︀𝜇‖2 ≤ 𝑂(𝜀1−1/𝑡).
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4.3.1 The SoS proof system

We refer the reader to [OZ13, BS14] and the references therein for a thorough expo-

sition of the SoS algorithm and proof system; here we only define what we need.5

Let 𝑥1, . . . , 𝑥𝑛 be indeterminates and 𝒜 be the set of polynomial equations and

inequalities {𝑝1(𝑥) ≥ 0, . . . , 𝑝𝑚(𝑥) ≥ 0, 𝑞1(𝑥) = 0, . . . , 𝑞𝑚(𝑥) = 0}. We say that the

statement 𝑝(𝑥) ≥ 0 has an SoS proof if there are polynomials {𝑟𝛼}𝛼⊆[𝑚] (where 𝛼 may

be a multiset) and {𝑠𝑖}𝑖∈[𝑚] such that

𝑝(𝑥) =
∑︁
𝛼

𝑟𝛼(𝑥) ·
∏︁
𝑖∈𝛼

𝑝𝑖(𝑥) +
∑︁
𝑖∈[𝑚]

𝑠𝑖(𝑥)𝑞𝑖(𝑥)

and each polynomial 𝑟𝛼(𝑥) is a sum of squares.

If the polynomials 𝑟𝛼(𝑥) ·
∏︀

𝑖∈𝛼 𝑝𝑖(𝑥) and 𝑠𝑖(𝑥)𝑞𝑖(𝑥) have degree at most 𝑑, we say

the proof has degree at most 𝑑, and we write

𝒜 ⊢𝑑 𝑝(𝑥) ≥ 0 .

SoS proofs compose well, and we frequently use the following without comment.

Fact 4.3.1. If 𝒜 ⊢𝑑 𝑝(𝑥) ≥ 0 and 𝒜 ⊢𝑑′ 𝑞(𝑥) ≥ 0, then 𝒜∪ℬ ⊢max(𝑑,𝑑′) 𝑝(𝑥)+𝑞(𝑥) ≥

0 and 𝒜 ∪ ℬ ⊢𝑑𝑑′ 𝑝(𝑥)𝑞(𝑥) ≥ 0.

We turn to the dual objects to SoS proofs. A degree-𝑑 pseudoexpectation (for

variety we sometimes say “pseudodistribution") is a linear operator Ẽ : R[𝑥]≤𝑑 → R,

where R[𝑥]≤𝑑 are the polynomials in indeterminates 𝑥 with real coefficients, which

satisfies the following

1. Normalization: Ẽ[1] = 1

2. Positivity: Ẽ[𝑝(𝑥)2] ≥ 0 for every 𝑝 of degree at most 𝑑/2.

We say that a degree-𝑑 pseudoexpectation Ẽ satisfies inequalities and equalities

{𝑝1(𝑥) ≥ 0, . . . , 𝑝𝑚(𝑥) ≥ 0, 𝑞1(𝑥) = 0, . . . , 𝑞𝑚(𝑥) = 0} at degree 𝑟 ≤ 𝑑 if
5Our definition of SoS proofs differs slightly from O’Donnell and Zhou’s in that we allow proofs

to use products of axioms.
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1. for every multiset 𝛼 ⊆ [𝑚] and SoS polynomial 𝑠(𝑥) such that the degree of

𝑠(𝑥)
∏︀

𝑖∈𝛼 𝑝𝑖(𝑥) is at most 𝑟, one has Ẽ 𝑠(𝑥)
∏︀

𝑖∈𝛼 𝑝𝑖(𝑥) ≥ 0, and

2. for every 𝑞𝑖(𝑥) and every polynomial 𝑠(𝑥) such that the degree of 𝑞𝑖(𝑥)𝑠(𝑥) ≤ 𝑟,

one has Ẽ 𝑠(𝑥)𝑞𝑖(𝑥) = 0.

The main fact relating pseudoexpectations and SoS proofs is:

Fact 4.3.2 (Soundness of SoS proofs, informal). If 𝒜 is a set of equations and in-

equalities and 𝒜 ⊢ℓ 𝑝(𝑥) ≥ 0, and Ẽ is a degree 𝑑 > ℓ pseudodistribution satisfying 𝒜

at degree 𝑑, then Ẽ satisfies 𝒜 ∪ {𝑝 ≥ 0} at degree 𝑑− ℓ.6

In Section D.1 we state and prove many basic SoS inequalities that we will require

throughout the paper.

Gaussian distributions are explicitly bounded In Section D.1 we show that

product distributions (and rotations thereof) with bounded 𝑡-th moments are explic-

itly bounded.

Lemma 4.3.3. Let 𝐷 be a distribution over R𝑑 so that 𝐷 is a rotation of a product

distribution 𝐷′ where each coordinate 𝑋 with mean 𝜇 of 𝐷 satisfies

E[(𝑋 − 𝜇)𝑠] ≤ 2−𝑠
(︁𝑠
2

)︁𝑠/2
Then 𝐷 is 𝑡-explicitly bounded (with variance proxy 1).

(The factors of 1
2

can be removed for many distributions, including Gaussians.)

4.4 Capturing empirical moments with polynomials

To describe our algorithms we need to describe a system of polynomial equations and

inequalities which capture the following problem: among 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑, find a

subset of 𝑆 ⊆ [𝑛] of size 𝛼𝑛 such that the empirical 𝑡-th moments obey a moment

bound: 1
𝛼𝑛

∑︀
𝑖∈𝑆⟨𝑋𝑖, 𝑢⟩𝑡 ≤ 𝑡𝑡/2‖𝑢‖𝑡2 for every 𝑢 ∈ R𝑑.

6See [BS17] for a full account of completeness and soundness of SoS.
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Let 𝑘, 𝑛 ∈ N and let 𝑤 = (𝑤1, . . . , 𝑤𝑛), 𝜇 = (𝜇1, . . . , 𝜇𝑘) be indeterminates. Let

1. 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑

2. 𝛼 ∈ [0, 1] be a number (the intention is |𝑆| = 𝛼𝑛).

3. 𝑡 ∈ N be a power of 2, the order of moments to control

4. 𝜇1, . . . , 𝜇𝑘 ∈ R𝑑, which will eventually be the means of a 𝑘-component mixture

model, or when 𝑘 = 1, the true mean of the distribution whose mean we robustly

estimate.

5. 𝜏 > 0 be some error magnitude accounting for fluctuations in the sizes of clusters

(which may be safely ignored at first reading).

Definition 4.4.1. Let 𝒜 be the following system of equations and inequalities, de-

pending on all the parameters above.

1. 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑛] (enforcing that 𝑤 is a 0/1 vector, which we interpret as

the indicator vector of the set 𝑆).

2. (1 − 𝜏)𝛼𝑛 ≤
∑︀

𝑖∈[𝑛]𝑤𝑖 ≤ (1 + 𝜏)𝛼𝑛, enforcing that |𝑆| ≈ 𝛼𝑛 (we will always

choose 𝜏 = 𝑜(1)).

3. 𝜇·
∑︀

𝑖∈[𝑛]𝑤𝑖 =
∑︀

𝑖∈[𝑛]𝑤𝑖𝑋𝑖, enforcing that 𝜇 is the empirical mean of the samples

in 𝑆

4.
∑︀

𝑖∈[𝑛]𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇 − 𝜇𝑗⟩𝑡 ≤ 2 · 𝑡𝑡/2
∑︀

𝑖∈[𝑛]𝑤𝑖‖𝜇 − 𝜇𝑗‖𝑡2 for every 𝜇𝑗 among

𝜇1, . . . , 𝜇𝑚. This enforces that the 𝑡-th empirical moment of the samples in

𝑆 is bounded in the direction 𝜇− 𝜇𝑗.

Notice that since we will eventually take 𝜇𝑗’s to be unknown parameters we are

trying to estimate, the algorithm cannot make use of 𝒜 directly, since the last family

of inequalities involve the 𝜇𝑗’s. Later in this paper we exhibit a system of inequalities

which requires the empirical 𝑡-th moments to obey a sub-Gaussian type bound in

every direction, hence implying the inequalities here without requiring knowledge of

the 𝜇𝑗’s to write down. Formally, we will show:
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Lemma 4.4.1. Let 𝛼 ∈ [0, 1]. Let 𝑡 ∈ N be a power of 2, 𝑡 ≥ 4.7 Let 0.1 > 𝜏 > 0.

Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑. Let 𝐷 be a 10𝑡-explicitly bounded distribution.

There is a family ̂︀𝒜 of polynomial equations and inequalities of degree 𝑂(𝑡) on

variables 𝑤 = (𝑤1, . . . , 𝑤𝑛), 𝜇 = (𝜇1, . . . , 𝜇𝑘) and at most 𝑛𝑂(𝑡) other variables, whose

coefficients depend on 𝛼, 𝑡, 𝜏,𝑋1, . . . , 𝑋𝑛, such that

1. (Satisfiability) If there 𝑆 ⊆ [𝑛] of size at least (𝛼 − 𝜏)𝑛 so that {𝑋𝑖}𝑖∈𝑆 is an

iid set of samples from 𝐷, and (1− 𝜏)𝛼𝑛 ≥ 𝑑100𝑡, then for 𝑑 large enough, with

probability at least 1 − 𝑑−8, the system ̂︀𝒜 has a solution over R which takes 𝑤

to be the 0/1 indicator vector of 𝑆.

2. (Solvability) For every 𝐶 ∈ N there is an 𝑛𝑂(𝐶𝑡)-time algorithm which, when̂︀𝒜 is satisfiable, returns a degree-𝐶𝑡 pseudodistribution which satisfies ̂︀𝒜 (up to

additive error 2−𝑛).

3. (Moment bounds for polynomials of 𝜇) Let 𝑓(𝜇) be a length-𝑑 vector of degree-ℓ

polynomials in indeterminates 𝜇 = (𝜇1, . . . , 𝜇𝑘). ̂︀𝒜 implies the following in-

equality and the implication has a degree 𝑡ℓ SoS proof.

̂︀𝒜 ⊢𝑂(𝑡ℓ)
1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑓(𝜇)⟩𝑡 ≤ 2 · 𝑡𝑡/2‖𝑓(𝜇)‖𝑡2 .

4. (Booleanness) ̂︀𝒜 includes the equations 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑛].

5. (Size) ̂︀𝒜 includes the inequalities (1− 𝜏)𝛼𝑛 ≤
∑︀
𝑤𝑖 ≤ (1 + 𝜏)𝛼𝑛.

6. (Empirical mean) ̂︀𝒜 includes the equation 𝜇 ·
∑︀

𝑖∈[𝑛]𝑤𝑖 =
∑︀

𝑖∈[𝑛]𝑤𝑖𝑋𝑖.

In particular this implies that ̂︀𝒜 ⊢𝑂(𝑡) 𝒜.

The proof of Lemma 4.4.1 can be found in Section 4.7.

Remark 4.4.1 (Numerical accuracy, semidefinite programming, and other monsters).

We pause here to address issues of numerical accuracy. Our final algorithms use point
7The condition 𝑡 ≥ 4 is merely for technical convenience.
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2 in Lemma 4.4.1 (itself implemented using semidefinite programming) to obtain a

pseudodistribution Ẽ satisfying ̂︀𝒜 approximately, up to error 𝜂 = 2−𝑛 in the following

sense: for every 𝑟 a sum of squares and 𝑓1, . . . , 𝑓ℓ ∈ 𝒜 with deg [𝑟 ·
∏︀
𝑓𝑖 ≤ 𝐶𝑡], one

has Ẽ 𝑟 ·
∏︀

𝑖∈𝒜 𝑓 ≥ −𝜂 · ‖𝑟‖2, where ‖𝑟‖2 is ℓ2 norm of the coefficients of 𝑟. Our main

analyses of this pseudodistribution employ the implication ̂︀𝒜 ⊢ ℬ for another family

of inequalities ℬ to conclude that if Ẽ satisfies 𝒜 then it satisfies ℬ, then use the

latter to analyze our rounding algorithms. Because all of the polynomials eventually

involved in the SoS proof ̂︀𝒜 ⊢ ℬ have coefficients bounded by 𝑛𝐵 for some large

constant 𝐵, it may be inferred that if Ẽ approximately satisfies ̂︀𝒜 in the sense above,

it also approximately satisfies ℬ, with some error 𝜂′ ≤ 2−Ω(𝑛). The latter is a sufficient

for all of our rounding algorithms.

Aside from mentioning at a couple key points why our SoS proofs have bounded

coefficients, we henceforth ignore all numerical issues. For further discussion of nu-

merical accuracy and well-conditioned-ness issues in SoS, see [O’D17, BS17, RW17]

4.5 Mixture models: algorithm and analysis

In this section we formally describe and analyze our algorithm for mixture models.

We prove the following theorem.

Theorem 4.5.1 (Main theorem on mixture models). For every large-enough 𝑡 ∈ N

there is an algorithm with the following guarantees. Let 𝜇1, . . . , 𝜇𝑘 ∈ R𝑑, satisfy

‖𝜇𝑖−𝜇𝑗‖2 ≥ Δ. Let 𝐷1, . . . , 𝐷𝑘 be 10𝑡-explicitly bounded, with means 𝜇1, . . . , 𝜇𝑘. Let

𝜆1, . . . , 𝜆𝑘 ≥ 0 satisfy
∑︀
𝜆𝑖 = 1. Given 𝑛 ≥ (𝑑𝑡𝑘)𝑂(1) · (max𝑖∈[𝑚] 1/𝜆𝑖)

𝑂(1) samples

from the mixture model given by 𝜆1, . . . , 𝜆𝑘, 𝐷1, . . . , 𝐷𝑘, the algorithm runs in time

𝑛𝑂(𝑡) and with high probability returns {�̂�1, . . . , �̂�𝑘} (not necessarily in that order)

such that

‖𝜇𝑖 − �̂�𝑖‖2 ≤
2𝐶𝑡𝑚𝐶𝑡𝑡/2

Δ𝑡−1

for some universal constant 𝐶.
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In particular, we note two regimes: if Δ = 𝑘𝛾 for a constant 𝛾 > 0, choosing

𝑡 = 𝑂(1/𝛾) we get that the ℓ2 error of our estimator is poly(1/𝑘) for any 𝑂(1/𝛾)-

explicitly bounded distribution, and our estimator requires only (𝑑𝑘)𝑂(1) samples and

time. This matches the guarantees of Theorem 4.1.1.

On the other hand, if Δ = 𝐶 ′√log 𝑘 (for some universal 𝐶 ′) then taking 𝑡 =

𝑂(log 𝑘) gives error

‖𝜇𝑖 − �̂�𝑖‖2 ≤ 𝑘𝑂(1) ·
(︂√

𝑡

Δ

)︂𝑡

which, for large-enough 𝐶 ′ and 𝑡, can be made 1/ poly(𝑘). Thus for Δ = 𝐶 ′√log 𝑘 and

any 𝑂(log 𝑘)-explicitly bounded distribuion we obtain error 1/ poly(𝑘) with 𝑑𝑂(log 𝑘)

samples and 𝑑𝑂(log 𝑘)2 time.

In this section we describe and analyze our algorithm. To avoid some technical

work we analyze the uniform mixtures setting, with 𝜆𝑖 = 1/𝑚. In Section D.4 we

describe how to adapt the algorithm to the nonuniform mixture setting.

4.5.1 Algorithm and main analysis

We formally describe our mixture model algorithm now. We use the following lemma,

which we prove in Section 4.5.6. The lemma says that given a matrix which is very

close, in Frobenious norm, to the 0/1 indicator matrix of a partition of [𝑛] it is possible

to approximately recover the partition. (The proof is standard.)

Lemma 4.5.2 (Second moment rounding, follows from Theorem 4.5.11). Let 𝑛,𝑚 ∈

N with 𝑚≪ 𝑛. There is a polynomial time algorithm RoundSecondMoments with

the following guarantees. Suppose 𝑆1, . . . , 𝑆𝑚 partition [𝑛] into 𝑚 pieces, each of size
𝑛
2𝑚
≤ |𝑆𝑖| ≤ 2𝑛

𝑚
. Let 𝐴 ∈ R𝑛×𝑛 be the 0/1 indicator matrix for the partition 𝑆; that

is, 𝐴𝑖𝑗 = 1 if 𝑖, 𝑗 ∈ 𝑆ℓ for some ℓ and is 0 otherwise. Let 𝑀 ∈ R𝑛×𝑛 be a matrix with

‖𝐴−𝑀‖𝐹 ≤ 𝜀𝑛. Given 𝑀 , with probability at least 1− 𝜀2𝑚3 the algorithm returns a

partition 𝐶1, . . . , 𝐶𝑚 of [𝑛] such that up to a global permutation of [𝑚], 𝐶𝑖 = 𝑇𝑖 ∪𝐵𝑖,

where 𝑇𝑖 ⊆ 𝑆𝑖 and |𝑇𝑖| ≥ |𝑆𝑖| − 𝜀2𝑚2𝑛 and |𝐵𝑖| ≤ 𝜀2𝑚2𝑛.
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Algorithm 11 Mixture Model Learning
1: function LearnMixtureMeans(𝑡,𝑋1, . . . , 𝑋𝑛, 𝛿, 𝜏)
2: By semidefinite programming (see Lemma 4.4.1, item 2), find a pseudoex-

pectation of degree 𝑂(𝑡) which satisfies the structured subset polynomials from
Lemma 4.4.1, with 𝛼 = 𝑛/𝑚 such that ‖ Ẽ𝑤𝑤⊤‖𝐹 is minimized among all such
pseudoexpectations.

3: Let 𝑀 ← 𝑚 · Ẽ𝑤𝑤⊤.
4: Run the algorithm RoundSecondMoments on 𝑀 to obtain a partition
𝐶1, . . . , 𝐶𝑚 of [𝑛].

5: Run the algorithm EstimateMean from Section 4.6 on each cluster 𝐶𝑖, with
𝜀 = 2𝐶𝑡𝑡𝑡/2𝑚4/Δ𝑡 for some universal constant 𝐶 to obtain a list of mean estimates
�̂�1, . . . , �̂�𝑚.

6: Output �̂�1, . . . , �̂�𝑚.

Remark 4.5.1 (On the use of EstimateMean). As described, LearnMixture-

Means has two phases: a clustering phase and a mean-estimation phase. The clus-

tering phase is the heart of the algorithm; we will show that after running Round-

SecondMoments the algorithm has obtained clusters 𝐶1, . . . , 𝐶𝑘 which err from

the ground-truth clustering on only a 2𝑂(𝑡)𝑡𝑡/2 poly(𝑘)
Δ𝑡 -fraction of points. To obtain es-

timates �̂�𝑖 of the underlying means from such a clustering, one simple option is to

output the empirical mean of the clusters. However, without additional pruning this

risks introducing error in the mean estimates which grows with the ambient dimension

𝑑. By using the robust mean estimation algorithm instead to obtain mean estimates

from the clusters we obtain errors in the mean estimates which depend only on the

number of clusters 𝑘, the between-cluster separation Δ, and the number 𝑡 of bounded

moments.

Remark 4.5.2 (Running time). We observe that LearnMixtureMeans can be im-

plemented in time 𝑛𝑂(𝑡). The main theorem requires 𝑛 ≥ 𝑘𝑂(1)𝑑𝑂(𝑡), which means

that the final running time of the algorithm is (𝑘𝑑𝑡)𝑂(𝑡).8

8As discussed in Section 4.4, correctness of our algorithm at the level of numerical accuracy
requires that the coefficients of every polynomial in the SoS program ̂︀𝒜 (and every polynomial in
the SoS proofs we use to analyze ̂︀𝒜) are polynomially bounded. This may not be the case if some
vectors 𝜇1, . . . , 𝜇𝑚 have norms ‖𝜇𝑖‖2 ≥ 𝑑𝜔(1). This can be fixed by naively clustering the samples
𝑋1, . . . , 𝑋𝑛 via single-linkage clustering, then running LearnMixtureMeans on each cluster. It
is routine to show that the diameter of each cluster output by a naive clustering algorithm is
at most poly(𝑑, 𝑘) under our assumptions, and that with high probability single-linkage clustering
produces a clustering respecting the distributions 𝐷𝑖. Hence, by centering each cluster before running
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4.5.2 Proof of main theorem

In this section we prove our main theorem using the key lemmata; in the following

sections we prove the lemmata.

Deterministic Conditions We recall the setup. There are 𝑘 mean vectors 𝜇1, . . . , 𝜇𝑘 ∈

R𝑑, and corresponding distributions 𝐷1, . . . , 𝐷𝑘 where 𝐷𝑗 has mean 𝜇𝑗. The distri-

butions 𝐷𝑗 are 10𝑡-explicitly bounded for a choice of 𝑡 which is a power of 2. Vectors

𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 are samples from a uniform mixture of 𝐷1, . . . , 𝐷𝑘. We will prove

that our algorithm succeeds under the following condition on the samples 𝑋1, . . . , 𝑋𝑛.

(D1) (Empirical moments) For every cluster 𝑆𝑗 = {𝑋𝑖 : 𝑋𝑖 is from 𝐷𝑗}, the system̂︀𝒜 from Lemma 4.4.1 with 𝛼 = 1/𝑚 and 𝜏 = Δ−𝑡 has a solution which takes

𝑤 ∈ {0, 1}𝑛 to be the 0/1 indicator vector of 𝑆𝑗.

(D2) (Empirical means) Let 𝜇𝑗 be the empirical mean of cluster 𝑆𝑗. The 𝜇𝑗’s satisfy

‖𝜇𝑖 − 𝜇𝑖‖2 ≤ Δ−𝑡.

We note a few useful consequences of these conditions, especially (D1). First of all,

it implies all clusters have almost the same size: (1−Δ−𝑡) · 𝑛
𝑘
≤ |𝑆𝑗| ≤ (1 +Δ−𝑡) · 𝑛

𝑘
.

Second, it implies that all clusters have explicitly bounded moments: for every 𝑆𝑗,

⊢𝑡
𝑘

𝑛

∑︁
𝑖∈𝑆𝑗

⟨𝑋𝑖 − 𝜇𝑗, 𝑢⟩𝑡 ≤ 2 · 𝑡𝑡/2 · ‖𝑢‖𝑡2 .

Lemmas The following key lemma captures our SoS identifiability proof for mixture

models.

Lemma 4.5.3. Let 𝜇1, . . . , 𝜇𝑘, 𝐷1, . . . , 𝐷𝑘 be as in Theorem 4.5.1, with mean sepa-

ration Δ. Suppose (D1), (D2) occur for samples 𝑋1, . . . , 𝑋𝑛. Let 𝑡 ∈ N be a power of

two. Let Ẽ be a degree-𝑂(𝑡) pseudoexpectation which satisfies 𝒜 from Lemma 4.4.1

with 𝛼 = 1/𝑘 and 𝜏 ≤ Δ−𝑡. Then for every 𝑗, ℓ ∈ [𝑘],

Ẽ⟨𝑎𝑗, 𝑤⟩⟨𝑎ℓ, 𝑤⟩ ≤ 28𝑡+8 · 𝑡𝑡/2 · 𝑛
2

𝑘
· 1

Δ𝑡
.

LearnMixtureMeans we can assume that ‖𝜇𝑖‖2 ≤ poly(𝑑, 𝑘) for every 𝑖 ≤ 𝑑.
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The other main lemma shows that conditions (D1) and (D2) occur with high proba-

bility.

Lemma 4.5.4 (Concentration for mixture models). With notation as above, con-

ditions (D1) and (D2) simultaneously occur with probability at least 1 − 1/𝑑15 over

samples 𝑋1, . . . , 𝑋𝑛, so long as 𝑛 ≥ 𝑑𝑂(𝑡)𝑘𝑂(1), for Δ ≥ 1.

Lemma 4.5.4 follows from Lemma 4.4.1, for (D1), and standard concentration argu-

ments for (D2). Now we can prove the main theorem.

Proof of Theorem 4.5.1 (uniform mixtures case). Suppose conditions (D1) and (D2)

hold. Our goal will be to bound ‖𝑀 − 𝐴‖2𝐹 ≤ 𝑛 · 2𝑂(𝑡)𝑡𝑡/2𝑘4

Δ𝑡 , where 𝐴 is the 0/1

indicator matrix for the ground truth partition 𝑆1, . . . , 𝑆𝑘 of 𝑋1, . . . , 𝑋𝑛 according

to 𝐷1, . . . , 𝐷𝑘. Then by Lemma 4.5.2, the rounding algorithm will return a parti-

tion 𝐶1, . . . , 𝐶𝑘 of [𝑛] such that 𝐶ℓ and 𝑆ℓ differ by at most 𝑛2𝑂(𝑡)𝑡𝑡/2𝑘10

Δ𝑡 points, with

probability at least 1− 2𝑂(𝑡)𝑡𝑡/2𝑘30

Δ𝑡 . By the guarantees of Theorem 4.6.1 regarding the

algorithm EstimateMean, with high probability the resulting error in the mean

estimates �̂�𝑖 will satisfy

‖𝜇𝑖 − �̂�𝑖‖2 ≤
√
𝑡 ·
(︂
2𝑂(𝑡)𝑡𝑡/2𝑘10

Δ𝑡

)︂ 𝑡−1
𝑡

≤ 2𝑂(𝑡) · 𝑡𝑡/2 · 𝑘10

Δ𝑡−1
.

We turn to the bound on ‖𝑀−𝐴‖2𝐹 . First we bound ⟨Ẽ𝑤𝑤⊤, 𝐴⟩. Getting started,

Ẽ

⎛⎝∑︁
𝑖∈[𝑘]

⟨𝑤, 𝑎𝑖⟩

⎞⎠2

= Ẽ

⎛⎝∑︁
𝑖∈[𝑛]

𝑤𝑖

⎞⎠2

≥ (1−Δ−𝑡)2 · 𝑛2/𝑘2 .

By Lemma 4.5.3, choosing 𝑡 later,

∑︁
𝑖 ̸=𝑗∈[𝑘]

Ẽ⟨𝑎𝑖, 𝑤⟩⟨𝑎𝑗, 𝑤⟩ ≤ 𝑛22𝑂(𝑡)𝑡𝑡/2 · 𝑘 · 1

Δ𝑡
.

Together, these imply

Ẽ
∑︁
𝑖∈[𝑘]

⟨𝑤, 𝑎𝑖⟩2 ≥
𝑛2

𝑘2
·
[︂
1− 2𝑂(𝑡)𝑡𝑡/2𝑘3

Δ𝑡

]︂
.
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At the same time, ‖ Ẽ𝑤𝑤𝑇‖𝐹 ≤ 1
𝑘
‖𝐴‖𝐹 by minimality (since the uniform distri-

bution over cluster indicators satisfies 𝒜), and by routine calculation and assumption

(D1), ‖𝐴‖𝐹 ≤ 𝑛√
𝑘
(1 +𝑂(Δ−𝑡)). Together, we have obtained

⟨𝑀,𝐴⟩ ≥
(︂
1− 2𝑂(𝑡)𝑡𝑡/2𝑘3

Δ𝑡

)︂
· ‖𝐴‖𝐹‖𝑀‖𝐹

which can be rearranged to give ‖𝑀 − 𝐴‖2𝐹 ≤ 𝑛 · 2𝑂(𝑡)𝑡𝑡/2𝑘4

Δ𝑡 .

4.5.3 Identifiability

In this section we prove Lemma 4.5.3. We use the following helpful lemmas. The first

is in spirit an SoS version of Lemma 4.2.1.

Lemma 4.5.5. Let 𝜇1, . . . , 𝜇𝑘, 𝐷1, . . . , 𝐷𝑘, 𝑡 be as in Theorem 4.5.1. Let 𝜇𝑖 be as

in (D1). Suppose (D1) occurs for samples 𝑋1, . . . , 𝑋𝑛. Let 𝒜 be the system from

Lemma 4.4.1, with 𝛼 = 1/𝑘 and any 𝜏 . Then

𝒜 ⊢𝑂(𝑡) ⟨𝑎𝑗, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 2𝑡+2𝑡𝑡/2 · 𝑛
𝑘
· ⟨𝑎𝑗, 𝑤⟩𝑡−1 · ‖𝜇− 𝜇𝑗‖𝑡2 .

The second lemma is an SoS triangle inequality, capturing the consequences of

separation of the means. The proof is standard given Fact D.1.2.

Lemma 4.5.6. Let 𝑎, 𝑏 ∈ R𝑘 and 𝑡 ∈ N be a power of 2. Let Δ = ‖𝑎 − 𝑏‖2. Let

𝑢 = (𝑢1, . . . , 𝑢𝑘) be indeterminates. Then ⊢𝑡 ‖𝑎− 𝑢‖𝑡2 + ‖𝑏− 𝑢‖𝑡2 ≥ 2−𝑡 ·Δ𝑡.

The last lemma helps put the previous two together. Although we have phrased

this lemma to concorde with the mixture model setting, we note that the proof

uses nothing about mixture models and consists only of generic manipulations of

pseudodistributions.

Lemma 4.5.7. Let 𝜇1, . . . , 𝜇𝑘, 𝐷1, . . . , 𝐷𝑘, 𝑋1, . . . , 𝑋𝑛 be as in Theorem 4.5.1. Let 𝑎𝑗

be the 0/1 indicator for the set of samples drawn from 𝐷𝑗. Suppose Ẽ is a degree-𝑂(𝑡)
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pseudodistribution which satisfies

⟨𝑎𝑗, 𝑤⟩ ≤ 𝑛

⟨𝑎ℓ, 𝑤⟩ ≤ 𝑛

‖𝜇− 𝜇𝑗‖2𝑡2 + ‖𝜇− 𝜇ℓ‖2𝑡2 ≥ 𝐴

⟨𝑎𝑗, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 𝐵𝑛⟨𝑎𝑗, 𝑤⟩𝑡−1‖𝜇− 𝜇𝑗‖𝑡2

⟨𝑎ℓ, 𝑤⟩𝑡‖𝜇− 𝜇ℓ‖2𝑡2 ≤ 𝐵𝑛⟨𝑎ℓ, 𝑤⟩𝑡−1‖𝜇− 𝜇ℓ‖𝑡2

for some scalars 𝐴,𝐵 ≥ 0. Then

Ẽ⟨𝑎𝑗, 𝑤⟩⟨𝑎ℓ, 𝑤⟩ ≤
2𝑛2𝐵√
𝐴

.

Now we have the tools to prove Lemma 4.5.3.

Proof of Lemma 4.5.3. We will verify the conditions to apply Lemma 4.5.7. By

Lemma 4.5.5, when (D1) holds, the pseudoexpectation Ẽ satisfies

⟨𝑎𝑗, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 𝐵𝑛⟨𝑎𝑗, 𝑤⟩𝑡−1‖𝜇− 𝜇𝑗‖𝑡2

for 𝐵 = 4(4𝑡)𝑡/2/𝑘, and similarly with 𝑗, ℓ interposed. Similarly, by separation of the

empirical means, Ẽ satisfies ‖𝜇 − 𝜇𝑗‖2𝑡2 + ‖𝜇 − 𝜇ℓ‖2𝑡2 ≥ 𝐴 for 𝐴 = 2−2𝑡Δ2𝑡, recalling

that the empirical means are pairwise separated by at least Δ−2Δ−𝑡. Finally, clearly

𝒜 ⊢𝑂(1) ⟨𝑎𝑗, 𝑤⟩ ≤ 𝑛 and similarly for ⟨𝑎ℓ, 𝑤⟩. So applying Lemma 4.5.7 we get

Ẽ⟨𝑎𝑗, 𝑤⟩⟨𝑎ℓ, 𝑤⟩ ≤
2𝑛2𝐵√
𝐴
≤ 𝑛222𝑡+2𝑡𝑡/2

𝑘
· 1

Δ𝑡
.

4.5.4 Proof of Lemma 4.5.5

In this subsection we prove Lemma 4.5.5. We use the following helpful lemmata. The

first bounds error from samples selected from the wrong cluster using the moment

inequality.
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Lemma 4.5.8. Let 𝑗,𝒜, 𝑋1, . . . , 𝑋𝑛, 𝜇𝑗, 𝜇𝑗 be as in Lemma 4.5.5. Then

𝒜 ⊢𝑂(𝑡)

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝜇−𝑋𝑖, 𝜇− 𝜇𝑗⟩

⎞⎠𝑡

≤ 2𝑡𝑡/2 · ⟨𝑎𝑗, 𝑤⟩𝑡−1‖𝜇− 𝜇𝑗‖𝑡2 .

Proof. The proof goes by Hölder’s inequality followed by the moment inequality in

𝒜. Carrying this out, by Fact D.1.6 and evenness of 𝑡,

{𝑤2
𝑖 = 𝑤𝑖} ⊢𝑂(𝑡)

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝜇−𝑋𝑖, 𝜇− 𝜇𝑗⟩

⎞⎠𝑡

≤

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖

⎞⎠𝑡−1

·

⎛⎝∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝜇−𝑋𝑖, 𝜇− 𝜇𝑗⟩𝑡
⎞⎠ .

Then, using the main inequality in 𝒜,

𝒜 ⊢𝑂(𝑡)

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖

⎞⎠𝑡−1

· 2𝑡𝑡/2 · ‖𝜇− 𝜇𝑗‖𝑡2 = 2𝑡𝑡/2 · ⟨𝑎𝑗, 𝑤⟩𝑡−1‖𝜇− 𝜇𝑗‖𝑡2 .

The second lemma bounds error from deviations in the empirical 𝑡-th moments of

the samples from the 𝑗-th cluster.

Lemma 4.5.9. Let 𝜇1, . . . , 𝜇𝑘, 𝐷1, . . . , 𝐷𝑘 be as in Theorem 4.5.1. Suppose con-

dition (D1) holds for samples 𝑋1, . . . , 𝑋𝑛. Let 𝑤1, . . . , 𝑤𝑛 be indeterminates. Let

𝑢 = 𝑢1, . . . , 𝑢𝑑 be an indeterminate. Then for every 𝑗 ∈ [𝑘],

{𝑤2
𝑖 = 𝑤𝑖} ⊢𝑂(𝑡)

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑗, 𝑢⟩

⎞⎠𝑡

≤ ⟨𝑎𝑗, 𝑤⟩𝑡−1 · 2 · 𝑛
𝑘
· ‖𝑢‖𝑡2 .

Proof. The first step is Hölder’s inequality again:

{𝑤2
𝑖 = 𝑤𝑖} ⊢𝑂(𝑡)

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑗, 𝑢⟩

⎞⎠𝑡

≤ ⟨𝑎𝑗, 𝑤⟩𝑡−1 ·
∑︁
𝑖∈𝑆𝑗

⟨𝑋𝑖 − 𝜇𝑗, 𝑢⟩𝑡 .
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Finally, condition (D1) yields

{𝑤2
𝑖 = 𝑤𝑖} ⊢𝑂(𝑡)

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑗, 𝑢⟩

⎞⎠𝑡

≤ ⟨𝑎𝑗, 𝑤⟩𝑡−1 · 2 · 𝑛
𝑘
· ‖𝑢‖𝑡2 .

We can prove Lemma 4.5.5 by putting together Lemma 4.5.8 and Lemma 4.5.9.

Proof of Lemma 4.5.5. Let 𝑗 ∈ [𝑘] be a cluster and recall 𝑎𝑗 ∈ {0, 1}𝑛 is the 0/1

indicator for the samples in cluster 𝑗. Let 𝑆𝑗 be the samples in the 𝑗-th cluster,

with empirical mean 𝜇𝑗. We begin by writing ⟨𝑎𝑗, 𝑤⟩‖𝜇 − 𝜇𝑗‖22 in terms of samples

𝑋1, . . . , 𝑋𝑛.

⟨𝑎𝑗, 𝑤⟩‖𝜇− 𝜇𝑗‖22 =
∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝜇− 𝜇𝑗, 𝜇− 𝜇𝑗⟩

=
∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝜇−𝑋𝑖, 𝜇− 𝜇𝑗⟩+
∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑗, 𝜇− 𝜇𝑗⟩ .

Hence, using (𝑎+ 𝑏)𝑡 ≤ 2𝑡(𝑎𝑡 + 𝑏𝑡), we obtain

⊢𝑂(𝑡) ⟨𝑎𝑗, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 2𝑡 ·

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝜇−𝑋𝑖, 𝜇− 𝜇𝑗⟩

⎞⎠𝑡

+ 2𝑡 ·

⎛⎝∑︁
𝑖∈𝑆𝑗

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑗, 𝜇− 𝜇𝑗⟩

⎞⎠𝑡

.

Now using Lemma 4.5.8 and Lemma 4.5.9,

𝒜 ⊢𝑂(𝑡) ⟨𝑎𝑗, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 2𝑡+2𝑡𝑡/2 · 𝑛
𝑘
· ⟨𝑎𝑗, 𝑤⟩𝑡−1 · ‖𝜇− 𝜇𝑗‖𝑡2

as desired.

4.5.5 Proof of Lemma 4.5.7

We prove Lemma 4.5.7. The proof only uses standard SoS and pseudodistribution

tools. The main inequality we will use is the following version of Hölder’s inequality.

Fact 4.5.10 (Pseudoexpectation Hölder’s, see Lemma A.4 in [BKS14]). Let 𝑝 be a

degree-ℓ polynomial. Let 𝑡 ∈ 𝑁 and let Ẽ be a degree-𝑂(𝑡ℓ) pseudoexpectation on
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indeterminates 𝑥. Then

Ẽ 𝑝(𝑥)𝑡−2 ≤
(︁
Ẽ 𝑝(𝑥)𝑡

)︁ 𝑡−2
𝑡

.

Now we can prove Lemma 4.5.7.

Proof of Lemma 4.5.7. We first establish the following inequality.

Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 𝐵2𝑛2 · Ẽ⟨𝑎𝑗, 𝑤⟩𝑡−2⟨𝑎ℓ, 𝑤⟩𝑡 . (4.4)

(The inequality will also hold by symmetry with 𝑗 and ℓ exchanged.) This we do as

follows:

Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2 ≤ 𝐵𝑛 Ẽ⟨𝑎𝑗, 𝑤⟩𝑡−1⟨𝑎ℓ, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖𝑡2

≤ 𝐵𝑛
(︁
Ẽ⟨𝑎𝑗, 𝑤⟩𝑡−2⟨𝑎ℓ, 𝑤⟩𝑡

)︁1/2
·
(︁
Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡‖𝜇− 𝜇𝑗‖2𝑡2

)︁1/2
where the first line is by assumption on Ẽ and the second is by pseudoexpectation

Cauchy-Schwarz. Rearranging gives the inequality (4.4).

Now we use this to bound Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡. By hypothesis,

Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡 ≤
1

𝐴
Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡(‖𝜇− 𝜇𝑗‖2𝑡2 + ‖𝜇− 𝜇ℓ‖2𝑡2 ) ,

which, followed by (4.4) gives

Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡 ≤
1

𝐴
·𝐵2𝑛2 · Ẽ

[︀
⟨𝑎𝑗, 𝑤⟩𝑡−2⟨𝑎ℓ, 𝑤⟩𝑡 + ⟨𝑎ℓ, 𝑤⟩𝑡−2⟨𝑎𝑗, 𝑤⟩𝑡

]︀
.

Using ⟨𝑎𝑗, 𝑤⟩, ⟨𝑎ℓ, 𝑤⟩ ≤ 𝑛, we obtain

Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡 ≤
2

𝐴
·𝐵2𝑛4 · Ẽ⟨𝑎𝑗, 𝑤⟩𝑡−2⟨𝑎ℓ, 𝑤⟩𝑡−2 .

Finally, using Fact 4.5.10, the right side is at most 2𝐵2𝑛4/𝐴·
(︁
Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡

)︁(𝑡−2)/𝑡

,
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so cancelling terms we get

(︁
Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡

)︁2/𝑡
≤ 2𝐵2𝑛4

𝐴
.

Raising both sides to the 𝑡/2 power gives

Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡 ≤
2𝑡/2𝐵𝑡𝑛2𝑡

𝐴𝑡/2
,

and finally using Cauchy-Schwarz,

Ẽ⟨𝑎𝑗, 𝑤⟩⟨𝑎ℓ, 𝑤⟩ ≤
(︁
Ẽ⟨𝑎𝑗, 𝑤⟩𝑡⟨𝑎ℓ, 𝑤⟩𝑡

)︁1/𝑡
≤ 2𝑛2𝐵√

𝐴
.

4.5.6 Rounding

In this section we state and analyze our second-moment round algorithm. As have

discussed already, our SoS proofs in the mixture model setting are quite strong,

meaning that the rounding algorithm is relatively naive.

The setting in this section is as follows. Let 𝑛,𝑚 ∈ N with 𝑚 ≪ 𝑛. There is a

ground-truth partition of [𝑛] into 𝑚 parts 𝑆1, . . . , 𝑆𝑚 such that |𝑆𝑖| = (1± 𝛿) 𝑛
𝑚

. Let

𝐴 ∈ R𝑛×𝑛 be the 0/1 indicator matrix for this partition, so 𝐴𝑖𝑗 = 1 if 𝑖, 𝑗 ∈ 𝑆ℓ for

some ℓ and is 0 otherwise. Let 𝑀 ∈ R𝑛×𝑛 be a matrix such that ‖𝑀 − 𝐴‖𝐹 ≤ 𝜀𝑛.

The algorithm takes 𝑀 and outputs a partition 𝐶1, . . . , 𝐶𝑚 of [𝑚] which makes few

errors compared to 𝑆1, . . . , 𝑆𝑚.

We will prove the following theorem.

Theorem 4.5.11. With notation as before Algorithm 12 with 𝐸 = 𝑚, with probability

at least 1− 𝜀2𝑚3 Algorithm 12 returns a partition 𝐶1, . . . , 𝐶𝑚 of [𝑛] such that (up to

a permutation of [𝑚]), 𝐶ℓ = 𝑇ℓ ∪ 𝐵ℓ, where 𝑇ℓ ⊆ 𝑆ℓ has size |𝑇ℓ| ≥ |𝑆ℓ| − 𝜀2𝑚𝑛 and

|𝐵ℓ| ≤ 𝜀2𝑚𝑛.

To get started analyzing the algorithm, we need a definition.

Definition 4.5.1. For cluster 𝑆𝑗, let 𝑎𝑗 ∈ R𝑛 be its 0/1 indicator vector. If 𝑖 ∈ 𝑆𝑗, we

say it is 𝐸-good if ‖𝑣𝑖 − 𝑎𝑗‖2 ≤
√︀
𝑛/𝐸, and otherwise 𝐸-bad, where 𝑣𝑖 is the 𝑖-th row
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Algorithm 12 Rounding the second moment of Ẽ[𝑤𝑤⊤]

1: function RoundSecondMoments(𝑀 ∈ R𝑛×𝑛, 𝐸 ∈ R)
2: Let 𝑆 = [𝑛]
3: Let 𝑣1, . . . , 𝑣𝑛 be the rows of 𝑀
4: for ℓ = 1, . . . ,𝑚 do
5: Choose 𝑖 ∈ 𝑆 uniformly at random
6: Let

𝐶ℓ =

{︂
𝑖′ ∈ 𝑆 : ‖𝑣𝑖 − 𝑣𝑖′‖2 ≤ 2

𝑛1/2

𝐸

}︂
7: Let 𝑆 ← 𝑆 ∖ 𝐶ℓ

8: return The clusters 𝐶1, . . . , 𝐶𝑚.

of 𝑀 . Let 𝐼𝑔 ⊆ [𝑛] denote the set of 𝐸-good indices and 𝐼𝑏 denote the set of 𝐸-bad

indices. (We will choose 𝐸 later.) For any 𝑗 = 1, . . . , 𝑘, let 𝐼𝑔,𝑗 = 𝐼𝑔 ∩ 𝑆𝑗 denote the

set of good indices from cluster 𝑗.

We have:

Lemma 4.5.12. Suppose 𝐸 as in RoundSecondMoments satisfies 𝐸 ≥ 𝑚/8.

Suppose that in iterations 1, . . . ,𝑚, RoundSecondMoments has chosen only good

vectors. Then, there exists a permutation 𝜋 : [𝑚] → [𝑚] so that 𝐶ℓ = 𝐼𝑔,𝜋(ℓ) ∪ 𝐵ℓ,

where 𝐵ℓ ⊆ 𝐼𝑏 for all ℓ.

Proof. We proceed inductively. We first prove the base case. WLOG assume that

the algorithm picks 𝑣1, and that 𝑣1 is good, and is from component 𝑗. Then, for

all 𝑖 ∈ 𝐼𝑔,𝑗, by the triangle inequality we have ‖𝑣𝑖 − 𝑣1‖2 ≤ 2𝑛1/2

𝐵
, and so 𝐼𝑔,𝑗 ⊆ 𝐶1.

Moreover, if 𝑖 ∈ 𝐼𝑔,𝑗′ for some 𝑗′ ̸= 𝑗, we have

‖𝑣𝑖 − 𝑣1‖2 ≥ ‖𝑎′𝑗 − 𝑎𝑗‖2 − 2
𝑛1/2

𝐸1/2
≥ 𝑛1/2

√
𝑚
− 2

𝑛1/2

𝐸1/2
> 2

𝑛1/2

𝐸1/2
,

and so in this case 𝑖 ̸∈ 𝐶1. Hence 𝐶1 = 𝐼𝑔,𝑗 ∪𝐵1 for some 𝐵1 ⊆ 𝐼𝑏.

Inductively, suppose that if the algorithm chooses good indices in iterations 1, . . . , 𝑎−

1, then there exist distinct 𝑗1, . . . , 𝑗𝑎−1 so that 𝐶ℓ = 𝐼𝑔,𝑗ℓ ∪𝐵ℓ for 𝐵ℓ ⊆ 𝐼𝑏. We seek to

prove that if the algorithm chooses a good index in iteration 𝑎, then 𝐶𝑎 = 𝐼𝑔,𝑗𝑎∪𝐵𝑎 for

some 𝑗𝑎 ̸∈ {𝑗1, . . . , 𝑗𝑎−1} and 𝐵𝑎 ⊆ 𝐼𝑏. Clearly by induction this proves the Lemma.
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WLOG assume that the algorithm chooses 𝑣1 in iteration 𝑎. Since by assumption

1 is good, and we have removed 𝐼𝑔ℓ for ℓ = 1, . . . , 𝑎 − 1, then 1 ∈ 𝐼𝑔,𝑗𝑎 for some

𝑗𝑎 ̸∈ {𝑗1, . . . , 𝑗𝑎−1}. Then, the conclusion follows from the same calculation as in the

base case.

Lemma 4.5.13. There are at most 𝜀2𝐸𝑛 indices which are 𝐸-bad; i.e. |𝐼𝑏| ≤ 𝜀2𝐸𝑛.

Proof. We have

𝜀2𝑛2 ≥

⃦⃦⃦⃦
⃦𝑀 −∑︁

𝑖≤𝑚

𝑎𝑖𝑎
⊤
𝑖

⃦⃦⃦⃦
⃦
2

𝐹

≥
∑︁
𝑗

∑︁
𝑖∈𝑆𝑗 bad

‖𝑣𝑖 − 𝑎𝑗‖22

≥ 𝑛

𝐸
|𝐼𝑏| ,

from which the claim follows by simplifying.

This in turns implies:

Lemma 4.5.14. With probability at least 1 − 𝜀2𝑚3, the algorithm RoundSecond-

Moments chooses good indices in all 𝑘 iterations.

Proof. By Lemma 4.5.13, in the first iteration the probability that a bad vector is

chosen is at most 𝜀2𝐸. Conditioned on the event that in iterations 1, . . . , 𝑎 the

algorithm has chosen good vectors, then by Lemma 4.5.12, there is at least one 𝑗𝑎 so

that no points in 𝐼𝑔,𝑗𝑎 have been removed. Thus at least (1− 𝛿)𝑛/𝑚 vectors remain,

and in total there are at most 𝜀2𝐸𝑛 bad vectors, by Lemma 4.5.13. So, the probability

of choosing a bad vector is at most 𝜀2𝐸𝑚. Therefore, by the chain rule of conditional

expectation and our assumption , the probability we never choose a bad vector is at

least

(︀
1− 𝜀2𝐸𝑚

)︀𝑚
Choosing 𝐸 = 𝑚 this is (1− 𝜀2𝑚2)𝑚 ≥ 1− 𝜀2𝑚3. as claimed.

Now Theorem 4.5.11 follows from putting together the lemmas.
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4.6 Robust estimation: algorithm and analysis

Our algorithm for robust estimation is very similar to our algorithm for mixture mod-

els. Suppose the underlying distribution 𝐷, whose mean 𝜇* the algorithm robustly

estimates, is 10𝑡-explicitly bounded. As a reminder, the input to the algorithm is

a list of 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 and a sufficiently-small 𝜀 > 0. The guarantee is that at

least (1− 𝜀)𝑛 of the vectors were sampled according to 𝐷, but 𝜀𝑛 of the vectors were

chosen adversarially.

The algorithm solves a semidefinite program to obtain a degree 𝑂(𝑡) pseudodis-

tribution which satisfies the system 𝒜 from Section 4.4 with 𝛼 = 1 − 𝜀 and 𝜏 = 0.

Throughout this section, we will always assume that 𝒜 is instantiated with these

parameters, and omit them for conciseness. Then the algorithm just outputs Ẽ𝜇 as

its estimator for 𝜇*.

Our main contribution in this section is a formal description of an algorithm

EstimateMean which makes these ideas rigorous, and the proof of the following

theorem about its correctness:

Theorem 4.6.1. Let 𝜀 > 0 sufficiently small and 𝑡 ∈ N. Let 𝐷 be a 10𝑡-explicitly

bounded distribution over R𝑑 with mean 𝜇*. Let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set of

samples from 𝐷 where 𝑛 = 𝑑𝑂(𝑡)/𝜀2. Then, given 𝜀, 𝑡 and 𝑋1, . . . , 𝑋𝑛, the algorithm

EstimateMean runs in time 𝑑𝑂(𝑡) and outputs 𝜇 so that ‖𝜇− 𝜇*‖2 ≤ 𝑂(𝑡1/2𝜀1−1/𝑡),

with probability at least 1− 1/𝑑.

As a remark, observe that if we set 𝑡 = 2 log 1/𝜀, then the error becomes𝑂(𝜀
√︀
log 1/𝜀).

Thus, with 𝑛 = 𝑂(𝑑𝑂(log 1/𝜀)/𝜀2) samples and 𝑛𝑂(log 1/𝜀) = 𝑑𝑂(log 1/𝜀)2 runtime, we

achieve the same error bounds for general explicitly bounded distributions as the

best known polynomial time algorithms achieve for Gaussian mean estimation.

4.6.1 Additional Preliminaries

Throughout this section, let [𝑛] = 𝑆good ∪ 𝑆bad, where 𝑆good is the indices of the

uncorrupted points, and 𝑆bad is the indices of the corrupted points, so that |𝑆bad| = 𝜀𝑛

by assumption. Moreover, let 𝑌1, . . . , 𝑌𝑛 be iid from𝐷 so that 𝑌𝑖 = 𝑋𝑖 for all 𝑖 ∈ 𝑆good.
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We now state some additional tools we will require in our algorithm.

Naive Pruning We will require the following elementary pruning algorithm, which

removes all points which are very far away from the mean. We require this only to

avoid some bit-complexity issues in semidefinite programming; in particular we just

need to ensure that the vectors 𝑋1, . . . , 𝑋𝑛 used to form the SDP have polynomially-

bounded norms. Formally:

Lemma 4.6.2 (Naive pruning). Let 𝜀, 𝑡, 𝜇*, and 𝑋1, . . . , 𝑋𝑛 be as in Theorem 4.6.1.

There is an algorithm NaivePrune, which given 𝜀, 𝑡 and 𝑋1, . . . , 𝑋𝑛, runs in time

𝑂(𝜀𝑑𝑛2), and outputs a subset 𝑆 ⊆ [𝑛] so that with probability 1−1/𝑑10, the following

holds:

∙ No uncorrupted points are removed, that is 𝑆good ⊆ 𝑆, and

∙ For all 𝑖 ∈ 𝑆, we have ‖𝑋𝑖 − 𝜇*‖2 ≤ 𝑂(𝑑).

In this case, we say that NaivePrune succeeds.

This algorithm goes by straightforward outlier-removal. It is very similar to the proce-

dure described in Fact 2.2.6 (using bounded 𝑡-th moments instead of sub-Gaussianity),

so we omit it.

Satisfiability In our algorithm, we will use the same set of polynomial equations ̂︀𝒜
as in Lemma 4.4.1. However, the data we feed in does not exactly fit the assumptions

in the Lemma. Specifically, because the adversary is allowed to remove an 𝜀-fraction

of good points, the resulting uncorrupted points are no longer iid from 𝐷. Despite

this, we are able to specialize Lemma 4.4.1 to this setting:

Lemma 4.6.3. Fix 𝜀 > 0 sufficiently small, and let 𝑡 ∈ N, 𝑡 ≥ 4 be a power of

2. Let 𝐷 be a 10𝑡-explicitly bounded distribution. Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be an 𝜀-

corrupted set of samples from 𝐷, and let ̂︀𝒜 be as in Lemma 4.4.1. The conclusion

(1 – Satisfiability) of Lemma 4.4.1 holds, with 𝑤 taken to be the 0/1 indicator of the

(1− 𝜀)𝑛 good samples among 𝑋1, . . . , 𝑋𝑛.

We sketch the proof of Lemma 4.6.3 in Section 4.7.4.
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4.6.2 Formal Algorithm Specification

With these tools in place, we can now formally state the algorithm. The formal

specification of this algorithm is given in Algorithm 13.

Algorithm 13 Robust Mean Estimation
1: function EstimateMean(𝜀, 𝑡, 𝜅,𝑋1, . . . , 𝑋𝑛)
2: Preprocess: let 𝑋1, . . . , 𝑋𝑛 ← NaivePrune(𝜀,𝑋1, . . . , 𝑋𝑛), and let ̂︀𝜇 be the

empirical mean
3: Let 𝑋𝑖 ← 𝑋𝑖 − ̂︀𝜇
4: By semidefinite programming, find a pseudoexpectation of degree 𝑂(𝑡) which

satisfies the structured subset polynomials from Lemma 4.6.3, with 𝛼 = (1− 𝜀)𝑛
and 𝜏 = 0.

5: return Ẽ𝜇+ ̂︀𝜇.

The first two lines of Algorithm 13 are only necessary for bit complexity reasons,

since we cannot solve SDPs exactly. However, since we can solve them to doubly-

exponential accuracy in polynomial time, it suffices that all the quantities are at most

polynomially bounded (indeed, exponentially bounded suffices) in norm, which these

two lines easily achieve. For the rest of this section, for simplicity of exposition, we

will ignore these issues.

4.6.3 Deterministic conditions

With these tools in place, we may now state the deterministic conditions under which

our algorithm will succeed. Throughout this section, we will condition on the following

events holding simultaneously:

(E1) NaivePrune succeeds,

(E2) The conclusion of Lemma 4.6.3 holds,

(E3) We have the following concentration of the uncorrupted points:⃦⃦⃦⃦
⃦⃦ 1𝑛 ∑︁

𝑖∈𝑆good

𝑋𝑖 − 𝜇*

⃦⃦⃦⃦
⃦⃦
2

≤ 𝑂(𝑡1/2𝜀1−1/𝑡) , and
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(E4) We have the following concentration of the empirical 𝑡-th moment tensor:

1

𝑛

∑︁
𝑖∈[𝑛]

[︀
(𝑌𝑖 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑌𝑖 − 𝜇*)⊗𝑡/2

]︀⊤ ⪯ E
𝑋∼𝐷

[︀
(𝑋 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑋 − 𝜇*)⊗𝑡/2

]︀⊤
+ 0.1 · 𝐼 ,

for 𝐼 is the 𝑑𝑡/2 × 𝑑𝑡/2-sized identity matrix.

The following lemma says that with high probability, these conditions hold simulta-

neously:

Lemma 4.6.4. Let 𝜀, 𝑡, 𝜇*, and 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be as in Theorem 4.6.1. Then,

Conditions (E1)-(E4) hold simultaneously with probability at least 1− 1/𝑑5.

We defer the proof of this lemma to the Appendix.

For simplicity of notation, throughout the rest of the section, we will assume that

NaivePrune does not remove any points whatsoever. Because we are conditioning

on the event that it removes no uncorrupted points, it is not hard to see that this is

without loss of generality.

4.6.4 Identifiability

Our main identifiability lemma is the following.

Lemma 4.6.5. Let 𝜀, 𝑡, 𝜇* and 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be as in Theorem 4.6.1, and suppose

they satisfy (E1)–(E4). Then, we have

𝒜 ⊢𝑂(𝑡) ‖𝜇− 𝜇*‖2𝑡2 ≤ 𝑂(𝑡𝑡/2) · 𝜀𝑡−1 · ‖𝜇− 𝜇*‖𝑡2 .

Since this lemma is the core of our analysis for robust estimation, in the remainder

of this section we prove it. The proof uses the following three lemmas to control three

sources of error in Ẽ𝜇, which we prove in Section 4.6.6. The first, Lemma 4.6.6

controls sampling error from true samples from 𝐷.
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Lemma 4.6.6. Let 𝜀, 𝑡, 𝜇* and 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be as in Theorem 4.6.1, and suppose

they satisfy (E1)–(E4). Then, we have

⊢𝑂(𝑡)

⎛⎝ ∑︁
𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

⎞⎠𝑡

≤ 𝑂(𝜀𝑡−1) · 𝑡𝑡/2 · 𝑛𝑡 · ‖𝜇− 𝜇*‖𝑡2 .

To describe the second and third error types, we think momentarily of 𝑤 ∈ R𝑛 as

the 0/1 indicator for a set 𝑆 of samples whose empirical mean will be the output of

the algorithm. (Of course this is not strictly true, but this is a convenient mindset in

constructing SoS proofs.) The second type of error comes from the possible failure of

𝑆 to capture some 𝜀 fraction of the good samples from 𝐷. Since 𝐷 has 𝑂(𝑡) bounded

moments, if 𝑇 is a set of 𝑚 samples from 𝐷, the empirical mean of any (1 − 𝜀)𝑚 of

them is at most 𝜀1−1/𝑡-far from the true mean of 𝐷.

Lemma 4.6.7. Let 𝜀, 𝑡, 𝜇* and 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be as in Theorem 4.6.1, and suppose

they satisfy (E1)–(E4). Then, we have

𝒜 ⊢𝑂(𝑡)

⎛⎝ ∑︁
𝑖∈𝑆good

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

⎞⎠𝑡

≤ 2𝜀𝑡−1𝑛𝑡 · 𝑡𝑡/2 · ‖𝜇− 𝜇*‖𝑡2 .

The third type of error is similar in spirit: it is the contribution of the original

uncorrupted points that the adversary removed. Formally:

Lemma 4.6.8. Let 𝜀, 𝑡, 𝜇* and 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 and 𝑌1, . . . , 𝑌𝑛 ∈ R𝑑 be as in Theo-

rem 4.6.1, and suppose they satisfy (E1)–(E4). Then, we have

𝒜 ⊢𝑂(𝑡)

(︃ ∑︁
𝑖∈𝑆bad

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩

)︃𝑡

≤ 2𝜀𝑡−1𝑛𝑡 · 𝑡𝑡/2 · ‖𝜇− 𝜇*‖𝑡2 .

Finally, the fourth type of error comes from the 𝜀𝑛 adversarially-chosen vectors. We

prove this lemma by using the bounded-moments inequality in 𝒜.

Lemma 4.6.9. Let 𝜀, 𝑡, 𝜇* and 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be as in Theorem 4.6.1, and suppose
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they satisfy (E1)–(E4). Then, we have

𝒜 ⊢𝑂(𝑡)

⎛⎝ ∑︁
𝑖/∈𝑆good

𝑤𝑖⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

⎞⎠𝑡

≤ 2𝜀𝑡−1𝑛𝑡 · 𝑡𝑡/2 · ‖𝜇− 𝜇*‖𝑡2 .

With these lemmas in place, we now have the tools to prove Lemma 4.6.5.

Proof of Lemma 4.6.5. Let 𝑌1, . . . , 𝑌𝑛 ∈ R𝑑 be as in Theorem 4.6.1. We expand the

norm ‖𝜇− 𝜇*‖22 as ⟨𝜇− 𝜇*, 𝜇− 𝜇*⟩ and rewrite
∑︀

𝑖∈[𝑛]𝑤𝑖𝜇 as
∑︀

𝑖∈[𝑛]𝑤𝑖𝑋𝑖:

∑︁
𝑖∈[𝑛]

𝑤𝑖‖𝜇− 𝜇*‖22
(𝑎)
=
∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

(𝑏)
=

∑︁
𝑖∈𝑆good

𝑤𝑖⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

(𝑐)
=

∑︁
𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆good

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

+
∑︁

𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

(𝑑)
=
∑︁
𝑖∈[𝑛]

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆good

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

−
∑︁

𝑖∈𝑆bad

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩ ,

where (a) follows from the mean axioms, (b) follows from splitting up the uncorrupted

and the corrupted samples, (c) follows by adding and subtracting 1 to each term in

𝑆good, and (d) follows from the assumption that 𝑌𝑖 = 𝑋𝑖 for all 𝑖 ∈ [𝑛]. We will

rearrange the last term by adding and subtracting 𝜇. Note the following polynomial

identity:

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩ = ⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩+ ‖𝜇− 𝜇*‖22
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and put it together with the above to get

∑︁
𝑖∈[𝑛]

𝑤𝑖‖𝜇− 𝜇*‖22 =
∑︁

𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆good

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

−
∑︁

𝑖∈𝑆bad

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆bad

𝑤𝑖‖𝜇− 𝜇*‖22 .

which rearranges to

∑︁
𝑖∈𝑆good

𝑤𝑖‖𝜇− 𝜇*‖22 =
∑︁

𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆good

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

−
∑︁

𝑖∈𝑆bad

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩+
∑︁

𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩ .

Now we use ⊢𝑡 (𝑥 + 𝑦 + 𝑧 + 𝑤)𝑡 ≤ exp(𝑡) · (𝑥𝑡 + 𝑦𝑡 + 𝑧𝑡 + 𝑤𝑡) for any even 𝑡, and

Lemma 4.6.6, Lemma 4.6.7, and Lemma 4.6.9 and simplify to conclude

𝒜 ⊢𝑂(𝑡)

⎛⎝ ∑︁
𝑖∈𝑆good

𝑤𝑖

⎞⎠𝑡

‖𝜇− 𝜇*‖2𝑡2 ≤ exp(𝑡) · 𝑡𝑡/2 · 𝑛𝑡 · 𝜀𝑡−1 · ‖𝜇− 𝜇*‖𝑡2 .

Lastly, since 𝒜 ⊢2
∑︀

𝑖∈𝑇 𝑤𝑖 ≥ (1− 2𝜀)𝑛, we get

𝒜 ⊢𝑂(𝑡) ‖𝜇− 𝜇*‖2𝑡2 ≤ exp(𝑡) · 𝑡𝑡/2 · 𝜀𝑡−1 · ‖𝜇− 𝜇*‖𝑡2 ,

as claimed.

4.6.5 Rounding

The rounding phase of our algorithm is extremely simple. If Ẽ satisfies 𝒜, we have

by Lemma 4.6.5 and pseudoexpectation Cauchy-Schwarz that

Ẽ ‖𝜇− 𝜇*‖2𝑡2 ≤ exp(𝑡) · 𝑡𝑡/2 · 𝜀𝑡−1 · Ẽ
(︀
‖𝜇− 𝜇*‖𝑡2

)︀
≤ exp(𝑡) · 𝑡𝑡/2 · 𝜀𝑡−1 · Ẽ

(︀
‖𝜇− 𝜇*‖2𝑡2

)︀1/2
which implies that

Ẽ ‖𝜇− 𝜇*‖2𝑡2 ≤ exp(𝑡) · 𝑡𝑡 · 𝜀2(𝑡−1) . (4.5)
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Once this is known, analyzing ‖ Ẽ𝜇− 𝜇*‖2 is straightforward. By (4.5) and pseudo-

Cauchy-Schwarz again,

‖ Ẽ[𝜇]− 𝜇*‖22 ≤ Ẽ ‖𝜇− 𝜇*‖22 ≤
(︁
Ẽ ‖𝜇− 𝜇*‖2𝑡2

)︁1/𝑡
≤ 𝑂(𝑡 · 𝜀2−2/𝑡) ,

which finishes analyzing the algorithm.

4.6.6 Proofs of Lemmata 4.6.6–4.6.9

We first prove Lemma 4.6.6, which is a relatively straightforward application of SoS

Cauchy Schwarz.

Proof of Lemma 4.6.6. We have

⊢𝑂(𝑡)

⎛⎝ ∑︁
𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

⎞⎠𝑡

=

⎛⎝⟨ ∑︁
𝑖∈𝑆good

(𝑋𝑖 − 𝜇*), 𝜇− 𝜇*

⟩⎞⎠𝑡

≤

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

(𝑋𝑖 − 𝜇*)

⃦⃦⃦⃦
⃦⃦
𝑡

2

‖𝜇− 𝜇*‖𝑡2

≤
(︀
𝑛 ·𝑂

(︀
𝜀1−1/𝑡

)︀
· 𝑡1/2

)︀𝑡 ‖𝜇− 𝜇*‖𝑡2 ,

where the last inequality follows from (E3). This completes the proof.

Before we prove Lemmata 4.6.7–4.6.9, we prove the following lemma which we

will use repeatedly:

Lemma 4.6.10. Let 𝜀, 𝑡, 𝜇* and 𝑌1, . . . , 𝑌𝑛 ∈ R𝑑 be as in Theorem 4.6.1, and suppose

they satisfy (E4). Then, we have

𝒜 ⊢𝑂(𝑡)

∑︁
𝑖∈[𝑛]

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡 ≤ 2𝑛𝑡𝑡/2‖𝜇− 𝜇*‖𝑡2 .
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Proof. We have that

⊢𝑡
∑︁
𝑖∈[𝑛]

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡 =
[︀
(𝜇− 𝜇*)⊗2

]︀⊤∑︁
𝑖∈[𝑛]

[︀
(𝑌𝑖 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑌𝑖 − 𝜇*)⊗𝑡/2

]︀⊤ [︀
(𝜇− 𝜇*)⊗2

]︀
(𝑎)

≤ 𝑛
(︁[︀

(𝜇− 𝜇*)⊗2
]︀⊤ (︁ E

𝑋∼𝐷

[︀
(𝑋 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑋 − 𝜇*)⊗𝑡/2

]︀⊤
+ 0.1 · 𝐼

)︁ [︀
(𝜇− 𝜇*)⊗2

]︀)︁
= 𝑛 · E

𝑋∼𝐷
⟨𝑋 − 𝜇*, 𝜇− 𝜇*⟩𝑡 + 𝑛 · 0.1 · ‖𝜇− 𝜇*‖𝑡2

(𝑏)

≤ 2𝑛 · 𝑡𝑡/2‖𝜇− 𝜇*‖𝑡2 ,

where (a) follows from (E4) and (b) follows from 10𝑡-explicitly boundedness.

We now return to the proof of the remaining Lemmata.

Proof of Lemma 4.6.7. We start by applying Hölder’s inequality, Fact D.1.6, (implic-

itly using that 𝑤2
𝑖 = 𝑤𝑖 ⊢2 (1− 𝑤𝑖)

2 = 1− 𝑤𝑖), to get

𝒜 ⊢𝑂(𝑡)

⎛⎝ ∑︁
𝑖∈𝑆good

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

⎞⎠𝑡

=

⎛⎝ ∑︁
𝑖∈𝑆good

(1− 𝑤𝑖)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

⎞⎠𝑡

≤

⎛⎝ ∑︁
𝑖∈𝑆good

(𝑤𝑖 − 1)

⎞⎠𝑡−1⎛⎝ ∑︁
𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡
⎞⎠ .

By Lemma 4.6.10, we have

𝒜 ⊢𝑂(𝑡)

∑︁
𝑖∈𝑆good

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡 ≤
∑︁
𝑖∈[𝑛]

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡

≤ 2𝑛 · 𝑡𝑡/2 · ‖𝜇− 𝜇*‖𝑡2 .

At the same time,

𝐴 ⊢2
∑︁
𝑖∈𝑇

(1− 𝑤𝑖) = (1− 𝜀)𝑛−
∑︁
𝑖∈[𝑛]

𝑤𝑖 +
∑︁
𝑖/∈𝑇

𝑤𝑖 =
∑︁
𝑖/∈𝑇

𝑤𝑖 ≤ 𝜀𝑛 .
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So putting it together, we have

𝒜 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑇

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

)︃𝑡

≤ 2(𝜀𝑛)𝑡−1 · 𝑛 · 𝑡𝑡/2 · ‖𝜇− 𝜇*‖𝑡2 ,

as claimed.

Proof of Lemma 4.6.8. We apply Hölder’s inequality to obtain that

⊢𝑂(𝑡)

(︃ ∑︁
𝑖∈𝑆bad

⟨𝑋𝑖 − 𝜇*, 𝜇− 𝜇*⟩

)︃𝑡

≤ |𝑆bad|𝑡−1
∑︁

𝑖∈𝑆bad

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡

(𝑎)

≤ (𝜀𝑛)𝑡−1
∑︁
𝑖∈[𝑛]

⟨𝑌𝑖 − 𝜇*, 𝜇− 𝜇*⟩𝑡

(𝑏)

≤ 2(𝜀𝑛)𝑡−1𝑛𝑡𝑡/2‖𝜇− 𝜇*‖𝑡2 ,

where (a) follows from the assumption on the size of 𝑆bad and since the additional

terms in the sum are SoS, and (b) follows follows from Lemma 4.6.10. This completes

the proof.

Proof of Lemma 4.6.9. The proof is very similar to the proof of the two previous

lemmas, except that we use the moment bound inequality in 𝒜. Getting started, by

Hölder’s:

𝒜 ⊢𝑂(𝑡)

(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩

)︃𝑡

≤

(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖

)︃𝑡−1(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩𝑡
)︃

By evenness of 𝑡,

⊢𝑡
∑︁

𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩𝑡 ≤
∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩𝑡 .

Combining this with the moment bound in 𝒜,

𝒜 ⊢𝑂(𝑡)

(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝜇− 𝜇*⟩

)︃𝑡

≤

(︃ ∑︁
𝑖∈𝑆bad

𝑤𝑖

)︃𝑡−1

· 2 · 𝑡𝑡/2 · 𝑛 · ‖𝜇− 𝜇*‖𝑡2 .
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Finally, clearly 𝒜 ⊢2
∑︀

𝑖/∈𝑇 𝑤𝑖 ≤ 𝜀𝑛, which finishes the proof.

4.7 Encoding structured subset recovery with poly-

nomials

The goal in this section is to prove Lemma 4.4.1. The eventual system ̂︀𝒜 of polynomial

inequalities we describe will involve inequalities among matrix-valued polynomials.

We start by justifying the use of such inequalities in the SoS proof system.

4.7.1 Matrix SoS proofs

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) be indeterminates. We describe a proof system which can reason

about inequalities of the form 𝑀(𝑥) ⪰ 0, where 𝑀(𝑥) is a symmetric matrix whose

entries are polynomials in 𝑥.

Let𝑀1(𝑥), . . . ,𝑀𝑚(𝑥) be symmetric matrix-valued polynomials of 𝑥, with𝑀𝑖(𝑥) ∈

R𝑠𝑖×𝑠𝑖 , and let 𝑞1(𝑥), . . . , 𝑞𝑚(𝑥) be scalar polynomials. (If 𝑠𝑖 = 1 then 𝑀𝑖 is a scalar

valued polynomial.) Let 𝑀(𝑥) be another matrix-valued polynomial. We write

{𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0, 𝑞1(𝑥) = 0, . . . , 𝑞𝑚(𝑥) = 0} ⊢𝑑 𝑀 ⪰ 0

if there are vector-valued polynomials {𝑟𝑗𝑆}𝑗≤𝑁,𝑆⊆[𝑚] (where the 𝑆’s are multisets), a

matrix 𝐵, and a matrix 𝑄 whose entries are polynomials in the ideal generated by

𝑞1, . . . , 𝑞𝑚, such that

𝑀 = 𝐵⊤

⎡⎣∑︁
𝑆⊆[𝑚]

(︃∑︁
𝑗

(𝑟𝑗𝑆(𝑥))(𝑟
𝑗
𝑆(𝑥))

⊤

)︃
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)]

⎤⎦𝐵 +𝑄(𝑥)

and furthermore that deg
(︁∑︀

𝑗(𝑟
𝑗
𝑆(𝑥))(𝑟

𝑗
𝑆(𝑥))

⊤
)︁
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)] ≤ 𝑑 for every 𝑆 ⊆ [𝑚],

and deg𝑄 ≤ 𝑑. Observe that in the case 𝑀1, . . . ,𝑀𝑚,𝑀 are actually 1× 1 matrices,

this reduces to the usual notion of scalar-valued sum of squares proofs.

Adapting pseudodistributions to the matrix case, we say a pseudodistribution Ẽ of
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degree 2𝑑 satisfies the inequalities {𝑀1(𝑥) ⪰ 0, . . . ,𝑀𝑚(𝑥) ⪰ 0} if for every multiset

𝑆 ⊆ [𝑚] and 𝑝 ∈ R[𝑥] such that deg [𝑝(𝑥)2 · (⊗𝑖∈𝑆𝑀𝑖(𝑥))] ≤ 2𝑑,

Ẽ
[︀
𝑝(𝑥)2 · (⊗𝑖∈𝑆𝑀𝑖(𝑥))

]︀
⪰ 0 .

For completeness, we prove the following lemmas in the appendix.

Lemma 4.7.1 (Soundness). Suppose Ẽ is a degree-2𝑑 pseudodistribution which sat-

isfies constraints {𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0}, and

{𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0} ⊢2𝑑 𝑀 ⪰ 0 .

Then Ẽ satisfies {𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0,𝑀 ⪰ 0}.

Lemma 4.7.2. Let 𝑓(𝑥) be a degree-ℓ 𝑠-vector-valued polynomial in indeterminates

𝑥. Let 𝑀(𝑥) be a 𝑠× 𝑠 matrix-valued polynomial of degree ℓ′. Then

{𝑀 ⪰ 0} ⊢ℓℓ′ ⟨𝑓(𝑥),𝑀(𝑥)𝑓(𝑥)⟩ ≥ 0 .

Polynomial-time algorithms to find pseudodistributions satisfying matrix-SoS con-

straints follow similar ideas as in the non-matrix case. In particular, recall that to en-

force a scalar constraint {𝑝(𝑥) ≥ 0}, one imposes the convex constraint Ẽ 𝑝(𝑥)(𝑥⊗𝑑)(𝑥⊗𝑑)⊤ ⪰

0. Enforcing a constraint {𝑀(𝑥) ⪰ 0} can be accomplished similarly by adding con-

straints of the form Ẽ𝑀(𝑥) ⪰ 0, Ẽ𝑀(𝑥)𝑝(𝑥) ⪰ 0, etc.

4.7.2 Warmup: Gaussian moment matrix-polynomials

In this section we develop the encoding as low degree polynomials of the following

properties of an 𝑛-variate vector 𝑤 and a 𝑑-variate vector 𝜇. We will not be able to

encode exactly these properties, but they will be our starting point. Let 𝑑, 𝑛 ∈ N,

and suppose there are some vectors (a.k.a. samples) 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑.

1. Boolean: 𝑤 ∈ {0, 1}𝑛.
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2. Size: (1− 𝜏)𝛼𝑛 ≤
∑︀

𝑖∈[𝑛]𝑤𝑖 ≤ (1 + 𝜏)𝛼𝑛.

3. Empirical mean: 𝜇 = 1∑︀
𝑖∈[𝑛] 𝑤𝑖

∑︀
𝑖∈[𝑛]𝑤𝑖𝑋𝑖.

4. 𝑡-th Moments: the 𝑡-th empirical moments of the vectors selected by the vector

𝑤, centered about 𝜇, are subgaussian. That is,

max
𝑢∈R𝑑

1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ≤ 2 · 𝑡𝑡/2‖𝑢‖𝑡2 .

The second property is already phrased as two polynomial inequalities, and the third

can be rearranged to a polynomial equation. For the first, we use polynomial equations

𝑤2
𝑖 = 𝑤𝑖 for every 𝑖 ∈ [𝑛]. The moment constraint will be the most difficult to

encode. We give two versions of this encoding: a simple one which will work when

the distribution of the structured subset of samples to be recovered is Gaussian, and a

more complex version which allows for any explicitly bounded distribution. For now

we describe only the Gaussian version. We state some key lemmas and prove them

for the Gaussian case. We carry out the general case in the following section.

To encode the bounded moment constraint, for this section we let 𝑀(𝑤, 𝜇) be the

following matrix-valued polynomial

𝑀(𝑤, 𝜇) =
1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖

[︁
(𝑋𝑖 − 𝜇)⊗𝑡/2

]︁ [︁
(𝑋𝑖 − 𝜇)⊗𝑡/2

]︁⊤

Definition 4.7.1 (Structured subset axioms, Gaussian version). For parameters

𝛼 ∈ [0, 1] (for the size of the subset), 𝑡 (for which empirical moment to control),

and 𝜏 > 0 (to account for some empirical deviations), the structured subset axioms

are the following matrix-polynomial inequalities on variables 𝑤 = (𝑤1, . . . , 𝑤𝑛), 𝜇 =

(𝜇1, . . . , 𝜇𝑑).

1. booleanness: 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑛]

2. size: (1− 𝜏)𝛼𝑛 ≤
∑︀

𝑖∈[𝑛]𝑤𝑖 ≤ (1 + 𝜏)𝛼𝑛

3. 𝑡-th moment boundedness: 𝑀(𝑤, 𝜇) ⪯ 2 · E𝑋∼𝒩 (0,𝐼)

[︀
𝑋⊗𝑡/2

]︀ [︀
𝑋⊗𝑡/2

]︀⊤.
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4. 𝜇 is the empirical mean: 𝜇 ·
∑︀

𝑖∈[𝑛]𝑤𝑖 =
∑︀

𝑖∈[𝑛]𝑤𝑖𝑋𝑖.

Notice that in light of the last constraint, values for the variables 𝜇 are always

determined by values for the variables 𝑤, so strictly speaking 𝜇 could be removed

from the program. However, we find it notationally convenient to use 𝜇. We note

also that the final constraint, that 𝜇 is the empirical mean, will be used only for the

robust statistics setting but seems unnecessary in the mixture model setting.

Next, we state and prove some key lemmas for this Gaussian setting, as warmups

for the general setting.

Lemma 4.7.3 (Satisfiability, Gaussian case). Let 𝑑 ∈ N and 𝛼 = 𝛼(𝑑) > 0. Let

𝑡 ∈ N. Suppose (1− 𝜏)𝛼𝑛 ≥ 𝑑100𝑡. Let 0.1 > 𝜏 > 0. If 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 has a subset

𝑆 ⊆ [𝑛] such that {𝑋𝑖}𝑖∈𝑆 are iid samples from 𝒩 (𝜇*, 𝐼) and |𝑆| ≥ (1 − 𝜏)𝛼𝑛, then

with probability at least 1−𝑑−8 over these samples, the 𝛼, 𝑡, 𝜏 structured subset axioms

are satisfiable.

Proof. Suppose 𝑆 has size exactly (1 − 𝜏)𝛼𝑛; otherwise replace 𝑆 with a random

subset of 𝑆 of size exactly (𝛼 − 𝜏)𝑛. As a solution to the polynomials, we will take

𝑤 to be the indicator vector of 𝑆 and 𝜇 = 1
|𝑆|
∑︀

𝑖∈[𝑛]𝑤𝑖𝑋𝑖. The booleanness and size

axioms are trivially satisfied. The spectral inequality

1

𝛼𝑛

∑︁
𝑖≤[𝑛]

𝑤𝑖

[︁
(𝑋𝑖 − 𝜇)⊗𝑡/2

]︁ [︁
(𝑋𝑖 − 𝜇)⊗𝑡/2

]︁⊤
⪯ 2 · E

𝑋∼𝒩 (0,𝐼)

[︀
𝑋⊗𝑡/2

]︀ [︀
𝑋⊗𝑡/2

]︀⊤
follows from concentration of the empirical mean to the true mean 𝜇* and standard

matrix concentration (see e.g. [Tro12]).

The next lemma is actually a corollary of Lemma 4.7.2.

Lemma 4.7.4 (Moment bounds for polynomials of 𝜇, Gaussian case). Let 𝑓(𝜇) be

a length-𝑑 vector of degree-ℓ polynomials in indeterminates 𝜇 = (𝜇1, . . . , 𝜇𝑘). The

𝑡-th moment boundedness axiom implies the following inequality with a degree 𝑡ℓ SoS
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proof.

{︂
𝑀(𝑤, 𝜇) ⪯ 2 · E

𝑋∼𝒩 (0,𝐼)

[︀
𝑋⊗𝑡/2

]︀ [︀
𝑋⊗𝑡/2

]︀⊤}︂
⊢𝑂(𝑡ℓ)

1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑓(𝜇)⟩𝑡 ≤ 2 · E
𝑋∼𝒩 (0,𝐼)

⟨𝑋, 𝑓(𝜇)⟩𝑡 .

4.7.3 Moment polynomials for general distributions

In this section we prove Lemma 4.4.1.

We start by defining polynomial equations ̂︀𝒜, for which we introduce some extra

variables For every pair of multi-indices 𝛾, 𝜌 over [𝑘] with degree at most 𝑡/2, we

introduce a variable 𝑀𝛾,𝜌. The idea is that 𝑀 = [𝑀𝛾,𝜌]𝛾,𝜌 forms an 𝑛𝑡/2×𝑛𝑡/2 matrix.

By imposing equations of the form 𝑀𝛾,𝜌 = 𝑓𝛾,𝜌(𝑤, 𝜇) for some explicit polynomials

𝑓𝛾,𝜌 of degree 𝑂(𝑡), we can ensure that

⟨𝑢⊗𝑡/2,𝑀𝑢⊗𝑡/2⟩ = 2 · 𝑡𝑡/2‖𝑢‖𝑡2 −
1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 .

(This equation should be interpreted as an equality of polynomials in indeterminates

𝑢.) Let ℒ be such a family of polynomial equations. Our final system ̂︀𝒜(𝛼, 𝑡, 𝜏)
of polynomial equations and inequalities follows. The important parameters are 𝛼,

controlling the size of the set of samples to be selected, and 𝑡, how many moments to

control. The parameter 𝜏 is present to account for random fluctuations in the sizes

of the cluster one wants to recover.

Definition 4.7.2. Let ̂︀𝒜(𝛼, 𝑡, 𝜏) be the set of (matrix)-polynomial equations and

inequalities on variables 𝑤, 𝜇,𝑀𝛾,𝜌 containing the following.

1. Booleanness: 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑛]

2. Size: (1− 𝜏)𝛼𝑛 ≤
∑︀
𝑤𝑖 ≤ (1 + 𝜏)𝛼𝑛.

3. Empirical mean: 𝜇 ·
∑︀

𝑖∈[𝑛]𝑤𝑖 =
∑︀

𝑖∈[𝑛]𝑤𝑖𝑋𝑖.

4. The equations ℒ on 𝑀 described above.
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5. Positivity: 𝑀 ⪰ 0.

In the remainder of this section we prove the satisfiability and moment bounds

parts of Lemma 4.4.1. To prove the lemma we will need a couple of simple facts about

SoS proofs.

Fact 4.7.5. Let 𝑋1, . . . , 𝑋𝑚 ∈ R𝑑. Let 𝑣 ∈ R𝑑 have ‖𝑣‖2 ≤ 1. Let 𝑌𝑖 = 𝑋𝑖 + 𝑣. Let

𝑡 ∈ N be even. Suppose there is 𝐶 ∈ R with 𝐶 ≥ 1 such that for all 𝑠 ≤ 𝑡,

1

𝑚

∑︁
𝑖∈[𝑚]

‖𝑋𝑖‖𝑠2 ≤ 𝐶𝑠

Then

⊢𝑡
1

𝑚

∑︁
𝑖∈[𝑛]

[︀
⟨𝑋𝑖, 𝑢⟩𝑡 − ⟨𝑌𝑖, 𝑢⟩𝑡

]︀
≤
(︀
2𝑡𝐶𝑡−1‖𝑣‖2

)︀
‖𝑢‖𝑡2

and similarly for 1
𝑚

∑︀
𝑖∈[𝑛] [⟨𝑌𝑖, 𝑢⟩𝑡 − ⟨𝑋𝑖, 𝑢⟩𝑡].

Proof. Expanding ⟨𝑌𝑖, 𝑢⟩𝑡, we get

⟨𝑌𝑖, 𝑢⟩𝑡 = ⟨𝑋𝑖 + 𝑣, 𝑢⟩𝑡 =
∑︁
𝑠≤𝑡

(︂
𝑡

𝑠

)︂
⟨𝑋𝑖, 𝑣⟩𝑠⟨𝑣, 𝑢⟩𝑡−𝑠 .

So,

1

𝑚

∑︁
𝑖∈[𝑚]

[︀
⟨𝑋𝑖, 𝑢⟩𝑡 − ⟨𝑌𝑖, 𝑢⟩𝑡

]︀
= − 1

𝑚

∑︁
𝑖∈[𝑚]

∑︁
𝑠<𝑡

(︂
𝑡

𝑠

)︂
⟨𝑋𝑖, 𝑢⟩𝑠⟨𝑣, 𝑢⟩𝑡−𝑠 .

For each term, by Cauchy-Schwarz, ⊢𝑡 ⟨𝑋𝑖, 𝑢⟩𝑠⟨𝑣, 𝑢⟩𝑡−𝑠 ≤ ‖𝑋𝑖‖𝑠2‖𝑣‖𝑡−𝑠
2 ·‖𝑢‖𝑡2. Putting

these together with the hypothesis on 1
𝑛
‖𝑋𝑖‖𝑠2 and counting terms finishes the proof.

Proof of Lemma 4.4.1: Satisfiability. By taking a random subset 𝑆 if necessary, we

assume |𝑆| = (1− 𝜏)𝛼𝑛 = 𝑚. We describe a solution to the system ̂︀𝒜. Let 𝑤 be the

0/1 indicator vector for 𝑆. Let 𝜇 = 1
𝑚

∑︀
𝑖∈𝑆 𝑤𝑖𝑋𝑖. This satisfies the Boolean-ness,

size, and empirical mean axioms.
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Describing the assignment to the variables {𝑀𝛾,𝜌} takes a little more work. Re-

indexing and centering, let 𝑌1 = 𝑋𝑖1−𝜇, . . . , 𝑌𝑚 = 𝑋𝑖𝑚−𝜇 be centered versions of the

samples in 𝑆, where 𝑆 = {𝑖1, . . . , 𝑖𝑚} and 𝜇 remains the empirical mean 1
𝑚

∑︀
𝑖∈𝑆 𝑋𝑖.

First suppose that the following SoS proof exists:

⊢𝑡
1

𝛼𝑛

∑︁
𝑖∈𝑆

⟨𝑌𝑖, 𝑢⟩𝑡 ≤ 2 · 𝑡𝑡/2‖𝑢‖𝑡2 .

Just substituting definitions, we also obtain

⊢𝑡
1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ≤ 2 · 𝑡𝑡/2‖𝑢‖𝑡2 .

where now 𝑤 and 𝜇 are scalars, not variables, and 𝑢 are the only variables remaining.

The existence of this SoS proof means there is a matrix 𝑃 ∈ R𝑑𝑡/2×𝑑𝑡/2 such that

𝑃 ⪰ 0 and

⟨𝑢⊗𝑡/2, 𝑃𝑢⊗𝑡/2⟩ = 2𝑡𝑡/2‖𝑢‖𝑡2 −
1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 .

Let 𝑀𝛾,𝜌 = 𝑃𝛾,𝜌. Then clearly 𝑀 ⪰ 0 and 𝑀,𝑤, 𝜇 together satisfy ℒ.

It remains to show that the first SoS proof exists with high probability for large

enough 𝑚. Since 𝑡 is even and 0.1 > 𝜏 > 0, it is enough to show that

⊢𝑡
1

𝑚

∑︁
𝑖∈[𝑆]

⟨𝑌𝑖, 𝑢⟩𝑡 ≤ 1.5 · 𝑡𝑡/2‖𝑢‖𝑡2

Let 𝑍𝑖 = 𝑋𝑖 − 𝜇*, where 𝜇* is the true mean of 𝐷. Let

𝑎(𝑢) =
1

𝑚

∑︁
𝑖∈𝑆

[︀
⟨𝑍𝑖, 𝑢⟩𝑡 − ⟨𝑌𝑖, 𝑢⟩𝑡

]︀
𝑏(𝑢) =

1

𝑚

∑︁
𝑖∈𝑆

⟨𝑍𝑖, 𝑢⟩𝑡 − E
𝑍∼𝐷−𝜇*

⟨𝑍, 𝑢⟩𝑡 .

We show that for 𝑑 ≥ 2,

⊢𝑡 𝑎(𝑢) ≤ 1
4
‖𝑢‖𝑡2 ⊢𝑡 𝑏(𝑢) ≤ 1

4
‖𝑢‖𝑡2
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so long as the following hold

1. (bounded norms) for every 𝑠 ≤ 𝑡 it holds that 1
𝑚

∑︀
𝑖∈[𝑚] ‖𝑍𝑖‖𝑠2 ≤ 𝑠100𝑠𝑑𝑠/2.

2. (concentration of empirical mean) ‖𝜇− 𝜇*‖2 ≤ 𝑑−5𝑡.

3. (bounded coefficients) For every multiindex 𝜃 of degree |𝜃| = 𝑡, one has⃒⃒⃒⃒
⃒⃒ 1𝑚 ∑︁

𝑖∈[𝑚]

𝑍𝜃
𝑖 − E

𝑍∼𝐷
𝑍𝜃

⃒⃒⃒⃒
⃒⃒ ≤ 𝑑−10𝑡 .

We verify in Fact 4.7.6 following this proof that these hold with high probability

by standard concentration of measure, for 𝑚 ≥ 𝑑100𝑡 and 𝐷 10𝑡-explicitly bounded,

as assumed. Together with the assumption ⊢𝑡 E𝑍∼𝐷−𝜇*⟨𝑍, 𝑢⟩𝑡 ≤ 𝑡𝑡/2‖𝑢‖𝑡2, this will

conclude the proof.

Starting with 𝑎(𝑢), using Fact 4.7.5, it is enough that 2𝑡𝐶𝑡−1‖𝑣‖2 ≤ 1
4
, where

𝑣 = 𝜇 − 𝜇* and 𝐶 is such that 1
𝑚

∑︀
𝑖∈[𝑚] ‖𝑍𝑖‖𝑠2 ≤ 𝐶𝑠. By 1 and 2, we can assume

‖𝑣‖2 ≤ 𝑑−5𝑡 and 𝐶 = 𝑡100𝑑1/2. Then the conclusion follows for 𝑡 ≥ 3.

We turn to 𝑏(𝑢). A typical coefficient of 𝑏(𝑢) in the monomial basis—say, the

coefficient of 𝑢𝜃 for some multiindiex 𝜃 of degree |𝜃| = 𝑡, looks like

1

𝑚

∑︁
𝑖∈[𝑚]

𝑌 𝜃
𝑖 − E

𝑌∼𝐷
𝑌 𝜃 .

By assumption this is at most 𝑑−10𝑡 in magnitude, so the sum of squared coefficients

of 𝑏(𝑢) is at most 𝑑−18𝑡. The bound on 𝑏(𝑢) for 𝑑 ≥ 2.

Proof of Lemma 4.4.1: Moment bounds. As in the lemma statement, let 𝑓(𝜇) be a

vector of degree-ℓ polynomials in 𝜇. By positivity and Lemma 4.7.2,

𝑀(𝑤, 𝜇) ≥ 0 ⊢𝑂(𝑡ℓ) ⟨𝑓(𝜇)⊗𝑡/2,𝑀(𝑤, 𝜇)𝑓(𝜇)⊗𝑡/2⟩ ≥ 0 .
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Using this in conjunction with the linear equations ℒ,

̂︀𝒜 ⊢𝑂(𝑡ℓ) 2𝑡𝑡/2‖𝑓(𝜇)‖𝑡2 −
1

𝛼𝑛

∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑓(𝜇)⟩𝑡 ≥ 0

which is what we wanted to show.

Fact 4.7.6 (Concentration for items 1, 2,3). Let 𝑑, 𝑡 ∈ N. Let 𝐷 be a mean-zero

distribution on R𝑑 such that E⟨𝑍, 𝑢⟩𝑠 ≤ 𝑠𝑠‖𝑢‖𝑠2 for all 𝑠 ≤ 10𝑡 for every 𝑢 ∈ R𝑑.

Then for 𝑡 ≥ 4 and large enough 𝑑 and 𝑚 ≥ 𝑑100𝑡, for 𝑚 independent samples

𝑍1, . . . , 𝑍𝑚 ∼ 𝐷,

1. (bounded norms) for every 𝑠 ≤ 𝑡 it holds that 1
𝑚

∑︀
𝑖∈[𝑚] ‖𝑍𝑖‖𝑠2 ≤ 𝑠100𝑠𝑑𝑠/2.

2. (concentration of empirical mean)
⃦⃦⃦

1
𝑚

∑︀
𝑖∈[𝑚] 𝑍𝑖

⃦⃦⃦
≤ 𝑑−5𝑡.

3. (bounded coefficients) For every multiindex 𝜃 of degree |𝜃| = 𝑡, one has⃒⃒⃒⃒
⃒⃒ 1𝑚 ∑︁

𝑖∈[𝑚]

𝑍𝜃
𝑖 − E

𝑍∼𝐷
𝑍𝜃

⃒⃒⃒⃒
⃒⃒ ≤ 𝑑−10𝑡 .

Proof. The proofs are standard applications of central limit theorems, in particular

the Berry-Esseen central limit theorem [Ber41], since all the quantities in question

are sums of iid random variables with bounded moments. We will prove only the first

statement; the others are similar.

Note that 1
𝑚

∑︀
𝑖∈[𝑚] ‖𝑍𝑖‖𝑠2 is a sum of iid random variables. Furthermore, by

our moment bound assumption, E𝑍∼𝐷 ‖𝑍‖𝑠2 ≤ 𝑠2𝑠𝑑𝑠/2. We will apply the Berry-

Esseen central limit theorem [Ber41]. The second and third moments E(‖𝑍‖𝑠2 −

E ‖𝑍‖𝑠2)2,E(‖𝑍‖𝑠2 − E ‖𝑍‖𝑠2)3 are bounded, respectively, as 𝑠𝑂(𝑠)𝑘𝑠 and 𝑠𝑂(𝑠)𝑑3𝑠/2. By

Berry-Esseen,

Pr

⎧⎨⎩
√
𝑚

𝑑𝑠/2
· 1
𝑚

∑︁
𝑖∈[𝑚]

‖𝑍𝑖‖𝑠2 > 𝑟 +

√
𝑚

𝑑𝑠/2
E ‖𝑍‖𝑠2

⎫⎬⎭ ≤ 𝑒−Ω(𝑟2) + 𝑠𝑂(𝑠) ·𝑚−1/2 .
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Finally we remark on the polynomial-time algorithm to find a pseudoexpectation

satisfying ̂︀𝒜. As per [BS17], it is just necessary to ensure that if 𝑥 = (𝑤, 𝜇), the

polynomials in ̂︀𝒜 include ‖𝑥‖22 ≤ 𝑀 for some large number 𝑀 . In our case the

equation ‖𝑥‖22 ≤ (𝑛𝑘𝑚)𝑂(1) can be added without changing any arguments.

4.7.4 Modifications for robust estimation

We briefly sketch how the proof of Lemma 4.4.1 may be modified to prove Lemma 4.6.3.

The main issue is that ̂︀𝒜 of Lemma 4.4.1 is satisfiable when there exists an SoS proof

⊢𝑡
1

(1− 𝜀)𝑛
∑︁
𝑖∈[𝑛]

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑢⟩𝑡 ≤ 2𝑡𝑡/2‖𝑢‖𝑡2

where 𝜇 is the empirical mean of 𝑋𝑖 such that 𝑤𝑖 = 1. In the proof of Lemma 4.4.1

we argued that this holds when 𝑤 is the indicator for a set of iid samples from a

10𝑡-explicitly bounded distribution 𝐷. However, in the robust setting, 𝑤 should be

taken to be the indicator of the (1−𝜀)𝑛 good samples remaining from such a set of iid

samples after 𝜀𝑛 samples are removed by the adversary. If 𝑌1, . . . , 𝑌𝑛 are the original

samples, with empirical mean 𝜇*, the proof of Lemma 4.4.1 (with minor modifications

in constants) says that with high probability,

⊢𝑡
1

𝑛

∑︁
𝑖∈[𝑛]

⟨𝑌𝑖 − 𝜇*, 𝑢⟩𝑡 ≤ 1.1𝑡𝑡/2‖𝑢‖𝑡2

For small-enough 𝜀, this also means that

⊢𝑡
1

(1− 𝜀)𝑛
∑︁
𝑖 good

⟨𝑋𝑖 − 𝜇*, 𝑢⟩𝑡 ≤ 1.2𝑡𝑡/2‖𝑢‖𝑡2 .

This almost implies that ̂︀𝒜 is satisfiable given the 𝜀-corrupted vectors 𝑋1, . . . , 𝑋𝑛 and

parameter 𝛼 = (1− 𝜀)𝑛, except for that 𝜇* = 1
𝑛

∑︀
𝑖∈[𝑛] 𝑌𝑖 and we would like to replace

it with 𝜇 = 1
(1−𝜀)𝑛

∑︀
𝑖 good𝑋𝑖. This can be accomplished by noting that, as argued in

Section 4.6, with high probability ‖𝜇− 𝜇*‖2 ≤ 𝑂(𝑡 · 𝜀1−1/𝑡).
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Chapter 5

Filtering I: Learning a High

Dimensional Gaussian (and Beyond)

You’re different; it’s strange.

Pause to look at the change.

And though it’s familiar

Still somehow I know

That from here a different story unfolds.

After the wild journey into madness that was the last couple of chapters, it is now

time to take a step back, and go back to fundamentals. In this chapter we return to

Problem 1.4.1, and present a different algorithm for this problem.

Rather than assign weights to individual points corresponding to our belief as to

whether or not the point is corrupted or not, this framework will simply repeatedly

throw away the points which it considers the most suspicious. The key point to our

analysis will be to show that under a fixed set of determinstic conditions, the algorithm

always (or in some cases, in expectation) throws away more corrupted points than

uncorrupted points.

How does the algorithm decide how “suspicious” a point is? Recall the idea of

spectral signatures, which were also key for the framework based on convex program-

ming. For concreteness, consider the problem of robustly learning the mean of a
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Gaussian (Problem 1.4.2). Previously, we showed that the top eigenvector of the co-

variance gave us a way to construct a separation oracle for the set of feasible weights.

Intuitively, this is because on average the corrupted points should be further away in

this direction. In this chapter, we will take this even further: we will show that under

somewhat stronger concentration conditions, if we simply project all the data points

onto the top eigenvalue, we can simply throw away the data points which are far-

thest away along this projection, and repeat this process until the spectral signature

disappears.

This is a key insight in the design of filtering: these spectral signatures induce

very simple ways of detecting which outliers are affecting the statistic at hand. As a

result, we can use these very simple iterative procedures to reliably remove them.

The main advantage of this approach is that it is extremely efficient: a single

iteration of filtering requires only (1) finding an approximate top eigenvector and

eigenvalue of the covariance of the data, (2) checking if this eigenvalue is above a

certain threshold, and if it is, (3) projecting all the data points on the eigenvector,

and throwing away the largest. All these steps can be done in nearly linear time, and

therefore in most cases, a single iteration of filtering runs in nearly linear time. As

we shall see, we can show that in many cases, filtering is guaranteed to finish in very

few iterations. As a result, the overall algorithm has very good runtime guarantees

in theory. In fact, in practice we found that the algorithm does even better: often

3-4 iterations suffice to remove almost all outliers.

The downside is that because we are somewhat more careless with individual

data points, this algorithm requires somewhat stronger concentration conditions on

the uncorrupted data points. However, we are able to show that this price is not too

high—indeed, in many settings we pay only a polylogarithmic overhead.

5.1 Additional preliminaries

In this chapter and going forward, it will be useful to have notation to deal with

empirical means and covariances of data sets. This is because our arguments will (as
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opposed to before) very explicitly change the “active” data set in every iteration by

removing points from it.

Let 𝑆 ⊆ R𝑑 be any finite set. We let 𝑋 ∈𝑢 𝑆 denote a uniformly random draw

over 𝑆. We will let

𝜇𝑆 = E
𝑋∈𝑢𝑆

[𝑋] =
1

|𝑆|
∑︁
𝑋∈𝑆

𝑋 (5.1)

denote the empirical mean, and for any 𝑦 ∈ R𝑑 we let

𝑀𝑆(𝑦) = E
𝑋∈𝑢𝑆

[︀
(𝑋 − 𝑦)(𝑋 − 𝑦)⊤

]︀
=

1

|𝑆|
∑︁
𝑋∈𝑆

(𝑋 − 𝑦)(𝑋 − 𝑦)⊤ (5.2)

denote a modified version of the empirical covariance, which is equal to the covariance

of the uniform distribution over 𝑆 when 𝑦 = 𝜇𝑆.

We also require the following definition that quantifies the extent to which a set

of samples has been corrupted:

Definition 5.1.1. Given finite sets 𝑆 and 𝑆 ′ we let Δ(𝑆, 𝑆 ′) = |𝑆Δ𝑆′|
|𝑆| be the size of

the symmetric difference of 𝑆 and 𝑆 ′ divided by the cardinality of 𝑆.

Finally, we require the following guarantee, which says that, given a matrix, it is

possible to find an vector which captures a constant fraction of the energy of the top

singular vector of the matrix, in nearly linear time. Formally:

Fact 5.1.1 ([MM15]). Fix 𝛼, 𝛿 > 0. Let 𝐴 ∈ R𝑛×𝑑, and let

𝜆* = sup
‖𝑢‖2=1

𝑢⊤𝐴⊤𝐴𝑢 ,

be the square of the top singular value of 𝐴. Then, there is an algorithm ApproxSVD(𝐴,𝛼, 𝛿)

which runs in time ̃︀𝑂 (︀𝑛𝑑 log 1
𝛼
log 1

𝛿

)︀
which with probability 1−𝛿 outputs a unit vector

𝑣 so that

𝑣⊤𝐴⊤𝐴𝑣 ≥ (1− 𝛼)𝜆* .

We remark that more recently there have been more algorithms which achieve
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even faster runtimes (see e.g. [Sha16, AZL16]). However, in the regimes that we will

care about (i.e. when 𝛼 = Ω(1)), this more basic guarantee suffices.

For simplicity, we will assume that ApproxSVD always succeeds. Since its run-

time dependence on 𝛿, the failure probability, is logarithmic, it should be clear that

since we will only call ApproxSVD polynomially many times (in fact, ̃︀𝑂(𝑑 log 1/𝜀)
times), by taking 𝛿′ = poly(1/𝑛, 1/𝑑, 𝛿), we lose only logarithmic factors in the run-

time and we may assume that all runs of ApproxSVD succeed.

5.2 General pseudocode for filtering

In this chapter (and going forward), it will be very useful to state the filtering frame-

work in very general framework, as we will be instantiating it in a wide variety of

settings. We present the general framework in 14. In addition to the dataset 𝑆 which

is to be filtered, filtering requires the following parameters and subroutines:

∙ 𝜀, the fraction of points which are corrupted. We note that often the algorithm

does not require this, or if it does, there are standard techniques to estimate 𝜀.

∙ 𝛿, the probability of failure we are willing to tolerate. This parameter is only

really necessary for technical reasons and should be largely ignored.

∙ ComputeScores, a way to compute scores which are intended to measure how

“suspicious” any individual data point is. We will think of this as a function

𝜏 : 𝑆 → R. In accordance to the discussion above regarding spectral signatures,

in all instances this method will use some spectral method to determine the

scores.

∙ Thres, a way to decide when to stop filtering. In theory, this should involve

some check of whether or not the scores are too large or not in aggregate.

However, in practice this often simply returns whether or not the algorithm has

run for a fixed number of iterations.
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∙ Remove, a way to remove data points based on the scores. Since scores are

intended to be larger for more suspicious points, this will usually simply remove

points which have large scores. However, the specific thresholds we choose will

need to be problem dependent.

Algorithm 14 General filtering meta-algorithm
1: function GeneralFilter(𝑆, 𝜀, 𝛿,ComputeScores,Thres,Remove)
2: Let 𝑛 = |𝑆|
3: Let 𝜏 ← ComputeScores(𝑆)
4: if Thres(𝜏, 𝜀, 𝛿) then
5: return “DONE”
6: else
7: Let 𝑆 ← Remove(𝑆, 𝜏, 𝜀, 𝛿)

Remark 5.2.1. For conciseness, when it is understood, we will often omit the param-

eters 𝜀, 𝛿 from the list of inputs to GeneralFilter and its concrete instantiations.

Remark 5.2.2. We remark that there are a couple of cases where the algorithm doesn’t

technically fit this framework, or requires additional parameters. For instance, even

the algorithm which simply runs the loop for a constant number of iterations tech-

nically cannot be described in this way without some additional state. However, we

trust the reader can figure out how to implement these minor changes if necessary.

For simplicity of presentation we will ignore these issues.

5.2.1 Spectral filtering

An important special case of this framework is the case where the scores are com-

puted using approximate spectral methods. This will be what we use in almost every

instance where we need to robustly estimate a mean. As we discuss above, this is

because when the mean is corrupted, we should find a spectral signature. Therefore,

data points which have large correlation with the top eigenvector of the empirical

covariance should be considered suspicious, and thus it makes sense to assign them

higher scores, in accordance to how much they contribute to the top eigenvector. The

formal pseudocode is given in Algorithm 15.
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Algorithm 15 Computing scores via a spectral criterion
1: function ComputeSpectralScores(𝑆)
2: Let 𝑛 = |𝑆|
3: Compute the sample mean 𝜇𝑆.
4: Let 𝐴 be the matrix whose rows are given by 1√

𝑛

(︀
𝑋 − 𝜇𝑆

)︀
, for each 𝑋 ∈ 𝑆.

5: Let 𝛿′ = poly(𝜀, 𝛿, 1/𝑛, 1/𝑑).
6: Let 𝑣 = ApproxSVD(𝐴, 1/10, 𝛿′).
7: For 𝑋 ∈ 𝑆, let 𝜏(𝑋) = (𝑣⊤(𝑋 − 𝜇𝑆))2.
8: return 𝜏 : 𝑆 → R

Note that if 𝜏 is the output of ComputeSpectralScores, then

1

𝑛

∑︁
𝑋∈𝑆

𝜏(𝑆) =
1

𝑛

∑︁
𝑋∈𝑆

(𝑣⊤(𝑋 − 𝜇𝑆))2 = 𝑣⊤𝑀𝑆(𝜇𝑆)𝑣 , (5.3)

where 𝑣 is the approximate eigenvector found by ApproxSVD. Thus, these scores

exactly correspond to how much each individual point contributes to the (approxi-

mate) top eigenvalue of the empirical covariance. With this algorithm, we also define

the following important special case of GeneralFilter, which uses these spectral

scores.

Definition 5.2.1. For any choice of Thres,Remove, we define

SpectralFilter(𝑆, 𝜀, 𝛿,Thres,Remove) = GeneralFilter(𝑆, 𝜀, 𝛿,Thres,Remove) .

We observe that since ApproxSVD runs in nearly linear time, it trivially follows

that:

Corollary 5.2.1. For any set of 𝑛 points 𝑆 in R𝑑, we have that ComputeSpectralScores(𝑆)

runs in time ̃︀𝑂(𝑛𝑑).
5.2.2 How do we choose the threshold and how to remove

points?

If we use spectral criteria to determine the scores, how should use the scores to

determine the threshold and the removal criteria? We give some high level intuition
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here, which will serve as a rough guideline for the algorithms we describe in detail

below.

Removal criteria We will start with how to choose the removal criteria. To define

this, one should first find the tightest univariate tail bound you can expect from your

data set, if you had the true statistics. For instance, if your uncorrupted data is

sub-Gaussian, then this should look like a sub-Gaussian style tail bound. If your

uncorrupted data has bounded covariance, then this should be like a Chebyshev-style

bound. Then, the removal algorithm should somehow attempt to remove points which

cause the scores to violate this concentration bound. Unfortunately, the exact form of

how this should be done seems to change depending on the form of the concentration

bound. For instance, for the second moment method, we seem to inherently require

randomness to get the right answer. We leave it as an interesting open question to

give a simple, unified approach for designing the removal algorithm.

Threshold criteria The principles for designing the threshold algorithm are simi-

lar. We take the same univariate tail bound as before, and ask: given a distribution

which satisfies this univariate tail bound, how much larger does the largest 𝜀-fraction

of scores make the overall mean of the scores? In general, we should set the threshold

to be of this order, plus whatever the good points should contribute in expectation to

this statistic. Roughly this is because this is the amount of deviation that the worst

𝜀-fraction of points from the true distribution could contribute.

In the special case of spectral filtering we may derive a closed form formula for

what the threshold ought to be in the infinite sample limit, given these considerations.

In the examples we discuss below, this essentially gives the right answer. Let 𝐷 be

our distribution. In the infinite sample setting, we should think of 𝜏 as a function

over all of R𝑑. In this case, when we have the “right statistic”, i.e., we have properly

centered the distribution, so we may assume E𝑋∼𝐷[𝑋] = 0, the score function will

exactly be 𝜏(𝑋) = (𝑣⊤𝑋)2, where 𝑣 is the top eigenvector of the covariance Σ of the

distribution.1 Let Φ𝑣 denote the CDF of 𝐷 when projected onto 𝑣, and let 𝜑𝑣 denote
1We are also ignoring issues of approximation in this informal discussion; see Section 5.2.3 for a
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the PDF. Then, the guideline says that the threshold should be

T𝜀(𝐷) = E
𝑋∼𝐷𝑣

[𝑋2] +

∫︁ ∞

Φ−1
𝑣 (1−𝜀)

𝑥2𝜑𝑣(𝑥)𝑑𝑥 . (5.4)

Notice that this should work for any 𝜏(𝑋) = 𝑓(𝑣⊤𝑋) where 𝑓 : R→ R is monotonic.

In this case the expression is easily generalized:

T𝜀(𝐷, 𝑓) = E
𝑋∼𝐷𝑣

[𝑓(𝑋)] +

∫︁ ∞

Φ−1
𝑣 (1−𝜀)

𝑓(𝑥)𝜑𝑣(𝑥)𝑑𝑥 . (5.5)

Of course, these are only general rules, and care must be applied to each individual

situation to apply them. In fact, it doesn’t even quite give the right answer for

mean estimation under bounded second moment assumptions! However the interested

reader may find them useful in trying to understand the algorithms given below.

5.2.3 Approximation, randomness, and other gremlins

Finally, we remark about a couple of minor points regarding approximation that we

will ignore for the rest of the thesis.

For the rest of the thesis, we will typically assume that the vector that Algo-

rithm 15 finds is exactly the top eigenvector of the empirical covariance. This is

not true: ApproxSVD only guarantees that with high probability, we find a vector

that has roughly the same energy as the top eigenvector of the empirical covariance.

However, it is easy to verify that all of our arguments only require that the vector we

find has roughly the same energy as the top eigenvector (except in one case, namely,

in Section 5.3, but we will address the question explicitly there). There is also the

issue that with some small probability, the algorithm fails, since ApproxSVD fails

with some small probability. However, since the failure probability of ApproxSVD

grows logarithmically with 1/𝛿′, by our choice of 𝛿′, the probability that any run

fails is negligible so long as we only run ComputeSpectralScores only polynomi-

ally times, which we will always do. Thus for simplicity we will always assume that

discussion of issues of this sort
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ApproxSVD always succeeds.

5.2.4 Organization

As in Chapter 2, it suffices to solve Problem 1.4.2 and Problem 1.4.3 separately. After

giving algorithms for both, it is not hard to show (via very similar arguments as in

Chapter 2) that this gives an algorithm for the full problem. Thus in this chapter we

will only show how to solve the subproblems separately. In Section 5.3 we show how

to use the filtering framework to learn the mean robustly, and in Section 5.4 we show

how to learn the covariance robustly.

5.3 Learning the mean of an isotropic sub-Gaussian

distribution

In this section, we use our filter technique to give an agnostic learning algorithm for

learning the mean of an isotropic sub-Gaussian distribution with known covariance

matrix. In particular observe this captures the case of isotropic Gaussians. More

specifically, we prove:

Theorem 5.3.1. Let 𝜀, 𝛿 > 0, and let 𝜇 ∈ R𝑑. Let 𝑋1, . . . , 𝑋𝑛 be an 𝜀-corrupted set

of samples from 𝒩 (𝜇, 𝐼) of size

𝑛 = Ω

(︂
𝑑

𝜀2
poly log

(︂
𝑑

𝜀𝛿

)︂)︂
.

There exists an algorithm that, given 𝑋1, . . . , 𝑋𝑛 and 𝜀 > 0, returns a vector ̂︀𝜇 such

that with probability at least 1− 𝛿 we have

‖̂︀𝜇− 𝜇‖2 = 𝑂(𝜀
√︀

log(1/𝜀)) .

Moreover, the algorithm runs in time ̃︀𝑂(𝑛𝑑2).
Observe that it requires 𝑂(𝑛𝑑) time to read the samples, so this guarantees that the
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algorithm runs in essentially 𝑂(𝑑) reads of the input.

Throughout this section, we will let 𝜇 denote the (unknown) mean, and we let 𝑆 ′

denote an 𝜀-corrupted set of samples from 𝒩 (𝜇, 𝐼) of size 𝑛. We will let 𝑆 denote a set

of i.i.d. samples from 𝒩 (𝜇, 𝐼) so that Δ(𝑆, 𝑆 ′) = 𝜀. By the definition of 𝜀-corruption,

we know that such an 𝑆 exists.

Deterministic conditions As before, we start by defining our notion of good

sample, i.e, a set of conditions on the uncorrupted set of samples under which our

algorithm will succeed. These will correspond to the deterministic conditions defined

in (2.5)-(2.7), but as we shall see, are somewhat more stringent.

Fix 𝛿 > 0. We will prove that our algorithm will succeed under the following set

of deterministic conditions on our data points 𝑆 ′ and our uncorrupted data points 𝑆.

We will require that (𝑆, 𝑆 ′) satisfy:

Δ(𝑆, 𝑆 ′) = 𝜀 (5.6)

‖𝑋 − 𝜇‖2 ≤ 𝑂(
√︀
𝑑 log(|𝑆|/𝛿)) ,∀𝑋 ∈ 𝑆 (5.7)

‖𝜇𝑆 − 𝜇‖2 ≤ 𝜀 , (5.8)⃦⃦
𝑀𝑆(𝜇)− 𝐼

⃦⃦
2
≤ 𝜀 . (5.9)⃒⃒⃒⃒

Pr
𝑋∈𝑢𝑆

[𝐿(𝑋) ≥ 0]− Pr
𝑋∼𝒩 (𝜇,𝐼)

[𝐿(𝑋) ≥ 0]

⃒⃒⃒⃒
≤ 𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝛿
)
)︀ , (5.10)

∀𝐿 : R𝑑 → R s.t. 𝐿(𝑥) = 𝑣 · (𝑥− 𝜇)− 𝑇 , where 𝑇 ≥ 1, ‖𝑣‖2 = 1

We pause briefly to interpret these conditions. Condition (5.6) is the only require-

ment on 𝑆 ′, and it is the requirement that 𝑆 ′ is close to 𝑆. Conditions (5.7)-(5.9)

are completely standard and essentially state that no sample is too far away from the

mean, and that the empirical mean and covariance converge.

The only really unusual condition is Condition (5.10). This condition is a state-

ment about the convergence of linear threshold functions: it says that the fraction

of points in the set of samples that are beyond any threshold, in any direction, con-
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centrates appropriately to the expected fraction under the true distribution. The

exact form of the concentration that we enforce here is necessary to get the sample

complexities we desire. Observe that the bound on the difference gets stronger as

𝑇 grows. Intuitively, this is possible because the expected value number of points

from a Gaussian beyond this threshold gets smaller as 𝑇 grows, which decreases the

variance of the random variable. This allows us to apply correspondingly stronger

Chernoff bounds, which give tighter concentration.

We show in Appendix E that a sufficiently large set of independent samples from

𝒩 (𝜇, 𝐼) satisfies these properties with high probability. Specifically, we prove:

Lemma 5.3.2. Let 𝜀, 𝛿 > 0. Let 𝑆, 𝑛 be as above, and let

𝑛 = Ω

(︂
𝑑

𝜀2
poly log

(︂
𝑑

𝜀𝛿

)︂)︂
.

Then, 𝑆 satisfies (5.7)–(5.10) with probability 1− 𝛿.

5.3.1 Filtering for robust isotropic mean estimation

Our main algorithmic contribution in this section is the design of a filtering algorithm,

and a proof of its correctness under the deterministic conditions described above.

Our algorithm for this problem is almost of the form described in SpectralFilter,

however does not quite fit for a (relatively dumb) technical reason. Recall that to

define a filter, we need to define three conditions: a score function, a threshold func-

tion, and a removal function. We will describe these each in turn. Throughout this

description, let 𝑈 ⊆ 𝑆 be a (potentially already partially filtered) set of points, which

we wish to filter.

Scores Morally, the scores we use are exactly those computed by ComputeSpec-

tralScores, but we need to use a different algorithm for reasons we describe here.

Recall that ComputeSpectralScores finds an approximate top unit eigen-

vector 𝑣′ of the empirical covariance 𝑀𝑈(𝜇𝑈), and defines the scores to be the squared

correlation of each centered data point with this eigenvector. Instead here, we need
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to find a approximate top unit eigenvector 𝑣 of 𝑀𝑈(𝜇𝑈) − 𝐼, and we need to define

the scores to be

𝜏(𝑋) = (𝑣⊤(𝑋 − 𝜇𝑈))2 − 1 ,

for every 𝑋 ∈ 𝑈 . If we do so, then we have

E
𝑋∈𝑢𝑈

[𝜏(𝑋)] =
1

|𝑈 |
∑︁
𝑋∈𝑈

(︀
(𝑣⊤(𝑋 − 𝜇𝑈))2 − 1

)︀
= 𝑣⊤𝑀𝑈(𝜇𝑈)𝑣 − 1 = 𝑣⊤

(︀
𝑀𝑈(𝜇𝑈)− 𝐼

)︀
𝑣 .

Rather than in ComputeSpectralScores , here we need to do the spectral oper-

ations with respect to the empirical covariance minus the identity. This is because in

this case we are going to exploit the fact that we know that the true covariance is the

identity to detect spectral deviations to the empirical covariance of a relatively scale.

Specifically, the deviations we will detect will be of the order 𝑂(𝜀 log 1/𝜀).

This causes some difficulties if we try to directly plug in ComputeSpectralScores ,

because of the approximate nature of ApproxSVD. Instead, we will do approximate

SVD directly on𝑀𝑈(𝜇𝑈)−𝐼. The (approximate) pseudocode is given in Algorithm 16.

Algorithm 16 Computing scores via a spectral criterion for learning the mean of an
isotropic sub-Gaussian distribution
1: function ComputeIsoScores(𝑈)
2: Let 𝑣 be an (approximate) eigenvector of 𝑀𝑈(𝜇𝑈)− 𝐼, i.e. 𝑣 satisfies

𝑣⊤
(︀
𝑀𝑈(𝜇𝑈)− 𝐼

)︀
𝑣 ≥ 9

10

⃦⃦
𝑀𝑈(𝜇𝑈)− 𝐼

⃦⃦
2
.

3: For 𝜏 ∈ 𝑈 , let 𝜏(𝑋) = (𝑣⊤(𝑋 − 𝜇𝑈))2 − 1.
4: return the function 𝜏 : 𝑈 → R

We remark that implementing Line 2 as written would require forming𝑀𝑈(𝜇𝑈), which

would be quite slow; much slower than the claimed runtime. However, the approxi-

mate top eigenvector of this matrix can still be computed using a minor modification

to ApproxSVD. This is because each iteration of ApproxSVD only requires that

are able to evaluate matrix-vector multiplications in nearly linear time. That is, for
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any vector 𝑢 ∈ R𝑑, we need to evaluate 𝑀𝑢 in linear time, where 𝑀 is the matrix we

are applying ApproxSVD to. Since our matrix is 𝑀𝑈(𝜇𝑈) − 𝐼, we can clearly do

this without forming 𝑀𝑈(𝜇𝑈) explicitly. As a result, we have:

Corollary 5.3.3. Given a dataset 𝑈 ⊆ R𝑑 of size 𝑚, ComputeIsoScores(𝑈) runs

in time ̃︀𝑂(𝑚𝑑).
For the rest of the section, we will for simplicity assume that the eigenvector found by

ComputeIsoScores is the exact top eigenvector. It can be easily verified that none

of our arguments change when we are only given an approximate top eigenvector.

Threshold In accordance with the general guidelines discussed, we may compute (5.5),

with 𝑓(𝑥) = 𝑥2 − 1. In this case, reusing the notation of (5.5), we have that

𝜑𝑣(𝑥) is simply the PDF of an isotropic sub-Gaussian distribution, and Φ𝑣(1 − 𝜀) =

𝑂(
√︀

log 1/𝜀). Moreover, observe that by our choice of 𝑓 , we have 𝐸𝑋∼𝐷𝑣 [𝑓(𝑋)] = 0.

Hence, we have

T𝜀(𝐷, 𝑓) = 𝜀 ·
∫︁ ∞

𝑂(
√

log 1/𝜀)

(𝑥2 − 1)𝜑(𝑥)𝑑𝑥

≤ 𝜀

∫︁ ∞

𝑂(
√

log 1/𝜀)

𝑥2𝜑(𝑥)𝑑𝑥

= 𝑂 (𝜀 log 1/𝜀) ,

by standard Gaussian concentration. Thus, our threshold is simply to stop if the sum

of the scores is greater than 𝑂(𝜀 log 1/𝜀). The formal pseudocode is given in

Algorithm 17 Threshold function for learning the mean of an isotropic sub-Gaussian
distribution
1: function IsoThres(𝜏, 𝜀, 𝛿)
2: return E𝑋∈𝑢𝑈 [𝜏(𝑋)] ≤ 𝑂(𝜀 log 1/𝜀).

Removal The removal operation for this case is a bit subtle. Essentially, the idea

will be to find a point 𝑇 > 0 so that sub-Gaussian concentration is violated at this

point; however, the specific form needs to be carefully worked out so as to work with
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the concentration inequality we have for LTFs, namely (5.10). We give the algorithm

in Algorithm 18.

Algorithm 18 Removal function for learning the mean of an isotropic sub-Gaussian
distribution
1: function IsoRemove(𝑈, 𝜏, 𝜀, 𝛿)
2: Let 𝐶1 = 𝐶3 = 8, and 𝐶2 = 1/2. ◁ Constants for the tail bound which work

in theory, but should be optimized in practice.
3: Let 𝜌 := 3

√︀
𝜀E𝑋∈𝑢𝑈 [𝜏(𝑋)]. Find 𝑇 > 0 such that

Pr
𝑋∈𝑢𝑈

[︀
|𝜏(𝑋)|1/2 > 𝑇 + 𝜌

]︀
> 𝐶1 exp(−𝐶2𝑇

2) + 𝐶3
𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝛿
)
)︀ .

4: return the set 𝑈 ′ = {𝑋 ∈ 𝑈 : |𝜏(𝑋)|1/2 ≤ 𝑇 + 𝜌}.

The filter for isotropic sub-Gaussian distributions With these definitions, we

now have a full algorithm for our filter algorithm. We will denote it

FilterIsoMean(·, ·, ·)

:= GeneralFilter(·, ·, ·,ComputeIsoScores, IsoThres, IsoRemove) .

Our main result about this algorithm is the following:

Proposition 5.3.4. Let (𝑆, 𝑆 ′) satisfy (5.6)–(5.10). Let 𝑈 ⊆ 𝑆 ′ be any set with

Δ(𝑆, 𝑈) ≤ 𝜀, so that and for any 𝑋, 𝑌 ∈ 𝑈 , ‖𝑋 − 𝑌 ‖2 ≤ 𝑂(
√︀
𝑑 log(𝑑/𝜀𝜏)). Then

given 𝑈, 𝜀, 𝛿, FilterIsoMean returns one of the following:

(i) If FilterIsoMean outputs “DONE”, then 𝜇𝑈 satisfies ‖𝜇𝑈−𝜇‖2 = 𝑂(𝜀
√︀
log(1/𝜀)).

(ii) A set 𝑈 ′ ⊆ 𝑈 such that Δ(𝑆, 𝑈 ′) ≤ Δ(𝑆, 𝑈)− 𝜀
𝛼
, where

𝛼 = 𝑑 log

(︂
𝑑

𝜀𝜏

)︂
log

(︂
𝑑 log

𝑑

𝜀𝜏

)︂
. (5.11)

Moreover, the algorithm runs in time ̃︀𝑂(𝑛𝑑).
We pause briefly to interpret this proposition. The guarantee is that filtering will

either: (1) output a good estimate of the true mean, or (2) decrease the fraction
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of bad points to good points in our current data set. We will show later in this

section that, after first pruning the data set using NaivePrune (Fact 2.2.6), these

conditions guarantee that if we iteratively apply FilterIsoMean to our data set, it

will output a good estimate of the mean in at most 𝑂(𝛼) iterations, where 𝛼 is given

in (5.11). Combined with the runtime guarantee for a single iteration of filtering, this

guarantees that the algorithm will always output a good estimate of the true mean,

in time at most ̃︀𝑂(𝑛𝑑2), as required.

5.3.2 Proof of Proposition 5.3.4

In this section we prove Proposition 5.3.4. Observe that without loss of generality we

may take 𝑈 = 𝑆 ′, as the only condition we use about 𝑈 is that Δ(𝑆, 𝑈) ≤ 𝜀.

In a slight abuse of notation, let 𝑆good = 𝑆 ∩ 𝑆 ′ and 𝑆bad = 𝑆 ′ ∖ 𝑆, i.e., let

them denote the sets of samples themselves, rather than the set of indices which are

uncorrupted or corrupted, respectively. Moreover, let 𝑆rem be the set of samples in 𝑆

which have been removed in 𝑆 ′. Therefore 𝑆 ′ = (𝑆 ∪ 𝑆bad) ∖ 𝑆rem.

With this notation, we can write

Δ(𝑆, 𝑆 ′) =
|𝑆rem|+ |𝑆bad|

|𝑆|
.

Thus, our assumption Δ(𝑆, 𝑆 ′) ≤ 𝜀 is equivalent to |𝑆rem| + |𝑆bad| ≤ 𝜀 · |𝑆|, and the

definition of 𝑆 ′ directly implies that (1 − 𝜀)|𝑆| ≤ |𝑆 ′| ≤ (1 + 𝜀)|𝑆|. Throughout the

proof, we assume that 𝜀 is a sufficiently small constant.

Throughout this section, for any 𝑈 ⊆ 𝑆 ∪ 𝑆 ′ we wil let

𝑀𝑈 =𝑀𝑈(𝜇) = E
𝑋∈𝑢𝑈

[︀
(𝑋 − 𝜇)(𝑋 − 𝜇)⊤

]︀
,

that is, in (5.2) we will take 𝑦 = 𝜇. Moreover, let

̂︀Σ =𝑀𝑆′
(𝜇𝑆′

)

be the empirical covariance of the dataset.
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Our analysis will hinge on proving the important claim that ̂︀Σ−𝐼 is approximately

(|𝑆bad|/|𝑆 ′|)𝑀𝑆bad . This means two things for us. First, it means that if the positive

errors align in some direction (causing 𝑀𝑆bad to have a large eigenvalue), there will

be a large eigenvalue in ̂︀Σ− 𝐼. Second, it says that any large eigenvalue of ̂︀Σ− 𝐼 will

correspond to an eigenvalue of 𝑀𝑆bad , which will give an explicit direction in which

many error points are far from the empirical mean.

Formally, the key lemma we will prove is the following:

Lemma 5.3.5. Let (𝑆, 𝑆 ′) satisfy (5.6)–(5.10). Then

̂︀Σ− 𝐼 =
|𝑆bad|
|𝑆 ′|

𝑀𝑆bad +𝑂 (𝜀 log(1/𝜀)) +𝑂

(︂
|𝑆bad|
|𝑆 ′|

)︂2

‖𝑀𝑆bad‖2 ,

where the additive terms denote matrices of appropriately bounded spectral norm.

Proof of Lemma 5.3.5

We begin by noting that we have concentration bounds on Gaussians and therefore,

on 𝑆.

Fact 5.3.6. Let (𝑆, 𝑆 ′) satisfies (5.6)-(5.10). Let 𝑤 ∈ R𝑑 be any unit vector, then for

any 𝑇 > 0,

Pr
𝑋∼𝒩 (𝜇,𝐼)

[|𝑤 · (𝑋 − 𝜇)| > 𝑇 ] ≤ 2 exp(−𝑇 2/2)

and

Pr
𝑋∈𝑢𝑆

[|𝑤 · (𝑋 − 𝜇)| > 𝑇 ] ≤ 2 exp(−𝑇 2/2) +
𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀ .

Proof. The first line is Fact 1.4.1, and the former follows from (5.10).

By using the above fact, we obtain the following simple claim:

Claim 5.3.7. Let (𝑆, 𝑆 ′) satisfies (5.6)-(5.10). Let 𝑤 ∈ R𝑑 be any unit vector, then
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for any 𝑇 > 0, we have that:

Pr
𝑋∼𝒩 (𝜇,𝐼)

[|𝑤 · (𝑋 − 𝜇𝑆′
)| > 𝑇 + ‖𝜇𝑆′ − 𝜇‖2] ≤ 2 exp(−𝑇 2/2).

and

Pr
𝑋∈𝑢𝑆

[|𝑤 · (𝑋 − 𝜇𝑆′
)| > 𝑇 + ‖𝜇𝑆′ − 𝜇‖2] ≤ 2 exp(−𝑇 2/2) +

𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀ .

Proof. This follows from Fact 5.3.6 upon noting that |𝑤 · (𝑋−𝜇𝑆′
)| > 𝑇 + ‖𝜇𝑆′ −𝜇‖2

only if |𝑤 · (𝑋 − 𝜇)| > 𝑇 .

We can use the above facts to prove concentration bounds for 𝐿. In particular,

we have the following lemma:

Lemma 5.3.8. Let (𝑆, 𝑆 ′) satisfies (5.6)-(5.10). Then, we have that

‖𝑀𝑆rem‖2 = 𝑂

(︂
log

|𝑆|
|𝑆rem|

+ 𝜀
|𝑆|
|𝑆rem|

)︂
.

Proof. Since 𝑆rem ⊆ 𝑆, for any 𝑥 ∈ R𝑑, we have that

|𝑆| · Pr
𝑋∈𝑢𝑆

(𝑋 = 𝑥) ≥ |𝑆rem| · Pr
𝑋∈𝑢𝑆rem

(𝑋 = 𝑥) . (5.12)

Since 𝑀𝑆rem is a symmetric matrix, we have ‖𝑀𝑆rem‖2 = max‖𝑣‖2=1 |𝑣⊤𝑀𝑆rem𝑣|. So,

to bound ‖𝑀𝑆rem‖2 it suffices to bound |𝑣⊤𝑀𝑆rem𝑣| for unit vectors 𝑣. By definition

of 𝑀𝑆rem , for any 𝑣 ∈ R𝑑 we have that

|𝑣⊤𝑀𝑆rem𝑣| = E
𝑋∈𝑢𝑆rem

[|𝑣 · (𝑋 − 𝜇)|2].
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For unit vectors 𝑣, the RHS is bounded from above as follows:

E
𝑋∈𝑢𝑆rem

[︀
|𝑣 · (𝑋 − 𝜇)|2

]︀
= 2

∫︁ ∞

0

Pr
𝑋∈𝑢𝑆rem

[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ]𝑇𝑑𝑇

= 2

∫︁ 𝑂(
√

𝑑 log(𝑑/𝜀𝜏))

0

Pr
𝑋∈𝑢𝑆rem

[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ]𝑇𝑑𝑇

≤ 2

∫︁ 𝑂(
√

𝑑 log(𝑑/𝜀𝜏))

0

min

{︂
1,
|𝑆|
|𝑆rem|

· Pr
𝑋∈𝑢𝑆

[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ]

}︂
𝑇𝑑𝑇

≤
∫︁ 4
√

log(|𝑆|/|𝑆rem|)

0

𝑇𝑑𝑇

+ (|𝑆|/|𝑆rem|)
∫︁ 𝑂(
√

𝑑 log(𝑑/𝜀𝜏))

4
√

log(|𝑆|/|𝑆rem|)

(︁
exp(−𝑇 2/2) +

𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀)︁𝑇𝑑𝑇

= 𝑂

(︂
log

|𝑆|
|𝑆rem|

+ 𝜀 · |𝑆|
|𝑆rem|

)︂
,

where the second line follows from the fact that ‖𝑣‖2 = 1, 𝑆rem ⊂ 𝑆, and 𝑆 satis-

fies (5.7); the third line follows from (5.12); and the fourth line follows from Fact 5.3.6.

As a corollary, we can relate the matrices 𝑀𝑆′ and 𝑀𝑆bad , in spectral norm:

Corollary 5.3.9. Let (𝑆, 𝑆 ′) satisfies (5.6)-(5.10). Then, we have that

𝑀𝑆′ − 𝐼 =
|𝑆bad|
|𝑆 ′|

𝑀𝑆bad +𝑂(𝜀 log(1/𝜀)) ,

where the 𝑂(𝜀 log(1/𝜀)) term denotes a matrix of spectral norm 𝑂(𝜀 log(1/𝜀)).

Proof. By definition, we have that |𝑆 ′|𝑀𝑆′
= |𝑆|𝑀𝑆 − |𝑆rem|𝑀𝑆rem + |𝑆bad|𝑀𝑆bad .

Thus, we can write

𝑀𝑆′
= (|𝑆|/|𝑆 ′|)𝑀𝑆 − (|𝑆rem|/|𝑆 ′|)𝑀𝑆rem + (|𝑆bad|/|𝑆 ′|)𝑀𝑆bad

= 𝐼 +𝑂(𝜀) +𝑂(𝜀 log(1/𝜀)) + (|𝑆bad|/|𝑆 ′|)𝑀𝑆bad ,

where the second line uses the fact that 1 − 2𝜀 ≤ |𝑆|/|𝑆 ′| ≤ 1 + 2𝜀, (5.9), and

Lemma 5.3.8. Specifically, Lemma 5.3.8 implies that (|𝑆rem|/|𝑆 ′|)‖𝑀𝑆rem‖2 = 𝑂(𝜀 log(1/𝜀)).
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Therefore, we have that

𝑀𝑆′ − 𝐼 =
|𝑆bad|
|𝑆 ′|

𝑀𝑆bad +𝑂(𝜀 log(1/𝜀)) ,

as desired.

We now establish a similarly useful bound on the difference between the mean vectors:

Lemma 5.3.10. Let (𝑆, 𝑆 ′) satisfies (5.6)-(5.10). We have that

𝜇𝑆′ − 𝜇 =
|𝑆bad|
|𝑆 ′|

(𝜇𝑆bad − 𝜇) +𝑂(𝜀
√︀

log(1/𝜀)) ,

where the 𝑂(𝜀
√︀

log(1/𝜀)) term denotes a vector with ℓ2-norm at most 𝑂(𝜀
√︀

log(1/𝜀)).

Proof. By definition, we have that

|𝑆 ′|(𝜇𝑆′ − 𝜇) = |𝑆|(𝜇𝑆 − 𝜇)− |𝑆rem|(𝜇𝑆rem − 𝜇) + |𝑆bad|(𝜇𝑆bad − 𝜇).

By (5.8) we have ‖𝜇𝑆 − 𝜇‖2 = 𝑂(𝜀). Since 1− 2𝜀 ≤ |𝑆|/|𝑆 ′| ≤ 1 + 2𝜀, it follows that

|𝑆|
|𝑆 ′|
‖𝜇𝑆 − 𝜇‖2 = 𝑂(𝜀) .

Lemma 2.2.16 implies ‖𝑀𝑆rem‖2 ≥ ‖𝜇𝑆rem − 𝜇‖22. Together with Lemma 5.3.8, we

obtain that

‖𝜇𝑆rem − 𝜇‖2 ≤ 𝑂

(︃√︃
log

|𝑆|
|𝑆rem|

+

√︃
𝜀
|𝑆|
|𝑆rem|

)︃
.

Therefore,

|𝑆rem|
|𝑆 ′|

‖𝜇𝑆rem − 𝜇‖2 ≤ 𝑂

(︃
|𝑆rem|
|𝑆|

√︃
log
|𝑆|
|𝐿|

+

√︃
𝜀
|𝐿|
|𝑆|

)︃
= 𝑂(𝜀

√︀
log(1/𝜀)) .

In summary,

𝜇𝑆′ − 𝜇 =
|𝑆bad|
|𝑆 ′|

(𝜇𝑆bad − 𝜇) +𝑂(𝜀
√︀
log(1/𝜀)) ,
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as desired. This completes the proof of the lemma.

We now the the tools necessary to prove Lemma 5.3.5:

Proof of Lemma 5.3.5. By definition, we can write

̂︀Σ− 𝐼 =𝑀𝑆′ − 𝐼 − (𝜇𝑆′ − 𝜇)(𝜇𝑆′ − 𝜇)⊤ .

Using Corollary 5.3.9 and Lemma 5.3.10, we obtain:

̂︀Σ− 𝐼 =
|𝑆bad|
|𝑆 ′|

𝑀𝑆bad +𝑂(𝜀 log(1/𝜀)) +𝑂

(︂
|𝑆bad|
|𝑆 ′|

)︂2

‖𝜇𝑆bad − 𝜇‖22 +𝑂(𝜀2 log(1/𝜀))

=
|𝑆bad|
|𝑆 ′|

𝑀𝑆bad +𝑂(𝜀 log(1/𝜀)) +𝑂

(︂
|𝑆bad|
|𝑆 ′|

)︂2

‖𝑀𝑆bad‖2 ,

where the second line since Lemma 2.2.16 implies ‖𝑀𝑆bad‖2 ≥ ‖𝜇𝐸 − 𝜇‖22. This

completes the proof.

Proof of Proposition 5.3.4 given Lemma 5.3.5

We now show how Lemma 5.3.5 implies Proposition 5.3.4. This entails demonstrating

two things. We need to show that: (1) if the spectral norm of ̂︀Σ − 𝐼 is small, i.e.

when IsoThres returns True, then algorithm outputs a good mean, and (2) if the

spectral norm of ̂︀Σ− 𝐼 is large, then the algorithm throws out more bad points than

good points in IsoRemove. We do these in turn.

Case of Small Spectral Norm. Suppose IsoThres outputs True. In this case, by

the guarantees of ApproxSVD, we have that

𝜆* := ‖̂︀Σ− 𝐼‖2 = 𝑂(𝜀 log(1/𝜀)) .

Hence, Lemma 5.3.5 yields that

|𝑆bad|
|𝑆 ′|
‖𝑀𝑆bad‖2 ≤ 𝜆* +𝑂(𝜀 log(1/𝜀)) +𝑂

(︂
|𝑆bad|
|𝑆 ′|

)︂2

‖𝑀𝑆bad‖2 ,
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which in turns implies that

|𝑆bad|
|𝑆 ′|
‖𝑀𝑆bad‖2 = 𝑂(𝜀 log(1/𝜀)) .

On the other hand, since ‖𝑀𝑆bad‖2 ≥ ‖𝜇𝑆bad − 𝜇‖22, Lemma 5.3.10 gives that

‖𝜇𝑆′ − 𝜇‖2 ≤
|𝑆bad|
|𝑆 ′|

√︀
‖𝑀𝑆bad‖2 +𝑂(𝜀

√︀
log(1/𝜀)) = 𝑂(𝜀

√︀
log(1/𝜀)).

This proves part (i) of Proposition 5.3.4.

Case of Large Spectral Norm. We next show the correctness of the algorithm

when it returns a filter in Step 3.

We start by proving that if 𝜆* := ‖̂︀Σ− 𝐼‖2 > 𝐶𝜀 log(1/𝜀), for a sufficiently large

universal constant 𝐶, then a value 𝑇 satisfying the condition in Step 3 exists. We first

note that ‖𝑀𝑆bad‖2 is appropriately large. Indeed, by Lemma 5.3.5, the guarantees

of ComputeIsoScores, and the assumption that 𝜆* > 𝐶𝜀 log(1/𝜀) we deduce that

|𝑆bad|
|𝑆 ′|
‖𝑀𝑆bad‖2 = Ω(𝜆*) . (5.13)

Moreover, using the inequality ‖𝑀𝑆bad‖2 ≥ ‖𝜇𝐸 − 𝜇‖22 and Lemma 5.3.10 as above,

we get that

‖𝜇𝑆′ − 𝜇‖2 ≤
|𝑆bad|
|𝑆 ′|

√︀
‖𝑀𝑆bad‖2 +𝑂(𝜀

√︀
log(1/𝜀)) ≤ 𝛿/2 , (5.14)

where we used the fact that 𝛿 =:
√
𝜀𝜆* > 𝐶 ′𝜀

√︀
log(1/𝜀).

Let 𝑣* denote the top eigenvector of ̂︀Σ − 𝐼, so that |𝜏(𝑋)|1/2 =
⃒⃒
𝑣* · (𝑋 − 𝜇𝑆′ ⃒⃒.

Suppose for the sake of contradiction that for all 𝑇 > 0 we have that

Pr
𝑋∈𝑢𝑆′

[︀
|𝜏(𝑋)|1/2 > 𝑇 + 𝛿

]︀
≤ 8 exp(−𝑇 2/2) + 8

𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀ .
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Using (5.14), this implies that for all 𝑇 > 0 we have that

Pr
𝑋∈𝑢𝑆′

[|𝑣* · (𝑋 − 𝜇)| > 𝑇 + 𝛿/2] ≤ 8 exp(−𝑇 2/2) + 8
𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀ . (5.15)

Since 𝑆bad ⊆ 𝑆 ′, for all 𝑥 ∈ R𝑑 we have that

|𝑆 ′| Pr
𝑋∈𝑢𝑆′

[𝑋 = 𝑥] ≥ |𝑆bad| Pr
𝑌 ∈𝑢𝑆bad

[𝑌 = 𝑥] .

This fact combined with (5.15) implies that for all 𝑇 > 0

Pr
𝑋∈𝑢𝑆bad

[|𝑣* · (𝑋 − 𝜇)| > 𝑇 + 𝛿/2] ≤ 𝐶
|𝑆 ′|
|𝑆bad|

(︃
exp(−𝑇 2/2) +

𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀)︃ ,

(5.16)

for some universal constant 𝐶 ′′.

We now have the following sequence of inequalities:

‖𝑀𝑆bad‖2 = E
𝑋∈𝑢𝑆bad

[︀
|𝑣* · (𝑋 − 𝜇)|2

]︀
= 2

∫︁ ∞

0

Pr
𝑋∈𝑢𝑆bad

[|𝑣* · (𝑋 − 𝜇)| > 𝑇 ]𝑇𝑑𝑇

= 2

∫︁ 𝑂(
√

𝑑 log(𝑑/𝜀𝜏))

0

Pr
𝑋∈𝑢𝑆bad

[|𝑣* · (𝑋 − 𝜇)| > 𝑇 ]𝑇𝑑𝑇

≤ 2

∫︁ 𝑂(
√

𝑑 log(𝑑/𝜀𝜏))

0

min

{︂
1,
|𝑆 ′|
|𝑆bad|

· Pr
𝑋∈𝑢𝑆′

[|𝑣* · (𝑋 − 𝜇)| > 𝑇 ]

}︂
𝑇𝑑𝑇

≤
∫︁ 4
√

log(|𝑆′|/|𝑆bad|)+𝛿

0

𝑇𝑑𝑇

+ 𝐶 ′′ |𝑆 ′|
|𝑆bad|

∫︁ 𝑂(
√

𝑑 log(𝑑/𝜀𝜏))

4
√

log(|𝑆′|/|𝑆bad|)+𝛿

(︁
exp(−𝑇 2/2) +

𝜀

𝑇 2 log
(︀
𝑑 log( 𝑑

𝜀𝜏
)
)︀)︁𝑇𝑑𝑇

≤
∫︁ 4
√

log(|𝑆′|/|𝑆bad|)+𝛿

0

𝑇𝑑𝑇

+ 𝐶 ′′ |𝑆 ′|
|𝑆bad|

(︃∫︁ ∞

4
√

log(|𝑆′|/|𝑆bad|)+𝛿

(︁
exp(−𝑇 2/2)

)︁
𝑇𝑑𝑇 +𝑂(𝜀)

)︃

≤ log
|𝑆 ′|
|𝑆bad|

+ 𝛿2 +𝑂(1) +𝑂(𝜀) · |𝑆
′|

|𝑆bad|

≤ log
|𝑆 ′|
|𝑆bad|

+ 𝜀𝜆* +𝑂(𝜀) · |𝑆
′|

|𝑆bad|
.
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Rearranging the above, we get that

|𝑆bad|
|𝑆 ′|
‖𝑀𝑆bad‖2 ≤

|𝑆bad|
|𝑆 ′|

log
|𝑆 ′|
|𝑆bad|

+
|𝑆bad|
|𝑆 ′|

𝜀𝜆* +𝑂(𝜀) = 𝑂(𝜀 log(1/𝜀) + 𝜀2𝜆*).

Combined with (5.13), we obtain 𝜆* = 𝑂(𝜀 log(1/𝜀)), which is a contradiction if 𝐶 is

sufficiently large. Therefore, it must be the case that for some value of 𝑇 the condition

in Step 3 is satisfied.

The following claim completes the proof:

Claim 5.3.11. Fix 𝛼 =: 𝑑 log(𝑑/𝜀𝜏) log(𝑑 log( 𝑑
𝜀𝜏
)). We have that Δ(𝑆, 𝑈 ′) ≤ Δ(𝑆, 𝑆 ′)−

2𝜀/𝛼 .

Proof. Recall that 𝑆 ′ = (𝑆 ∖ 𝑆rem) ∪ 𝑆bad, with 𝑆bad and 𝑆rem disjoint sets such that

𝑆rem ⊂ 𝑆. We can similarly write 𝑈 ′ = (𝑆 ∖ 𝑆rem
′) ∪ 𝑆bad

′, with 𝑆rem
′ ⊇ 𝑆rem and

𝑆bad
′ ⊆ 𝑆bad. Since

Δ(𝑆, 𝑆 ′)−Δ(𝑆, 𝑈 ′) =
|𝑆bad ∖ 𝑆bad

′| − |𝑆rem
′ ∖ 𝑆rem|

|𝑆|
,

it suffices to show that

|𝑆bad ∖ 𝑆bad
′| ≥ |𝑆rem

′ ∖ 𝑆rem|+ 𝜀
|𝑆|
𝛼

.

Note that |𝑆rem
′ ∖𝑆rem| is the number of points rejected by the filter that lie in 𝑆 ∩𝑆 ′.

Note that the fraction of elements of 𝑆 that are removed to produce 𝑆 ′′ (i.e., satisfy

|𝑣* · (𝑥−𝜇𝑆′
)| > 𝑇 + 𝛿) is at most 2 exp(−𝑇 2/2)+ 𝜀/𝛼. This follows from Claim 5.3.7

and the fact that 𝑇 = 𝑂(
√︀
𝑑 log(𝑑/𝜀𝜏)).

Hence, it holds that |𝑆rem
′ ∖ 𝑆rem| ≤ (2 exp(−𝑇 2/2) + 𝜀/𝛼)|𝑆|. On the other hand,

Step 3 of the algorithm ensures that the fraction of elements of 𝑆 ′ that are rejected

by the filter is at least 8 exp(−𝑇 2/2) + 8𝜀/𝛼). Note that |𝑆bad ∖ 𝑆bad
′| is the number
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of points rejected by the filter that lie in 𝑆 ′ ∖ 𝑆. Therefore, we can write:

|𝑆bad ∖ 𝑆bad
′| ≥ (8 exp(−𝑇 2/2) + 8𝜀/𝛼)|𝑆 ′| − (2 exp(−𝑇 2/2) + 𝜀/𝛼)|𝑆|

≥ (8 exp(−𝑇 2/2) + 8𝜀/𝛼)|𝑆|/2− (2 exp(−𝑇 2/2) + 𝜀/𝛼)|𝑆|

≥ (2 exp(−𝑇 2/2) + 3𝜀/𝛼)|𝑆|

≥ |𝑆rem
′ ∖ 𝑆rem|+ 2

𝜀|𝑆|
𝛼

,

where the second line uses the fact that |𝑆 ′| ≥ |𝑆|/2 and the last line uses the fact that

|𝑆rem
′ ∖ 𝑆rem|/|𝑆| ≤ 2 exp(−𝑇 2/2) + 𝜀/𝛼. Noting that log(𝑑/𝜀𝜏) ≥ 1, this completes

the proof of the claim.

5.3.3 Putting it all together

We finish by showing how Theorem 5.3.1 follows easily from Proposition 5.3.4. Given

Algorithm FilterIsoMean, our algorithm is simple: we first run NaivePrune,

then run FilterIsoMean until it outputs an estimate of the mean.

Algorithm 19 Filtering algorithm for agnostically learning the mean.
1: function LearnMeanFilter(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛)
2: Run NaivePrune(𝑋1, . . . , 𝑋𝑛). Let 𝑆 ′ = {𝑋𝑖}𝑖∈𝐼 be the pruned set of sam-

ples.
3: while true do
4: Run FilterIsoMean(𝑆 ′, 𝜀, 𝛿).
5: if FilterIsoMean(𝑆 ′, 𝜀, 𝛿) outputs “DONE” then
6: break
7: else
8: Let 𝑆 ′ ← FilterIsoMean(𝑆 ′, 𝜀, 𝛿)

9: return 𝜇𝑆′

Proof of Theorem 5.3.1. By the definition of Δ(𝑆, 𝑆 ′), since 𝑆 ′ has been obtained

from 𝑆 by corrupting an 𝜀-fraction of the points in 𝑆, we have that Δ(𝑆, 𝑆 ′) ≤ 2𝜀.

By Lemma 5.3.2, we have that (𝑆, 𝑆 ′) satisfy conditions (5.6)-(5.10) with probability

1− 𝛿. We henceforth condition on this event.
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By (5.7), we have that have ‖𝑋 − 𝜇‖2 ≤ 𝑂(
√︀
𝑑 log |𝑆|/𝜏) for all 𝑋 ∈ 𝑆. Thus,

the NaivePrune procedure does not remove from 𝑆 ′ any member of 𝑆. Hence,

its output, 𝑆 ′′, has Δ(𝑆, 𝑆 ′′) ≤ Δ(𝑆, 𝑆 ′) and for any 𝑋 ∈ 𝑆 ′′, there is a 𝑋 ∈ 𝑆

with ‖𝑋 − 𝑌 ‖2 ≤ 𝑂(
√︀
𝑑 log |𝑆|/𝜏). By the triangle inequality, for any 𝑋,𝑍 ∈ 𝑆 ′′,

‖𝑋 − 𝑍‖2 ≤ 𝑂(
√︀
𝑑 log |𝑆|/𝜏) = 𝑂(

√︀
𝑑 log(𝑑/𝜀𝜏)).

Then, we iteratively apply the FilterIsoMean procedure of Proposition 5.3.4

until it terminates, in which case LearnMeanFilter outputs a mean vector ̂︀𝜇 with

‖̂︀𝜇−𝜇‖2 = 𝑂(𝜀
√︀
log(1/𝜀)). We claim that we need at most 𝑂(𝛼) iterations for this to

happen. Indeed, the sequence of iterations results in a sequence of sets 𝑆 ′
𝑖, such that

Δ(𝑆, 𝑆 ′
𝑖) ≤ Δ(𝑆, 𝑆 ′) − 𝑖 · 𝜀/𝛼. Thus, if we do not output the empirical mean in the

first 2𝛼 iterations, in the next iteration there are no outliers left. Hence in the next

iteration it is impossible for the algorithm to output a subset satisfying Condition (ii)

of Proposition 5.3.4, so it must output a mean vector satisfying (i), as desired.

5.4 Learning a Gaussian With unknown covariance

In this section, we use our filter technique to agnostically learn a Gaussian with zero

mean vector and unknown covariance. By combining the algorithms of the current and

the previous subsections, as in our convex programming approach (Section 2.2.4), we

obtain a filter-based algorithm to agnostically learn an arbitrary unknown Gaussian.

The main result of this subsection is the following theorem:

Theorem 5.4.1. Let 𝜀, 𝛿 > 0, and let Σ ≻ 0. Let 𝑆 ′ be an 𝜀-corrupted set of samples

from 𝒩 (0,Σ) of size 𝑛, where

𝑛 = Ω

(︂
𝑑2

𝜀2
poly log(𝑑/𝜀𝛿)

)︂
.

There exists an efficient algorithm that, given 𝑆 ′, 𝜀 and 𝛿, returns ̂︀Σ so that with

probability at least 1− 𝛿, it holds ‖Σ− ̂︀Σ‖Σ = 𝑂(𝜀 log(1/𝜀)). Moreover, the algorithm

runs in time ̃︀𝑂(𝜀𝑛2𝑑2).
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5.4.1 Additional preliminaries

The following definition will also be convenient for us:

Definition 5.4.1. For any 𝑑 ≥ 1, and any 𝑑× 𝑑 matrix Σ ≻ 0, we let 𝒫2(Σ) denote

the set of even degree-2 polynomials 𝑝 : R𝑑 → R so that

E
𝑋∼𝒩 (0,Σ)

[𝑝(𝑋)] = 0 and Var
𝑋∼𝒩 (0,Σ)

[𝑝(𝑋)] = 1 .

In a slight abuse of notation, throughout this section, given a dataset 𝑈 , we will let

𝑀𝑈 =𝑀𝑈(0) = E
𝑋∈𝑢𝑈

[︀
𝑋𝑋⊤]︀ ,

that is, we will assume by default that 𝑦 = 0 in (5.2). This is for convenience since

in this section we will always assume the mean is zero.

Deterministic conditions

Throughout this section, we will let Σ ≻ 0 denote the (unknown) true covariance

matrix. As in the previous section, we will need a condition on 𝑆 under which our

algorithm will succeed. As in Definition 5.1.1, Δ(𝑆, 𝑆 ′) is the size of the symmetric

difference of 𝑆 and 𝑆 ′ divided by |𝑆|.

Specifically, we fix 𝜀, 𝛿 > 0, and let 𝑆, 𝑆 ′ be subsets of points in R𝑑. We will

assume that (𝑆, 𝑆 ′) satisfy:

Δ(𝑆, 𝑆 ′) ≤ 𝜀 (5.17)

𝑋⊤Σ−1𝑋 < 𝑂(𝑑 log(|𝑆|/𝛿)) ,∀𝑋 ∈ 𝑆 (5.18)⃦⃦⃦⃦
E

𝑋∈𝑢𝑆

[︀
𝑋𝑋⊤]︀− Σ

⃦⃦⃦⃦
Σ

= 𝑂(𝜀) , (5.19)

Var
𝑋∈𝑢𝑆

[𝑝(𝑋)] = (1±𝑂(𝜀)) · Var
𝑋∼𝒩 (0,𝐼)

[𝑝(𝑋)] . (5.20)

Pr
𝑋∈𝑢𝑆

[|𝑝(𝑋)| > 𝑇 ] ≤ 𝜀

𝑇 2 log2(𝑇 )
for all 𝑝 ∈ 𝒫2(Σ) and 𝑇 > 10 log 1/𝜀 . (5.21)

Let us first note some basic properties of such polynomials on a normal distribu-
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tion. The proof of this lemma is deferred to Section E.

Lemma 5.4.2. For any even degree-2 polynomial 𝑝 : R𝑑 → R, we can write 𝑝(𝑥) =

(Σ−1/2𝑥)⊤𝑃2(Σ
−1/2𝑥) + 𝑝0, for a 𝑑 × 𝑑 symmetric matrix 𝑃2 and 𝑝0 ∈ R. Then, for

𝑋 ∼ 𝒩 (0,Σ), we have

1. E[𝑝(𝑋)] = 𝑝0 + tr(𝑃2),

2. Var[𝑝(𝑋)] = 2‖𝑃2‖2𝐹 and

3. For all 𝑇 > 1, Pr(|𝑝(𝑋)− E[𝑝(𝑋)]| ≥ 𝑇 ) ≤ 2𝑒1/3−2𝑇/3Var[𝑝(𝑋)].

4. For all 𝜌 > 0, Pr(|𝑝(𝑋)| ≤ 𝜌2) ≤ 𝑂(𝜌).

We note that, if 𝑆 is obtained by taking random samples from 𝒩 (0,Σ), then 𝑆

satisfies (5.18)-(5.21) with high probability. The proof of this lemma is also deferred

to Section E.

Lemma 5.4.3. Let 𝜀, 𝛿 > 0, and let 𝑆 be a set of 𝑛 samples from 𝒩 (0,Σ), where

𝑛 = Ω

(︂
𝑑2 log5(𝑑/(𝜀𝛿))

𝜀2

)︂
.

Then 𝑆 satisfies (5.18)-(5.21) with probability 1− 𝛿.

The basic thrust of our algorithm is as follows: By Lemma 5.4.3, with high prob-

ability we have that 𝑆 is (𝜀, 𝛿)-good with respect to 𝐺. The algorithm is then handed

a new set 𝑆 ′ such that Δ(𝑆, 𝑆 ′) ≤ 2𝜀|𝑆|. The algorithm will run in stages. In each

stage, the algorithm will either output good estimates for the covariance, or will re-

turn a new set 𝑆 ′′ such that Δ(𝑆, 𝑆 ′′) < Δ(𝑆, 𝑆 ′). In the latter case, the algorithm

will recurse on 𝑆 ′′. As before, the key algorithmic component to this algorithm, will

be the design of the filtering algorithm which we repeatedly run.

5.4.2 Filtering for robust covariance estimation

In this section we design a filtering algorithm for covariance estimation, and a proof

of its correctness given the determinstic conditions given above.
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Our goal will be to either obtain a certificate that the empirical covariance of our

current data set is close to the true covariance, or to devise a filter that allows us to

clean up our data set by removing some elements, most of which are corrupted.

The idea here is the following. Let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21), and let 𝑀 ′ =𝑀𝑆′

be the empirical covariance of 𝑆 ′. We know by Corollary 1.4.6 that 𝒩 (0,Σ) and

𝒩 (0,𝑀 ′) are close unless 𝐼 −Σ−1/2𝑀 ′Σ−1/2 has large Frobenius norm. This happens

if and only if there is some matrix 𝐴 with ‖𝐴‖𝐹 = 1 such that

tr(𝐴Σ−1/2𝑀 ′Σ−1/2 − 𝐴) = E
𝑋∈𝑢𝑈

[(Σ−1/2𝑋)⊤𝐴(Σ−1/2𝑋)− tr(𝐴)]

is far from 0. On the other hand, we know that the distribution of

𝑝(𝑋) = (Σ−1/2𝑋)⊤𝐴(Σ−1/2𝑋)− tr(𝐴)

for 𝑋 ∈𝑢 𝑆 is approximately that of 𝑝(𝑋) when 𝑋 ∼ 𝒩 (0,Σ). In order to substan-

tially change the mean of this function, while only changing 𝑆 at a few points, one

must have several points in 𝑆 ′ for which 𝑝(𝑋) is abnormally large. This in turn will

imply that the variance of 𝑝(𝑋) for 𝑋 from 𝑆 ′ must be large. This phenomenon

will be detectable as a large eigenvalue of the matrix of fourth moments of 𝑋 ∈ 𝑆 ′

(thought of as a matrix over the space of second moments). If such a large eigenvalue

is detected, we will have a 𝑝 with 𝑝(𝑋) having large variance. By throwing away from

𝑆 ′ elements for which |𝑝(𝑋)| is too large after some appropriate centering, we will

return a cleaner version of 𝑆 ′.

Scores Motivated by this definition, our scores should be given by this polynomial

𝑝 which has large variance over the dataset. This can be found via spectral methods

on the fourth moment tensor. The formal method is given in ComputeCovScores.

For technical reasons (we will need to appropriately center the 𝜏 later on), we

will return the non-squared scores, even though the direct analogy with the previous

algorithms would suggest the alternative score function 𝜏 = 𝑝*(𝑋)2.

The following lemma parses the guarantees of ComputeCovScores, and states
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Algorithm 20 Algorithm for finding a filtering polynomial
1: function ComputeCovScores(𝑈)
2: Let 𝑀 =𝑀𝑈 and let 𝑛 = |𝑈 |
3: Compute an eigen-decomposition of 𝑀 and use it to compute 𝑀−1/2

4: Let 𝑋1, . . . , 𝑋𝑛 be the elements of 𝑈 .
5: For 𝑖 = 1, . . . , 𝑛, let 𝑌𝑖 =𝑀−1/2𝑋(𝑖) and 𝑍𝑖 = 𝑌 ⊗2

𝑖 .
6: Let

𝑇 =
1

|𝑆 ′|

𝑛∑︁
𝑖=1

𝑍𝑖𝑍
⊤
𝑖 −

(︀
𝐼♭
)︀ (︀
𝐼♭
)︀⊤

.

7: Approximate the top eigenvalue 𝜆* and corresponding eigenvector 𝑣* of 𝑇
restricted to 𝒮sym

8: Let 𝑝*(𝑥) = 1√
2
((𝑀−1/2𝑥)⊤𝑣*♯(𝑀−1/2𝑥)− tr(𝑣*♯)).

9: return the function 𝜏(𝑋) = 𝑝*(𝑋)

that it indeed finds the polynomial we wanted:

Claim 5.4.4. Let 𝑈 be any set of points, and let 𝑀 =𝑀𝑈 . Let 𝑝* = ComputeCovScores(𝑈).

Then we have

𝑝* = argmax
𝑝∈𝒫2(𝑀)

E
𝑋∈𝑢𝑈

[︀
𝑝(𝑋)2

]︀
.

Proof. Let 𝑝 ∈ 𝒫2(𝑀) be arbitrary. By Lemma 5.4.2 all even polynomials with

degree-2 that have E𝑋∼𝒩 (0,𝑀)[𝑝(𝑋)] = 0 can be written as 𝑝(𝑥) = (𝑀−1/2𝑥)⊤𝑃2(𝑀
′−1/2𝑥)−

tr(𝑃2) for a symmetric matrix 𝑃2. If we take 𝑃2 = 𝑣♯/
√
2 for a unit vector 𝑣 such

that 𝑣♯ is symmetric, then Var𝑋∼𝒩 (0,𝑀)[𝑝(𝑋)] = 2‖𝑃2‖𝐹 = ‖𝑣2‖ = 1. Hence any

polynomial output by ComputeCovScores will be in 𝒫2(𝑀), as claimed.

We now show that the output of ComputeCovScores is the maximizer of the

quadratic form claimed. Note that since the second moment matrix of 𝑈 is 𝑀, we
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have

E
𝑋∈𝑢𝑈

[𝑝(𝑋)] = E
𝑋∈𝑢𝑈

[︀
(𝑀−1/2𝑋)⊤𝑃2(𝑀

−1/2𝑋)− tr(𝑃2)
]︀

= E
𝑋∈𝑢𝑈

[︀
tr((𝑋𝑋⊤)𝑀−1/2𝑃2𝑀

−1/2)
]︀
− tr(𝑃2)

= tr

(︂
E

𝑋∈𝑢𝑈
[(𝑋𝑋⊤)]𝑀−1/2𝑃2𝑀

−1/2

)︂
− tr(𝑃2)

= tr(𝑀𝑀−1/2𝑃2𝑀
−1/2)− tr(𝑃2) = 0 .

We let 𝑉 = {Σ−1/2𝑋 : 𝑋 ∈ 𝑈}, and we let 𝑊 = {𝑌 ⊗2 : 𝑌 ∈ 𝑇}. We thus have

E
𝑋∈𝑢𝑈

[𝑝(𝑋)2] = E
𝑌 ∈𝑢𝑉

[(𝑌 ⊤𝑃2𝑌 − tr(𝑃2))
2]

= E
𝑌 ∈𝑢𝑉

[(𝑌 ⊤𝑃2𝑌 )2] + tr(𝑃2)
2 − 2tr(𝑃2))

2]

= E
𝑌 ∈𝑢𝑉

[tr(((𝑌 𝑌 ⊤)𝑃2)
2]− tr(𝑃2𝐼)

2 − 0

=
1

2
E

𝑍∈𝑢𝑊
[(𝑍⊤𝑣)2]− 1

2
(𝑣⊤𝐼♭)2

=
1

2

(︂
E

𝑍∈𝑢𝑊
[𝑣⊤(𝑍𝑍⊤)𝑣]− 2𝑣⊤(𝐼♭𝐼♭𝑇 )𝑣

)︂
=

1

2
𝑣⊤𝑇𝑣 .

Thus, the 𝑝(𝑥) that maximizes E𝑋∈𝑢𝑈 [𝑝(𝑋)2] is given by the unit vector 𝑣 that max-

imizes 𝑣⊤𝑇𝑣 subject to 𝑣♯ being symmetric. Since ComputeCovScores exactly

finds the top eigenvector of 𝑇 subject to this constraint, this demonstrates that if 𝑝*

is the output of ComputeCovScores, then we have

𝑝* = argmax
𝑝∈𝒫2(𝑀)

E
𝑋∈𝑢𝑈

[︀
𝑝(𝑋)2

]︀
,

as claimed.

The function ComputeCovScores uses similar notation to SeparationOr-

acleUnknownCovariance, so that they can be more easily compared. Indeed,

observe that the ultimate form of the score function (being the top eigenvalue of a
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fourth moment tensor) is essentially the same as the form of the separating hyperplane

in FilterGaussianCov. The major difference is that in FilterGaussianCov for

technical reasons, we restrict ourselves first to a subspace (to remove the (𝐼♭)(𝐼♭)⊤)

term, whereas here we do not.

Threshold Since this doesn’t quite fit into the framework of spectral filtering, we

cannot use the exact calculation as done in Section 5.2.2. However, we may apply the

same principles. Notice that by the arguments above, when choosing the thresholds,

what we really care about is not 𝜏(𝑋), but rather 𝜏(𝑋)2, as this gives us the top

eigenvector of the fourth moment matrix.

For any 𝑝 ∈ 𝒩 (0,Σ), by definition the expected value of 𝑝2(𝑋) under 𝒩 (0,Σ) is 1.

Thus the question is, how much can the largest 𝜀-fraction of values of 𝑝(𝑋) contribute

in aggregate? But by Gaussian concentration (specifically Hanson-Wright), it is not

hard to show that this value is 𝑂(𝜀 log2 1/𝜀). Therefore our threshold should be

1 +𝑂(𝜀 log2 1/𝜀). This exactly gives the threshold we use in CovThres:

Algorithm 21 Threshold function for learning the covariance of a mean zero Gaus-
sian.
1: function CovThres(𝜏, 𝜀, 𝛿)
2: return E𝑋∈𝑢𝑈 [𝜏(𝑋)2] ≤ 1 +𝑂(𝜀 log2 1/𝜀).

Removal As before, the specific form of the tail bound we will use is a bit subtle

here. This is again necessary so that we can work with the types of concentration

guarantees that we have available for degree-2 PTFs.

The filter for robust covariance estimation We now have the tools to describe

the full filtering algorithm. Recall that for robust mean estimation, the algorithm

worked in two parts: first it did a naive pruning step, then ran the iterative filtering

algorithm until completion. However, here it turns out the make more sense (at least

in theory) to simultaneously prune and filter. This is because as we get a better

estimate of the covariance, more and more points may become “obvious” outliers.

The formal pseudocode for the algorithm is given in Algorithm 23
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Algorithm 22 Removal function for learning the covariance of a mean-zero distri-
bution
1: function CovRemove(𝑈, 𝜏, 𝜀, 𝛿)
2: Let 𝐶 be a sufficiently large constant.
3: Let 𝜇 be the median value of 𝜏(𝑋) over 𝑋 ∈ 𝑈 .
4: Find a 𝑇 ≥ 𝐶 such that

Pr
𝑋∈𝑢𝑈

(|𝜏(𝑋)− 𝜇| ≥ 𝑇 + 3) ≥ Tail(𝑇, 𝜀) ,

where

Tail(𝑇, 𝜀) =

{︂
3𝜀/(𝑇 2 log2(𝑇 )) if 𝑇 ≥ 10 ln(1/𝜀);
1 otherwise.

5: return 𝑈 ′ = {𝑋 ∈ 𝑈 : |𝜏(𝑋)− 𝜇| < 𝑇}.

Algorithm 23 Filter algorithm for a Gaussian with unknown covariance matrix.
1: procedure FilterGaussianCov(𝑈, 𝜀, 𝛿)
2: Let 𝐶 > 0 be sufficiently large universal constants.
3: Let 𝑀 ′ ← E𝑋∈𝑢𝑈 [𝑋𝑋

⊤].
4: if there is any 𝑋 ∈ 𝑈 such that 𝑋⊤(𝑀 ′)−1𝑋 ≥ 𝐶𝑑 log(|𝑆 ′|/𝛿) then
5: return 𝑈 ′ = 𝑈 ∖ {𝑋 ∈ 𝑈 : 𝑋⊤(𝑀 ′)−1𝑋 ≥ 𝐶𝑑 log(|𝑆 ′|/𝛿)}.
6: else
7: return the output of

GeneralFilter(𝑈, 𝜀, 𝛿,ComputeCovScores,CovThres,CovRemove) .

Our main correctness claim is the following:

Proposition 5.4.5. Let 𝜀, 𝛿 > 0 be fixed, and let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21), where

𝑛 = |𝑆 ′|. Let 𝑈 ⊆ 𝑆 ′ with Δ(𝑆, 𝑈) < 𝜀. Then given 𝑈, 𝜀, 𝛿, FilterGaussianCov

returns one of the following:

(i) If FilterGaussianCov outputs “DONE”, then Σ𝑈 satisfies ‖Σ𝑈 − Σ‖𝐹 =

𝑂(𝜀 log(1/𝜀)).

(ii) A set 𝑈 ′ ⊆ 𝑈 such that Δ(𝑆, 𝑈 ′) < Δ(𝑆, 𝑈).

Moreover, the algorithm runs in time ̃︀𝑂(𝑛𝑑2 + 𝑑𝜔).

The remainder of this section is dedicated to a proof of Proposition 5.4.5.
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Runtime of FilterGaussianCov

We first make some remarks about the runtime of the algorithm. Forming Σ′ can

be done in time 𝑂(𝑛𝑑2) by naive methods, and inverting it can be done in 𝑑𝜔 time.

The remaining operations except for ComputeCovScores only involve evaluating

a quadratic polynomial on the samples and simple sorting operations, and so can also

be done in time 𝑂(𝑛𝑑2). Thus it remains to implement ComputeCovScores iñ︀𝑂(𝑛𝑑2) time.

In ComputeCovScores, forming the 𝑍𝑖 can be done in time 𝑂(𝑛𝑑2). As for

robust mean estimation, it is easily verified that it suffices to find a constant approx-

imation to the top eigenvector of 𝑀 , i.e., it would suffice to simply find any vector 𝑣

so that

𝑣⊤𝑇𝑣 ≥ (1− 𝜀) max
‖𝑣‖2=1

𝑣⊤𝑇𝑣 .

Thus, naively we would like to apply ApproxPCA to find the approximate top

eigenvalue and eigenvector of 𝑀 . But 𝑀 does not easily factor into the form which

ApproxPCA immediately applies. But as we discussed for ComputeIsoScores,

we observe that ApproxPCA simply requires us to efficiently evaluate matrix-vector

products. Since given the 𝑍1, . . . , 𝑍𝑛, matrix-vector products with 𝑀 can be done

in time 𝑂(𝑛𝑑2), we can implement ApproxPCA in time ̃︀𝑂(𝑛𝑑2). Thus, overall the

algorithm runs in time ̃︀𝑂(𝑛𝑑2 + 𝑑𝜔), as claimed.

Analysis of Algorithm 23: Proof of Proposition 5.4.5

We now show the correctness of FilterGaussianCov. In the subsequent sections,

we will assume that ComputeCovScores finds an exact maximizer of the flattened

fourth moment tensor. As mentioned previously, it is easy to verify that the following

arguments trivially extend to the case when we have an approximate maximizer. We

will also always assume that all calls to ApproxPCA succeed. As before, by paying

an additional polylogarithmic overhead, this occurs except with negligible probability.

This provides an alternative interpretation of the top eigenvalue of the fourth moment
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tensor that is so critical to the methods in the previous chapters: it shows that the

top eigenvector of these tensors that we find corresponds exactly to the quadratic

polynomial that maximizes a standardized quadratic form, which corresponds to some

direction where the variance of some polynomial will be too large under the empirical

distribution.

With this in hand, we now begin to argue correctness. As before, it suffices to

argue the case when 𝑈 = 𝑆 ′, as the argument extends straightforwardly to general

𝑈 satisfying the conditions in the theorem. As for robust mean estimation, we write

𝑆 ′ = (𝑆 ∖ 𝑆rem) ∪ 𝑆bad, and we let 𝑆good = 𝑆 ∖ 𝑆rem. It is then the case that

Δ(𝑆, 𝑆 ′) =
|𝑆rem|+ |𝑆bad|

|𝑆|
.

Since this is small we have that |𝑆rem|, |𝑆bad| = 𝑂(𝜀|𝑆 ′|). For conciseness we also let

𝑀 ′ =𝑀𝑆′ . Observe that

𝑀 ′ =
|𝑆good|
|𝑆 ′|

𝑀𝑆good +
|𝑆bad|
|𝑆 ′|

𝑀𝑆bad =𝑀𝑆good +𝑂(𝜀)(𝑀𝑆bad −𝑀𝑆good) .

A critical part of our analysis will be to note that 𝑀𝑆good is very close to Σ, and

thus that either Σ′ is very close to Σ or else 𝑀𝑆bad is very large in some direction.

Lemma 5.4.6. Let 𝑆 satisfy (5.18)-(5.21). We have that

‖𝐼 − Σ−1/2𝑀𝑆goodΣ−1/2‖𝐹 = 𝑂(𝜀 log(1/𝜀).

To prove Lemma 5.4.6, we will require the following:

Lemma 5.4.7. Let 𝑆 satisfy (5.18)-(5.21). Let 𝑝 ∈ 𝒫2(Σ). Then, we have that

|𝑆rem| · E
𝑋∈𝑢𝑆rem

[𝑝(𝑋)2] = 𝑂(𝜀 log2(1/𝜀)|𝑆|) , and (5.22)

|𝑆rem| ·
⃒⃒⃒⃒

E
𝑋∈𝑢𝑆rem

[𝑝(𝑋)]

⃒⃒⃒⃒
= 𝑂(𝜀 log(1/𝜀)|𝑆|) . (5.23)

Proof. This holds essentially because the distribution of 𝑝(𝑋) for 𝑋 ∈ 𝑆 is close to
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that for 𝑝(𝑋) for 𝑋 ∼ 𝒩 (0,Σ), which has rapidly decaying tails. Therefore, throwing

away an 𝜀-fraction of the mass cannot change the value of the variance by very much.

In particular, we have that

|𝑆rem| · E
𝑋∈𝑢𝑆rem

[𝑝(𝑋)2] =

∫︁ ∞

0

|𝑆rem| Pr
𝑋∈𝑢𝑆rem

(|𝑝(𝑋)| > 𝑇 )2𝑇𝑑𝑇

≤
∫︁ ∞

0

|𝑆|min

(︂
𝜀, Pr

𝑋∈𝑢𝑆
(|𝑝(𝑋)| > 𝑇 )

)︂
2𝑇𝑑𝑇

≤
∫︁ 10 ln(1/𝜀)

0

4𝜀|𝑆|𝑇𝑑𝑇 +

∫︁ ∞

10 ln(1/𝜀)

6|𝑆|𝜀𝑇/(𝑇 2 log2(𝑇 ))𝑑𝑇

≤ 𝑂(𝜀|𝑆| log2(1/𝜀)) +
∫︁ ∞

10 ln(1/𝜀)

6|𝑆|𝜀/(𝑇 log2(𝑇 ))𝑑𝑇

= 𝑂(𝜀|𝑆| log2(1/𝜀)) + 6𝜀|𝑆|/ ln(10 ln(1/𝜀))

= 𝑂(𝜀 log2(1/𝜀)|𝑆|) .

This proves (5.22). To prove (5.23), observe that by the Cauchy-Schwarz inequality,

we have

|𝑆rem|
|𝑆|

·
⃒⃒⃒⃒

E
𝑥∈𝑢𝑆rem

[𝑝(𝑋)]

⃒⃒⃒⃒
≤ |𝑆rem|
|𝑆|

√︁
E

𝑥∈𝑢𝑆rem

[𝑝(𝑋)2]

≤

√︃
|𝑆rem|
|𝑆|

·
√︁
𝑂(𝜀 log2(1/𝜀)) = 𝑂(𝜀 log(1/𝜀) ,

as desired.

Now we can prove Lemma 5.4.6.

Proof of Lemma 5.4.6. Note that, since the matrix inner product is an inner product,

‖𝐼 − Σ−1/2𝑀𝑆goodΣ−1/2‖𝐹 = sup
‖𝐴‖𝐹=1

(︀
tr(𝐴Σ−1/2𝑀𝑆goodΣ−1/2)− tr(𝐴)

)︀
.

We need to show that for any 𝐴 with ‖𝐴‖𝐹 = 1 that tr(𝐴Σ−1/2𝑀𝑆goodΣ−1/2)− tr(𝐴)

is small.
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Since

tr(𝐴Σ−1/2𝑀𝑆goodΣ−1/2) = tr(𝐴⊤Σ−1/2𝑀𝑆goodΣ−1/2)

= tr

(︂
1

2
(𝐴+ 𝐴⊤)Σ−1/2𝑀𝑆goodΣ−1/2

)︂
,

and ‖1
2
(𝐴 + 𝐴⊤)‖𝐹 ≤ 1

2
(‖𝐴‖𝐹 + ‖𝐴⊤‖𝐹 ) = 1, we may assume WLOG that 𝐴 is

symmetric.

Consider such an 𝐴. We note that

tr(𝐴Σ−1/2𝑀𝑆goodΣ−1/2) = E
𝑋∈𝑢𝑆good

[tr(𝑀Σ−1/2𝑋𝑋⊤Σ−1/2)]

= E
𝑋∈𝑢𝑆good

[(Σ−1/2𝑋)⊤𝐴(Σ−1/2𝑋)] .

Let 𝑝(𝑥) denote the quadratic polynomial

𝑝(𝑥) = (Σ−1/2𝑥)⊤𝐴(Σ−1/2𝑥)− tr(𝐴) .

By Lemma 5.4.2, E𝑋∼𝒩 (0,Σ)[𝑝(𝑋)] = 0 and Var𝑋∼𝒩 (0,Σ)[𝑝(𝑋)] = 2‖𝐴‖2𝐹 = 2.

By (5.19), we have that⃒⃒⃒⃒
E

𝑋∈𝑢𝑆
[𝑝(𝑋)]

⃒⃒⃒⃒
=

⃒⃒⃒⃒
E

𝑋∈𝑢𝑆
[𝑝(𝑋)]− E

𝑋∼𝒩 (0,Σ)
[𝑝(𝑋)]

⃒⃒⃒⃒
=

⃒⃒⃒⃒
tr

(︂
𝐴Σ−1/2

(︂
E

𝑋∈𝑢𝑆
[𝑋𝑋⊤]− Σ

)︂
Σ−1/2

)︂⃒⃒⃒⃒
(𝑎)

≤ 2

⃦⃦⃦⃦
Σ−1/2

(︂
E

𝑋∈𝑢𝑆
[𝑋𝑋⊤]− Σ

)︂
Σ−1/2

⃦⃦⃦⃦
𝐹

= 2

⃦⃦⃦⃦
E

𝑋∈𝑢𝑆
[𝑋𝑋⊤]− Σ

⃦⃦⃦⃦
Σ

≤ 𝑂(𝜀) ,

where (a) follows from self-duality of the Frobenius norm, and since ‖𝐴‖𝐹 = 2.

Therefore, it suffices to show that the contribution from 𝐿 is small. In particular, it

will be enough to show that

|𝑆rem|
|𝑆|
| E
𝑥∈𝑢𝑆rem

[𝑝(𝑋)]| ≤ 𝑂(𝜀 log(1/𝜀)).
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This follows from Lemma 5.4.7, which completes the proof.

As a corollary of this we note that Σ′ cannot be too much smaller than Σ.

Corollary 5.4.8. Let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21). Then, we have

𝑀 ′ ⪰ (1−𝑂(𝜀 log(1/𝜀)))Σ .

Proof. Lemma 5.4.6 implies that Σ−1/2𝑀𝑆goodΣ1/2 has all eigenvalues in the range

1 ± 𝑂(𝜀 log(1/𝜀). Therefore, 𝑀𝑆good ⪰ (1 + 𝑂(𝜀 log(1/𝜀)))Σ. Our result now follows

from noting that

𝑀 ′ =
|𝑆good|
|𝑆|

𝑀𝑆good +
|𝑆bad|
|𝑆|

𝑀𝑆bad ,

and 𝑀𝑆bad ⪰ 0.

The first step in verifying correctness is to note that if our algorithm returns on

Step 5 that it does so correctly.

Claim 5.4.9. Let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21). Then, if FilterGaussianCov re-

turns on Step 5, then Δ(𝑆, 𝑈 ′) < Δ(𝑆, 𝑈).

Proof. This is clearly true if we can show that all 𝑋 removed have 𝑋 ̸∈ 𝑆. How-

ever, this follows because Corollary 5.4.8 implies that (𝑀 ′)−1 ⪯ 2Σ−1, and therefore,

by (5.18), we have

𝑋⊤(𝑀 ′)−1𝑋 ≤ 2𝑋⊤Σ−1𝑋 < 𝐶𝑑 log(𝑁/𝛿)

for all 𝑋 ∈ 𝑆, and for 𝐶 sufficiently large.

Next, we need to show that if our algorithm returns “DONE”, then we have ‖𝑀 ′−

Σ‖Σ is small.

Claim 5.4.10. Let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21). If our algorithm returns “DONE”,

then ‖𝑀 ′ − Σ‖Σ = 𝑂(𝜀 log 1/𝜀).
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Proof. We note that

‖𝐼 − Σ−1/2𝑀 ′Σ−1/2‖𝐹 ≤ ‖𝐼 − Σ−1/2𝑀𝑆goodΣ−1/2‖𝐹 +
|𝑆bad|
|𝑆 ′|
‖𝐼 − Σ−1/2𝑀𝑆badΣ−1/2‖𝐹

≤ 𝑂(𝜀 log(1/𝜀)) +
|𝑆bad|
|𝑆 ′|
‖𝐼 − Σ−1/2𝑀𝑆badΣ−1/2‖𝐹 ,

where the last line follows from Lemma 5.4.6. Therefore, we will have an appropriate

bound unless ‖𝐼 − Σ−1/2𝑀𝑆badΣ−1/2‖𝐹 = Ω(log(1/𝜀)).

Next, note that there is a symmetric matrix 𝐴 with ‖𝐴‖𝐹 = 1 such that

‖𝐼 − Σ−1/2𝑀𝑆badΣ−1/2‖𝐹 = tr(𝐴Σ−1/2𝑀𝑆badΣ−1/2 − 𝐴)

= E
𝑋∈𝑢𝑆bad

[(Σ−1/2𝑋)⊤𝐴(Σ−1/2𝑋)− tr(𝐴)] .

Let 𝑝(𝑋) be the polynomial

𝑝(𝑋) =
1√
2

(︀
(Σ−1/2𝑋)⊤𝐴(Σ−1/2𝑋)− tr(𝐴)

)︀
,

so that

E
𝑋∈𝑢𝑆bad

[𝑝(𝑋)] =
1√
2

E
𝑋∈𝑢𝑆bad

[(Σ−1/2𝑋)⊤𝐴(Σ−1/2𝑋)− tr(𝐴)] .

Using Lemma 5.4.2, E𝑋∼𝒩 (0,Σ)[𝑝(𝑋)] = 0 and Var𝑋∼𝒩 (0,Σ)[𝑝(𝑋)] = 1. Therefore,

𝑝 ∈ 𝒫2(Σ). Therefore, since our algorithm returned at this step, by Claim 5.4.4, we

have that E𝑋∈𝑢𝑈 [𝑝(𝑋)2] ≤ 1 + 𝑂(𝜀). Moreover, by Lemma 5.4.7, we have |𝑆rem| ·

E𝑋∈𝑢𝑆rem [𝑝(𝑋)2] ≤ 𝑂(𝜀 log2(1/𝜀))|𝑆|.

Therefore, we have

(1 +𝑂(𝜀))|𝑈 | = |𝑈 | · E
𝑋∈𝑢𝑈

[𝑝(𝑋)2]

= |𝑆| · E
𝑋∈𝑢𝑆

[𝑝(𝑋)2]− |𝑆rem| · E
𝑋∈𝑢𝑆rem

[𝑝(𝑋)2] + |𝑆bad| · E
𝑋∈𝑢𝑆bad

[𝑝(𝑋)2]

= (1 +𝑂(𝜀)) · |𝑆|+𝑂(𝜀 log2(1/𝜀))|𝑆|+ |𝑆bad| · E
𝑋∈𝑢𝑆bad

[𝑝(𝑋)2] ,
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where the last line follows from (5.19) and Lemma 5.4.7.

Simplifying, and using the fact that |𝑈 |/|𝑆| ≥ (1− 𝜀), this implies that

|𝑆bad| E
𝑋∈𝑢𝑆bad

[𝑝(𝑋)2] = 𝑂(𝜀 log2(1/𝜀))|𝑆| .

Thus, by Cauchy-Schwarz, and since |𝑆bad|/|𝑆| ≤ 𝜀, we have⃒⃒⃒⃒
E

𝑋∈𝑢𝑆bad

[𝑝(𝑋)]

⃒⃒⃒⃒
≤
√︁

E
𝑋∈𝑢𝑆bad

[𝑝(𝑋)2] ≤ 𝑂(log 1/𝜀) ,

as desired. This shows that if the algorithm returns in this step, it does so correctly.

Next, we need to show that if the algorithm reaches Step 4 that such a 𝑇 exists.

Claim 5.4.11. Let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21). If the algorithm reaches Step 4, then

there exists a 𝑇 > 1 such that

Pr
𝑋∈𝑢𝑆′

(|𝑝(𝑋)− 𝜇| ≥ 𝑇 ) ≥ 12 exp(−(𝑇 − 1)/3) + 3𝜀/(𝑑 log(𝑛/𝛿))2.

Proof. Before we begin, we will need the following critical Lemma:

Lemma 5.4.12. Let (𝑆, 𝑆 ′) satisfy (5.17)-(5.21). If the algorithm reaches Step 4,

then

Var
𝑋∼𝒩 (0,Σ)

[𝑝*(𝑋)] ≤ 1 +𝑂(𝜀 log(1/𝜀)).

Proof. We note that since Var𝑋∼𝒩 (0,𝑀 ′)(𝑝(𝑋)) = 1, we just need to show that the

variance with respect to 𝒩 (0,Σ) instead of 𝒩 (0,𝑀 ′) is not too much larger. This

will essentially be because Σ cannot be much bigger than the covariance matrix of 𝑀

by Corollary 5.4.8.

Recall that 𝑝* is the polynomial in 𝒫2(𝑀
′) which maximizes the variance of the

empirical covariance, and 𝜏(𝑋) = 𝑝*(𝑋). Using Lemma 5.4.2, we can write

𝑝*(𝑥) = (𝑀 ′−1/2𝑥)⊤𝑃2(𝑀
′−1/2𝑥) + 𝑝0 ,
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where ‖𝑃2‖𝐹 = 1
2
Var𝑋∼𝒩 (0,𝑀 ′)(𝑝(𝑋)) = 1

2
and 𝑝0 = 𝜇 + tr(𝑃2). We can also express

𝑝*(𝑥) in terms of Σ as 𝑝*(𝑥) = (Σ−1/2𝑥)⊤𝑀(Σ−1/2𝑥) + 𝑝0, and have Var𝑋∼𝐺[𝑝(𝑋)] =

‖𝑀‖𝐹 . Here, 𝑀 is the matrix Σ1/2𝑀 ′−1/2𝑃2𝑀
′−1/2Σ1/2. By Corollary 5.4.8, it holds

𝑀 ′ ≥ (1−𝑂(𝜀 log(1/𝜀)))Σ. Consequently, Σ1/2𝑀 ′−1/2 ≤ (1+𝑂(𝜀 log(1/𝜀)))𝐼, and so

‖Σ1/2𝑀 ′−1/2‖2 ≤ 1 +𝑂(𝜀 log(1/𝜀)). Similarly, ‖𝑀 ′−1/2Σ1/2‖2 ≤ 1 +𝑂(𝜀 log(1/𝜀)).

We claim that if 𝐴,𝐵 are matrices, then ‖𝐴𝐵‖𝐹 ≤ ‖𝐴‖2‖𝐵‖𝐹 . If 𝐵𝑗 are the

columns of 𝐵, then we have ‖𝐴𝐵‖2𝐹 =
∑︀

𝑗 ‖𝐴𝐵𝑗‖22 ≤ ‖𝐴‖22
∑︀

𝑗 ‖𝐵𝑗‖22 = (‖𝐴‖2‖𝐵‖𝐹 )2.

Similarly for rows, we have ‖𝐴𝐵‖𝐹 ≤ ‖𝐴‖𝐹‖𝐵‖2.

Thus, we have

Var
𝑋∼𝒩 (0,Σ)

[𝑝*(𝑋)] = 2‖𝑀‖𝐹

≤ 2‖Σ1/2𝑀 ′−1/2‖2‖𝑃2‖𝐹‖𝑀 ′−1/2Σ1/2‖2

≤ 1 +𝑂(𝜀 log(1/𝜀)) .

Next, we need to consider the deviation due to the fact that we are using 𝜇 rather

than the true mean of 𝑝. However we claim that this deviation cannot contribute

too much to the difference. In particular, we note that by the similarity of 𝑆 and 𝑆 ′,

𝜇 must be between the 50 − 𝜀 and 50 + 𝜀 percentiles of values of 𝑝*(𝑋) for 𝑋 ∈ 𝑆.

However, since 𝑆 satisfies (5.21), this must be between the 50 − 2𝜀 and 50 + 2𝜀

percentiles of 𝑝*(𝑋) for 𝑋 ∼ 𝒩 (0,Σ). Therefore, by Cantelli’ s inequality,

|𝜇| ≤ 2
√︂

Var
𝑋∼𝒩 (0,Σ)

[𝑝*(𝑋)] ≤ 3 , (5.24)

since E𝑋∼𝒩 (0,Σ)[𝑝
*(𝑋)] = 0. We are now ready to proceed. Our argument will follow

by noting that while the variance of 𝑝* is much larger than expected, very little of

this discrepancy can be due to points in 𝑆good. Therefore, the points of 𝑆bad must

provide a large contribution. Given that there are few points in 𝑆bad, much of this

contribution must come from there being many points near the tails, and this will

guarantee that some valid threshold 𝑇 exists.
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In particular, we have that Var𝑋∈𝑢𝑆′(𝑝*(𝑋) ≥ 1+𝐶𝜀 log2(1/𝜀), which means that∑︀
𝑋∈𝑆′ |𝑝(𝑋)− �̂�|2

|𝑆 ′|
≥ Var

𝑋∈𝑢𝑆′
[𝑝*(𝑋)] ≥ 1 + 𝐶𝜀 ln2(1/𝜀) .

Now, by (5.20), we know that∑︀
𝑋∈𝑆 |𝑝*(𝑋)− �̂�|2

|𝑆|
= E

𝑋∼𝒩 (0,Σ)
[|𝑝*(𝑋)− �̂�|2](1 +𝑂(𝜀))

= Var
𝑋∼𝒩 (0,Σ)

[𝑝*(𝑋)](1 +𝑂(𝜀))

≤ 1 +𝑂(𝜀 log(1/𝜀)) ,

where the last line follows since 𝑝* ∈ 𝒫2(Σ). Therefore, since Δ(𝑆, 𝑆 ′) ≤ 𝜀, we have

that ∑︀
𝑋∈𝑆good

|𝑝*(𝑋)− �̂�|2

|𝑆 ′|
≤ 1 +𝑂(𝜀 log(1/𝜀)) ,

as well. Hence, for 𝐶 sufficiently large, it must be the case that

∑︁
𝑋∈𝑆bad

|𝑝*(𝑋)− �̂�|2 ≥ 𝐶

2
𝜀 log2(1/𝜀)|𝑆 ′| = Ω(log2(1/𝜀) · |𝑆bad|) ,

and therefore, by (5.24), we have

∑︁
𝑋∈𝑆bad

|𝑝*(𝑋)− 𝜇|2 ≥ 𝐶

3
𝜀 log2(1/𝜀) · |𝑆 ′| .

On the other hand, we have that

∑︁
𝑋∈𝑆bad

|𝑝*(𝑋)− 𝜇|2 =
∫︁ ∞

0

{𝑋 ∈ 𝑆bad : |𝑝*(𝑋)− 𝜇| > 𝑇}2𝑇𝑑𝑇

≤
∫︁ 𝐶1/4 log(1/𝜀)

0

𝑂(𝑇𝜀|𝑆 ′|)𝑑𝑡+
∫︁ ∞

𝐶1/4 ln(1/𝜀)

{𝑋 ∈ 𝑆bad : |𝑝*(𝑋)− 𝜇| > 𝑇}2𝑇𝑑𝑇

≤ 𝑂(𝐶1/2𝜀 log2(1/𝜀)|𝑆 ′|) + |𝑆 ′|
∫︁ ∞

𝐶1/4 log(1/𝜀)

Pr
𝑋∈𝑢𝑆′

(|𝑝*(𝑋)− 𝜇| > 𝑇 )2𝑇𝑑𝑇 .
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Therefore, we have that

∫︁ ∞

𝐶1/4 log(1/𝜀)

Pr
𝑋∈𝑢𝑆′

(|𝑝*(𝑋)− 𝜇| > 𝑇 )2𝑇𝑑𝑇 ≥ 𝐶

4
𝜀 log2(1/𝜀) . (5.25)

Assume for sake of contradiction that

Pr
𝑋∈𝑢𝑆′

(|𝑝*(𝑋)− 𝜇| ≥ 𝑇 + 3) ≤ Tail(𝑇, 𝜀) ,

for all 𝑇 > 1. Then, we would have that

∫︁ ∞

10 log(1/𝜀)+3

Pr
𝑋∈𝑢𝑆′

(|𝑝*(𝑋)− 𝜇| > 𝑇 )2𝑇𝑑𝑇 ≤
∫︁ ∞

10 log(1/𝜀)

6(𝑇 + 3)𝜀

𝑇 2 log2 𝑇
𝑑𝑇

=

∫︁ ∞

10 log(1/𝜀)

8𝜀

𝑇 log2 𝑇
𝑑𝑇

=
8𝜀

log(10 log(1/𝜀))
.

For a sufficiently large 𝐶, this contradicts Equation (5.25).

Finally, we need to verify that if our algorithm returns output in Step 5, that it

is correct.

Claim 5.4.13. If the algorithm returns during Step 5, then Δ(𝑆, 𝑈 ′) < Δ(𝑆, 𝑆 ′).

Proof. We note that it is sufficient to show that |𝑆bad∖𝑈 ′| > |𝑆good∖𝑈 ′|. In particular,

it suffices to show that

|{𝑋 ∈ 𝑆bad : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| > |{𝑋 ∈ 𝑆good : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| .

For this, it suffices to show that

|{𝑋 ∈ 𝑆 ′ : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| > 2|{𝑋 ∈ 𝑆good : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| ,

or that

|{𝑋 ∈ 𝑆 ′ : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| > 2|{𝑋 ∈ 𝑆 : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| .
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By assumption, we have that

|{𝑋 ∈ 𝑆 ′ : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| > 3𝜀|𝑆 ′|
𝑇 2 log2 𝑇

.

On the other hand, using(5.24) and (5.21), we have

|{𝑋 ∈ 𝑆 : |𝑝*(𝑋)− 𝜇| > 𝑇 + 3}| ≤ |{𝑋 ∈ 𝑆 : |𝑝*(𝑋)− �̂�| > 𝑇}|

≤ 𝜀|𝑆|𝜀
𝑇 2 log2 𝑇

.

This completes our proof.

5.4.3 Putting it all together: proof of Theorem 5.4.1

Given Proposition 5.4.5, the full algorithm and proof of correctness are quite easy. The

algorithm simply repeatedly applies FilterGaussianCov until it outputs “DONE”,

at which point we simply output the empirical second moment of the remaining data

set. The formal algorithm description is given in Algorithm 24. We now demonstrate

Algorithm 24 Filtering algorithm for agnostically learning the covariance.
1: function LearnCovarianceFilter(𝜀, 𝛿,𝑋1, . . . , 𝑋𝑛)
2: while true do
3: Run FilterGaussianCov(𝑆 ′, 𝜀, 𝛿).
4: if it outputs “DONE” then
5: break
6: else
7: Let 𝑆 ′ ← FilterGaussianCov(𝑆 ′, 𝜀, 𝛿)

8: return 𝑀 (𝑆′)

that Algorithm 24 gives the desired guarantees.

Proof of Theorem 5.4.1. By Lemma 5.4.3 the original set 𝑆 is (𝜀, 𝛿)-good with re-

spect to 𝐺 with probability at least 1 − 𝛿. Then, (𝑆 ′, 𝑆) satisfies the hypotheses of

Proposition 5.4.5. We then repeatedly iterate the algorithm from Proposition 5.4.5

until it outputs a distribution 𝐺′ close to 𝐺. This must eventually happen because

at every step the distance between 𝑆 and the set returned by the algorithm decreases
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by at least 1. Moreover, since the algorithm removes at least one corrupted data

point each iteration, the algorithm cannot run for more than 𝜀𝑛 iterations. Com-

bined with the per-iteration runtime guarantees of Proposition 5.4.5, this yields the

claimed runtime.

5.5 Learning the mean with bounded second mo-

ment

In this section, we use our filtering technique to give a near sample-optimal computa-

tionally efficient algorithm to robustly estimate the mean of a density with a second

moment assumption. We show:

Theorem 5.5.1. Let 𝑃 be a distribution on R𝑑 with unknown mean vector 𝜇 and

unknown covariance matrix Σ ⪯ 𝜎2𝐼. Let 𝑆 be an 𝜀-corrupted set of samples from 𝑃

of size 𝑛, where

𝑛 = Ω

(︂
𝑑 log 𝑑

𝜀

)︂
.

Then there exists an algorithm that given 𝜎, 𝜀, 𝑆, with probability 2/3, outputs ̂︀𝜇 with

‖̂︀𝜇− 𝜇‖2 ≤ 𝑂(𝜎
√
𝜀) in time poly(𝑑/𝜀).

Observe that without loss of generality we may assume 𝜎 = 1, as we can simply

scale the points down by 𝜎, then scale the result back, and obtain the desired result.

The algorithm for doing this will be the first usage of SpectralFilter. The most

notable algorithmic difference between the algorithm for this instance and for the sub-

Gaussian case is that the removal step will be randomized. Instead of looking for a

deterministic violation of a concentration inequality, here we will choose a threshold at

random (with a bias towards higher thresholds). The reason is that, in this setting, the

spectral scores will be a constant fraction larger than what they should be. Therefore,

randomly choosing a threshold weighted towards higher thresholds suffices to throw

out more corrupted samples than uncorrupted samples in expectation. Although it is
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possible to reject many good samples this way, the algorithm still only rejects a total

of 𝑂(𝜀) samples with high probability. Interestingly, to the best of our knowledge, it

seems that this randomness is necessary to get the right rates. Because of the weaker

concentration of the data points that we have in this setting, deterministic conditions

more akin to those used for the sub-Gaussian case seem to lose dimension-dependent

factors. We leave it as an interesting open question if this is necessary or not.

Deterministic conditions As is tradition, we give a set of deterministic conditions

under which our algorithm will work. Throughout this section, let 𝑃 be the unknown

distribution with unknown mean 𝜇 and unknown covariance Σ ⪯ 𝐼. We would like

our good set of samples to have mean close to that of 𝑃 and bounded variance in

all directions. However, we will have to be a bit careful: it turns out that since we

have no assumptions about higher moments, it may be be possible for points from the

true distribution to affect our sample covariance too much. Fortunately, such outliers

have small probability and do not contribute too much to the mean, so we will later

reclassify them as errors. This motivates the following definition:

Definition 5.5.1. We call a set 𝑆 𝜀-good for a distribution 𝑃 with mean 𝜇 and

covariance Σ ⪯ 𝐼 if the mean 𝜇𝑆 and covariance Σ𝑆 of 𝑆 satisfy ‖𝜇𝑆 − 𝜇‖2 ≤
√
𝜀 and

‖𝑀𝑆(𝜇𝑆)‖2 ≤ 2.

We first show that given a set of i.i.d. points from 𝑃 , there exists a large set of good

points:

Lemma 5.5.2. Let 𝑆 be a set of

𝑛 = Θ

(︂
𝑑 log 𝑑

𝜀

)︂

samples drawn from 𝑃 . Then, with probability at least 9/10, a random 𝑋 ∈𝑢 𝑆

satisfies

(i) ‖E𝑆[𝑋]− 𝜇‖2 ≤
√
𝜀/3,

(ii) Pr𝑆

[︁
‖𝑋 − 𝜇‖2 ≥ 80

√︀
𝑑/𝜀
]︁
≤ 𝜀/160,
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(iii)
⃦⃦⃦
E𝑆

[︁
(𝑋 − 𝜇) · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

]︁⃦⃦⃦
2
≤
√
𝜀/3, and

(iv)
⃦⃦⃦
E𝑆

[︁
(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

]︁⃦⃦⃦
2
≤ 3/2.

Proof. For (i), note that

E
𝑆
[‖E[𝑋]− 𝜇‖22] =

∑︁
𝑖

E
𝑆
[(E[𝑋]𝑖 − 𝜇𝑖)

2] ≤ 𝑑/𝑁 ≤ 𝜀/360 ,

and so by Markov’s inequality, with probability at least 39/40, we have ‖E[𝑋]−𝜇‖22 ≤

𝜀/9.

For (ii), similarly to (i), note that

E[‖𝑌 − 𝜇‖22] =
∑︁
𝑖

E
[︀
(𝑌𝑖 − 𝜇𝑖)

2
]︀
≤ 𝑑 ,

for 𝑌 ∼ 𝑃 . By Markov’s inequality, Pr[‖𝑌 −𝜇‖2 ≥ 80
√︀
𝑑/𝜀] ≤ 𝜀/160 with probability

at least 39/40.

For (iii), let 𝜈 = E𝑋∼𝑃 [𝑋 · 1‖𝑋−𝜇‖2≤80
√

𝑑/𝜀
] be the true mean of the distribution

when we condition on the event that ‖𝑋 −𝜇‖2 ≤ 80
√︀
𝑑/𝜀. By the same argument as

(i), we know that ⃦⃦⃦⃦
E

𝑋∈𝑢𝑆

[︁
𝑋 · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

]︁
− 𝜈
⃦⃦⃦⃦
2

≤
√
𝜀/9 ,

with probability at least 39/40. Thus it suffices to show that
⃦⃦⃦
𝜈 − 𝜇 · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

⃦⃦⃦
2
≤

√
𝜀/10. To do so, it suffices to show that for all unit vectors 𝑣 ∈ R𝑑, we have

⃒⃒⃒⟨
𝑣, 𝜈 − 𝜇 · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

⟩⃒⃒⃒
<
√
𝜀/10 .
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Observe that for any such 𝑣, we have

⟨
𝑣, 𝜇 · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀
− 𝜈
⟩
= E

𝑋∼𝑃

[︁
⟨𝑣,𝑋 − 𝜇⟩ · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

]︁
(𝑎)

≤
√︂

E
𝑋∼𝑃

[⟨𝑣,𝑋 − 𝜇⟩2] Pr
𝑋∼𝑃

[‖𝑋 − 𝜇‖2 ≥ 80
√︀
𝑑/𝜀]

(𝑏)
=

√︂
𝑣𝑇Σ𝑣 · Pr

𝑋∼𝑃

[︁
‖𝑋 − 𝜇‖2 ≥ 80

√︀
𝑑/𝜀
]︁

(𝑐)

≤
√
𝜀/10 ,

where (a) follows from Cauchy-Schwarz, and (b) follows from the definition of the

covariance, and (c) follows from the assumption that Σ ⪯ 𝐼 and from Markov’s

inequality.

For (iv), we require the following Matrix Chernoff bound:

Lemma 5.5.3 (Theorem 5.1.1 of [Tro15]). Consider a sequence of 𝑑×𝑑 positive semi-

definite random matrices 𝑋𝑘 with ‖𝑋𝑘‖2 ≤ 𝐿 for all 𝑘. Let 𝜇max = ‖
∑︀

𝑘 E[𝑋𝑘]‖2.

Then, for 𝜃 > 0,

E

[︃⃦⃦⃦⃦
⃦∑︁

𝑘

𝑋𝑘

⃦⃦⃦⃦
⃦
2

]︃
≤ (𝑒𝜃 − 1)𝜇max/𝜃 + 𝐿 log(𝑑)/𝜃 ,

and for any 𝛿 > 0,

Pr

[︃⃦⃦⃦⃦
⃦∑︁

𝑘

𝑋𝑘

⃦⃦⃦⃦
⃦
2

≥ (1 + 𝛿)𝜇max

]︃
≤ 𝑑(𝑒𝛿/(1 + 𝛿)1+𝛿)𝜇

max/𝐿 .

We apply this lemma with 𝑋𝑘 = (𝑥𝑘−𝜇)(𝑥𝑘−𝜇)𝑇1‖𝑥𝑘−𝜇‖2≤80
√

𝑑/𝜀
for {𝑥1, . . . , 𝑥𝑁} =

𝑆. Note that ‖𝑋𝑘‖2 ≤ (80)2𝑑/𝜀 = 𝐿 and that 𝜇max ≤ 𝑁‖Σ𝑃‖2 ≤ 𝑁 .

Suppose that 𝜇max ≤ 𝑁/80. Then, taking 𝜃 = 1, we have

E[

⃦⃦⃦⃦
⃦∑︁

𝑘

𝑋𝑘

⃦⃦⃦⃦
⃦
2

] ≤ (𝑒− 1)𝑁/80 +𝑂(𝑑 log(𝑑)/𝜀) .

By Markov’s inequality, except with probability 39/40, we have ‖
∑︀

𝑘𝑋𝑘‖2 ≤ 𝑁 +
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𝑂(𝑑 log(𝑑)/𝜀) ≤ 3𝑁/2, for 𝑁 a sufficiently high multiple of 𝑑 log(𝑑)/𝜀.

Suppose that 𝜇max ≥ 𝑁/80, then we take 𝛿 = 1/2 and obtain

Pr

[︃⃦⃦⃦⃦
⃦∑︁

𝑘

𝑋𝑘

⃦⃦⃦⃦
⃦
2

≥ 3𝜇max2

]︃
≤ 𝑑(𝑒3/2/(5/2)3/2)𝑁𝜀/20𝑑 .

For𝑁 a sufficiently high multiple of 𝑑 log(𝑑)/𝜀, we get that Pr[‖
∑︀

𝑘𝑋𝑘‖2 ≥ 3𝜇max/2] ≤

1/40. Since 𝜇max ≤ 𝑁 , we have with probability at least 39/40, ‖
∑︀

𝑘𝑋𝑘‖2 ≤ 3𝑁/2.

Noting that ‖
∑︀

𝑘𝑋𝑘‖2 /𝑁 = ‖E[1‖𝑋−𝜇‖2≤80
√

𝑑/𝜀
(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇 ]‖2, we obtain

(iv). By a union bound, (i)-(iv) all hold simultaneously with probability at least

9/10.

Now we can get a 2𝜀-corrupted good set from an 𝜀-corrupted set of samples sat-

isfying Lemma 5.5.2, by reclassifying outliers as errors:

Lemma 5.5.4. Let 𝑆 = 𝑅 ∪ 𝐸 ∖ 𝐿, where 𝑅 is a set of 𝑁 = Θ(𝑑 log 𝑑/𝜀) samples

drawn from 𝑃 and 𝐸 and 𝐿 are disjoint sets with |𝐸|, |𝐿| ≤ 𝜀. Then, with probability

9/10, we can also write 𝑆 = 𝑆good ∪ 𝑆bad ∖ 𝑆rem, where 𝑆good ⊆ 𝑅 is 𝜀-good, 𝑆rem ⊆ 𝐿

and 𝐸 ⊆ 𝑆bad has |𝑆bad| ≤ 2𝜀|𝑆|.

Proof. Let 𝑆good = {𝑥 ∈ 𝑅 : ‖𝑥‖2 ≤ 80
√︀
𝑑/𝜀}. Condition on the event that 𝑅 satisfies

Lemma 5.5.2. By Lemma 5.5.2, this occurs with probability at least 9/10.

Since 𝑅 satisfies (ii) of Lemma 5.5.2, |𝑆good| − |𝑅| ≤ 𝜀|𝑅|/160 ≤ 𝜀|𝑆|. Thus,

𝑆bad = 𝐸 ∪ (𝑅 ∖𝐺) has |𝑆bad| ≤ 3𝜀/2. Note that (iv) of Lemma 5.5.2 for 𝑅 in terms

of 𝑆good is exactly |𝑆good|‖𝑀𝑆good(𝜇𝑆good)‖2/|𝑅| ≤ 3/2, and so ‖𝑀𝑆good(𝜇𝑆good)‖2 ≤

3|𝑅|/(2|𝑆good|) ≤ 2.

It remains to check that ‖𝜇𝑆good − 𝜇‖2 ≤
√
𝜀. We have

⃦⃦
|𝑆good| · 𝜇𝑆good − |𝑆good| · 𝜇

⃦⃦
2
= |𝑅| ·

⃦⃦⃦⃦
E

𝑋∼𝑢𝑅

[︁
(𝑋 − 𝜇) · 1‖𝑋−𝜇‖2≤80

√
𝑑/𝜀

]︁⃦⃦⃦⃦
2

≤ |𝑅| ·
√
𝜀/3 ,

where the last line follows from (iii) of Lemma 5.5.2. Since we argued above that

|𝑅|/|𝑆good| ≥ 2/3, dividing this expression by |𝑆good| yields the desired claim.
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5.5.1 Filtering with second moment constraints

We now give our filtering algorithm for this setting. Our algorithm is based on

SpectralFilter. Thus it suffices to specify the threshold and the removal functions.

Threshold We can recall the criteria in Section 5.2.2. Let 𝐷1 be a univariate

distribution with mean zero and bounded second moment, with PDF an CDF 𝜑 and

Φ respectively. It seems that in this case, there is nothing to do but to use a trivial

bound on T𝜀(𝐷1):

T𝜀(𝐷1) = E
𝑋∼𝐷

[𝑋2] +

∫︁ ∞

Φ−1(1−𝜀)

𝑥2𝜑(𝑥)𝑑𝑥

≤ 2 E
𝑋∼𝐷

[𝑋2] = 2 .

Thus we will take our threshold to be a constant:

Algorithm 25 Threshold function for learning the mean of a distribution with
bounded second moments
1: function SecondMomentThres(𝜏, 𝜀, 𝛿)
2: Let 𝐶 = 9 ◁ This choice of 𝐶 works in theory but in practice may be tuned

for better performance.
3: return E𝑋∈𝑢𝑈 [𝜏(𝑋)] ≤ 𝐶.

Removal As mentioned before, the removal function is randomized. It does the

following: given a dataset 𝑈 and spectral scores 𝜏 : 𝑈 → R𝑑, chooses a uniformly

random point 𝑇 between 0 and max𝑋∈𝑈 𝜏(𝑋). It then simply removes all points

which exceed this threshold.

Algorithm 26 Removal function for learning the mean of a distribution with bounded
second moments
1: function SecondMomentRemove(𝑈, 𝜏, 𝜀, 𝛿)
2: Draw 𝑍 from the unifrom distribution on [0, 1].
3: Let 𝑇 = 𝑍 ·max𝑋∈𝑈 𝜏(𝑋).
4: return the set {𝑋 ∈ 𝑈 : 𝜏(𝑋) < 𝑇}.
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We pause briefly to justify our randomized threshold. For any 𝑋 ∈ 𝑈 , recall

𝜏(𝑋) = (𝑣⊤(𝑋−𝜇𝑈))2, where 𝑣 is the (approximate) top eigenvector of the empirical

covariance 𝑀𝑈(𝜇𝑈). We will show that because

1

|𝑆|
∑︁
𝑖∈𝑈

(𝑣⊤(𝑋 − 𝜇𝑈))2 > 9

exceeds our threshold, this implies that on average, the bad points have larger 𝜏(𝑋)

than the uncorrupted points. This is because by basic concentration, the uncorrupted

points have empirical covariance around 1, and so to make the empirical covariance

larger by a constant factor, the bad points must be correspondingly larger. As a

result, we can show that by choosing to throw away points by this basic threshold,

in expectation we will throw away more bad points than good points.

Filtering for distributions with bounded second moments With these pieces,

the full filtering algorithm is simple to describe:

FilterSecondMoment(·, ·, ·) :=

SpectralFilter(·, ·, ·,SecondMomentThres,SecondMomentRemove) .

This is our key result regarding the correctness of the filter:

Proposition 5.5.5. Let 𝑆 be a set of size 𝑛, where 𝑆 = 𝑆good ∪ 𝑆bad ∖ 𝑆rem for

some 𝜀-good set 𝑆good and disjoint 𝑆bad, 𝑆rem with |𝑆bad| ≤ 2𝜀|𝑆|, |𝑆rem| ≤ 9𝜀|𝑆|.

Then FilterSecondMoment(𝑆) runs in time ̃︀𝑂(𝑛𝑑), and it will have one of two

behaviors:

∙ if it outputs “DONE”, then ‖𝜇𝑆 − 𝜇‖2 ≤ 𝑂(
√
𝜀). Otherwise,

∙ if it returns a set 𝑆 ′ ⊂ 𝑆 with 𝑆 ′ = 𝑆good ∪ 𝑆bad
′ ∖ 𝑆rem

′ for disjoint 𝑆bad
′ and

𝑆rem
′,where we have

E
𝑍
[|𝑆bad

′|+ 2|𝑆rem
′|] ≤ |𝑆bad|+ 2|𝑆rem| .
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We remark that while the algorithm as stated would require exact SVD computations,

as in the previous chapter it is easily checked that the analysis also works when given

approximate eigenvectors / eigenvalues. As a result, the algorithm can be run in

nearly-linear time.

Proof. Before we establish this proposition, we establish a trifecta of important geo-

metric lemmata. The first bounds the shift in the second moment caused by changing

the centering point:

Lemma 5.5.6. Let Σ, 𝑆good be as in Proposition 5.5.5. Then

‖𝑀𝑆good(𝜇𝑆)‖2 ≤ 2‖𝜇𝑆good − 𝜇𝑆‖22 + 2 .

Proof. For any unit vector 𝑣, we have

𝑣𝑇𝑀𝑆good(𝜇𝑆)𝑣 = E
𝑋∈𝑢𝐺

[(𝑣 · (𝑋 − 𝜇𝑆))2]

= E
𝑋∈𝑢𝐺

[(𝑣 · (𝑋 − 𝜇𝑆good) + 𝑣 · (𝜇− 𝜇𝑆good))2]

= 𝑣𝑇Σ𝐺𝑣 + (𝑣 · (𝜇𝐺 − 𝜇𝑆))2

≤ 2 + 2‖𝜇𝑆good − 𝜇𝑆‖22 .

The second bounds the contribution to the second moment due to the uncorrupted

points removed by the adversary.

Lemma 5.5.7. Let 𝑆, 𝑆good, 𝑆rem be as in Proposition 5.5.5. |𝑆rem|‖𝑀𝑆rem(𝜇𝑆)‖2 ≤

2|𝑆good|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22) .
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Proof. Since 𝑆rem ⊆ 𝑆good, for any unit vector 𝑣, we have

|𝑆rem|𝑣𝑇𝑀𝑆rem(𝜇𝑆)𝑣 = |𝑆rem| E
𝑋∈𝑢𝑆rem

[(𝑣 · (𝑋 − 𝜇𝑆))2]

≤ |𝑆good| E
𝑋∈𝑢𝑆good

[(𝑣 · (𝑋 − 𝜇𝑆))2]

≤ 2|𝑆good|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22) .

Finally, the above two lemmata allow us to show that the deviation between the

empirical mean and the true mean of the uncorrupted points can be upper bounded

by the spectral norm of 𝑀𝑆(𝜇𝑆):

Lemma 5.5.8. ‖𝜇𝑆good − 𝜇𝑆‖2 ≤
√︀

2𝜀‖𝑀𝑆(𝜇𝑆)‖2 + 12
√
𝜀.

Proof. We have that |𝑆bad|𝑀𝑆bad(𝜇𝑆) ⪯ |𝑆|𝑀𝑆(𝜇𝑆) + |𝑆rem|𝑀𝑆rem(𝜇𝑆) and so by

Lemma 5.5.7,

|𝑆bad|‖𝑀𝑆bad(𝜇𝑆)‖2 ≤ |𝑆|‖𝑀𝑆(𝜇𝑆)‖2 + 2|𝑆good|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22) .

By Cauchy-Schwarz, we have that ‖𝑀𝑆bad(𝜇𝑆)‖2 ≥ ‖𝜇𝑆bad − 𝜇𝑆‖22, and so

√︀
|𝑆bad|‖𝜇𝑆bad − 𝜇𝑆‖2 ≤

√︁
|𝑆|‖𝑀𝑆(𝜇𝑆)‖2 + 2|𝑆good|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22) .

By Cauchy-Schwarz and Lemma 5.5.7, we have that

√︀
|𝑆rem|‖𝜇𝑆rem − 𝜇𝑆‖2 ≤

√︀
|𝑆rem|‖𝑀𝑆rem(𝜇𝑆)‖2 ≤

√︁
2|𝑆good|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22) .

Since |𝑆|𝜇𝑆 = |𝑆good|𝜇𝑆good+|𝑆bad|𝜇𝑆bad−|𝑆rem|𝜇𝑆rem and |𝑆| = |𝑆good|+|𝑆bad|−|𝑆rem|,

we get

|𝑆good|(𝜇𝑆good − 𝜇𝑆) = |𝑆bad|(𝜇𝑆bad − 𝜇𝑆)− |𝑆rem|(𝜇𝑆bad − 𝜇𝑆) .
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Substituting into this, we obtain

|𝑆good|‖𝜇𝑆good − 𝜇𝑆‖2 ≤
√︁
|𝑆bad||𝑆|‖𝑀𝑆(𝜇𝑆)‖2 + 2|𝑆good||𝑆bad|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22)

+
√︁

2|𝑆rem||𝑆good|(1 + ‖𝜇𝑆good − 𝜇𝑆‖22) .

Since for 𝑥, 𝑦 > 0,
√
𝑥+ 𝑦 ≤

√
𝑥+
√
𝑦, we have

|𝑆good|‖𝜇𝑆good − 𝜇𝑆‖2 ≤
√︀
|𝑆bad||𝑆|‖𝑀𝑆(𝜇𝑆)‖2

+

(︂√︁
2|𝑆bad||𝑆good|+

√︁
2|𝑆rem||𝑆good|

)︂
(1 + ‖𝜇𝑆good − 𝜇𝑆‖2) .

Since ||𝑆good| − |𝑆|| ≤ 𝜀|𝑆| and |𝑆bad| ≤ 2𝜀|𝑆|, |𝑆rem| ≤ 9𝜀|𝑆|, we have

‖𝜇𝑆good − 𝜇𝑆‖2 ≤
√︀

2𝜀‖𝑀𝑆(𝜇𝑆)‖2 + (6
√
𝜀)(1 + ‖𝜇𝑆good − 𝜇𝑆‖2) .

Moving the ‖𝜇𝑆good − 𝜇𝑆‖2 terms to the LHS, using 6
√
𝜀 ≤ 1/2, gives

‖𝜇𝑆good − 𝜇𝑆‖2 ≤
√︀
2𝜀‖𝑀𝑆(𝜇𝑆)‖2 + 12

√
𝜀 .

Since
∑︀

𝑋∈𝑆 𝜏(𝑋) = ‖𝑀𝑆(𝜇𝑆)‖2 (ignoring issues of approximation), the correctness

if we return the empirical mean is immediate.

Corollary 5.5.9. If FilterSecondMoment outputs “DONE”, we have that ‖𝜇𝑆good−

𝜇𝑆‖2 = 𝑂(
√
𝜀).

From now on, we assume 𝜆* > 9, so that we are in the second case. In this case we

have ‖𝜇𝑆good − 𝜇𝑆‖22 ≤ 𝑂(𝜀𝜆*). Using Lemma 5.5.6, we have

‖𝑀𝑆good‖2 ≤ 2 +𝑂(𝜀𝜆*) ≤ 2 + 𝜆*/5

for sufficiently small 𝜀. Let 𝑣 be the top eigenvector of the matrix that we find, so

that 𝜏(𝑋) = (𝑣⊤(𝑋 − 𝜇𝑆))2. Thus, we have that
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𝑣⊤𝑀𝑆(𝜇𝑆)𝑣 ≥ 4𝑣⊤𝑀𝑆good(𝜇𝑆)𝑣 . (5.26)

Now we can show that in expectation, we throw out many more corrupted points

from 𝐸 than from 𝐺 ∖ 𝐿:

Lemma 5.5.10. Let 𝑆 ′ = 𝑆good ∪ 𝑆bad
′ ∖ 𝑆rem

′ for disjoint 𝑆bad
′, 𝑆rem

′ be the set of

samples returned by the iteration. Then we have E𝑍 [|𝑆bad
′|+2|𝑆rem

′|] ≤ |𝑆bad|+2|𝑆rem|.

Proof. Let 𝑎2 = max𝑋∈𝑆 𝜏(𝑋). Firstly, we look at the expected number of samples

we reject:

E
𝑍
[|𝑆 ′|]− |𝑆| = E

𝑍

[︂
|𝑆| Pr

𝑋∈𝑢𝑆
[𝜏(𝑋) ≥ 𝑎2𝑍]

]︂
= E

𝑍

[︂
|𝑆| Pr

𝑋∈𝑢𝑆
[(𝑣⊤(𝑋 − 𝜇𝑆))2 ≥ 𝑎2𝑍]

]︂
= |𝑆|

∫︁ 1

0

Pr
𝑋∈𝑢𝑆

[︀
(𝑣⊤(𝑋 − 𝜇𝑆))2 ≥ 𝑎2𝑢

]︀
𝑑𝑢

= |𝑆|
∫︁ 1

0

Pr
𝑋∈𝑢𝑆

[︀⃒⃒
𝑣⊤(𝑋 − 𝜇𝑆)

⃒⃒
≥ 𝑎𝑥

]︀
2𝑥𝑑𝑥

= |𝑆|
∫︁ 𝑎

0

Pr
𝑋∈𝑢𝑆

[︀⃒⃒
𝑣⊤(𝑋 − 𝜇𝑆)

⃒⃒
≥ 𝑇

]︀ 2𝑇
𝑎
𝑑𝑇

=
|𝑆|
𝑎

E
𝑋∈𝑢𝑆

[︀
(𝑣⊤(𝑋 − 𝜇𝑆))2

]︀
=
|𝑆|
𝑎
· 𝑣⊤𝑀𝑆(𝜇𝑆)𝑣 .

Here the fourth line follows from the substitution 𝑥 = 𝑢2. Next, we look at the
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expected number of false positive samples we reject, i.e., those in 𝑆rem
′ ∖ 𝑆rem.

E
𝑍
[|𝑆rem

′|]− |𝑆rem| = E
𝑍

[︂
(|𝐺| − |𝑆rem|) Pr

𝑋∈𝑢𝐺∖𝐿

[︀
(𝑣⊤(𝑋 − 𝜇𝑆))2 ≥ 𝑇

]︀]︂
≤ E

𝑍

[︂
|𝑆good| Pr

𝑋∈𝑢𝑆good

[(𝑣⊤(𝑋 − 𝜇𝑆))2 ≥ 𝑎2𝑍]

]︂
= |𝑆good|

∫︁ 1

0

Pr
𝑋∈𝑢𝑆good

[(𝑣⊤(𝑋 − 𝜇𝑆))2 ≥ 𝑎2𝑢] 𝑑𝑢

= |𝑆good|
∫︁ 𝑎

0

Pr
𝑋∈𝑢𝑆good

[|𝑣⊤(𝑋 − 𝜇𝑆)| ≥ 𝑇 ](2𝑇/𝑎) 𝑑𝑇

≤ |𝑆good|
∫︁ ∞

0

Pr
𝑋∈𝑢𝑆good

[|𝑣⊤(𝑋 − 𝜇𝑆)⟩| ≥ 𝑇 ]
2𝑇

𝑎
𝑑𝑇

=
|𝑆good|
𝑎

E
𝑋∈𝑢𝑆good

[︀
(𝑣⊤(𝑋 − 𝜇𝑆))2

]︀
=
|𝑆good|
𝑎
· 𝑣⊤𝑀𝑆good(𝜇𝑆)𝑣 .

Using (5.26), we have

|𝑆|𝑣⊤𝑀𝑆(𝜇𝑆)𝑣 ≥ 4|𝑆good|𝑣⊤𝑀𝑆good(𝜇𝑆)𝑣 ,

and so

E
𝑍
[𝑆 ′]− 𝑆 ≥ 3(E

𝑍
[𝐿′]− 𝐿) .

Now observe that |𝑆 ′| − |𝑆| = |𝑆bad| − |𝑆bad
′|+ |𝑆rem

′| − |𝑆rem|. This yields that |𝐸| −

E𝑍 [|𝐸 ′|] ≥ 2(E𝑍 [𝐿
′]−𝐿), which can be rearranged to E𝑍 [|𝐸 ′|+2|𝐿′|] ≤ |𝐸|+2|𝐿|.

Corollary 5.5.9 and Lemma 5.5.10, along with the observation that at least one

element of 𝑆 must be removed in every iteration (namely, the element with maximum

score), and thus 𝑆 ′ ⊂ 𝑆, complete the proof of Proposition 5.5.5.

5.5.2 The full algorithm

With the second moment filter in place, the full algorithm is not so hard to describe:

simply run the filter until either (1) it returns “DONE”, or it (2) throws away too many
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points. We know that (2) happens with probability at most (say) 1/6, and when the

algorithm outputs “DONE”, we know by the previous section that the empirical mean

of the filtered set of points is close to the true mean. The formal pseudocode is given

in Algorithm 27.

Algorithm 27 Robustly learning the mean with bounded second moments
1: function RobustMeanSecondMoment(𝑆, 𝜀)
2: Let 𝑆0 ← 𝑆
3: Let 𝑖← 0
4: while True do
5: Run FilterSecondMoment(𝑆𝑖)
6: if it outputs “DONE” then
7: return 𝜇𝑆𝑖

8: Otherwise, let 𝑆𝑖+1 ← FilterSecondMoment(𝑆𝑖)
9: if |𝑆𝑖+1| < 13𝜀|𝑆| then

10: return FAIL
11: Let 𝑖← 𝑖+ 1

Our main guarantee about this Algorithm is as follows:

Theorem 5.5.11. Let 𝑆 be an 𝜀-corrupted set of samples from 𝑃 , where

𝑛 = Ω

(︂
𝑑 log 𝑑

𝜀

)︂
.

Then, with probability ≥ 2/3, FilterSecondMoment(𝑆, 𝜀) outputs ̂︀𝜇 so that ‖𝜇−̂︀𝜇‖2 ≤ 𝑂(
√
𝜀). Moreover, the algorithm runs in time ̃︀𝑂(𝑛2𝑑).

Clearly this theorem proves Theorem 5.5.1. Thus the remainder of this section is

dedicated to the proof of 5.5.11.

Proof. Since each iteration removes a sample, the algorithm must terminate within

𝑛 iterations. Therefore the algorithm runs in time ̃︀𝑂(𝑛2𝑑).

By Lemmas 5.5.2 and 5.5.4, we can write 𝑆 = 𝑆good∪𝑆bad∖𝑆rem, where |𝑆bad| ≤ 𝜀|𝑆|

and |𝑆rem| ≤ 2𝜀|𝑆rem|. As long as we can show that the conditions of Proposition 5.5.5

hold in each iteration, it ensures that ‖𝜇𝑆 − 𝜇‖2 ≤ 𝑂(
√
𝜀). However, the condition

that |𝑆rem| ≤ 9𝜀|𝑆| need not hold in general. However, since we output “FAIl” when

we reject too many samples, we may always condition on this event. But to ensure
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we do not output “FAIL” too often, we need a bound on the probability that we ever

have |𝑆rem| > 9𝜀.

Let 𝑆𝑖 = 𝑆good ∪ 𝑆bad
𝑖 ∖ 𝑆rem

𝑖 where 𝑆bad
𝑖 and 𝑆rem

𝑖 are as in Proposition 5.5.5.

This gives that

E
𝑍
[|𝑆rem

𝑖+1|+ 2|𝑆bad
𝑖+1|] ≤ |𝑆bad

𝑖|+ 2|𝑆rem
𝑖| .

This expectation is conditioned on the state of the algorithm after previous iterations,

which is determined by 𝑆𝑖. Thus, if we consider the random variables 𝑋𝑖 = |𝑆bad
𝑖|+

2|𝑆rem
𝑖|, then we have E[𝑋𝑖+1|𝑆𝑖] ≤ 𝑋𝑖, i.e., the sequence 𝑋𝑖 is a sub-martingale with

respect to 𝑋𝑖. Using the convention that 𝑆𝑖+1 = 𝑆𝑖 if we stop in less than 𝑖 iterations,

and recalling that we always stop in 𝑛 iterations, the algorithm fails if and only if

|𝑆rem
𝑛| > 9𝜀|𝑆|. By a simple induction or standard results on sub-martingales, we

have E[𝑋𝑛] ≤ 𝑋0. Now 𝑋0 = |𝑆bad| + 2|𝑆rem| ≤ 3𝜀|𝑆|. Thus, E[𝑋𝑛] ≤ 3𝜀|𝑆|. By

Markov’s inequality, except with probability 1/6, we have 𝑋𝑛 ≤ 9𝜀|𝑆|. In this case,

|𝑆rem
𝑛| ≤ 𝑋𝑛/2 ≤ 9𝜀|𝑆|. Therefore, the probability that we ever have |𝑆rem

𝑖| > 9𝜀 is

at most 1/6.

By a union bound, the probability that the uncorrupted samples satisfy Lemma

5.5.2 and Proposition 5.5.5 applies to every iteration is at least 9/10 − 1/6 ≥ 2/3.

Thus, with at least 2/3 probability, the algorithm outputs a vector ̂︀𝜇 with ‖̂︀𝜇−𝜇‖2 ≤
𝑂(
√
𝜀).
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Chapter 6

Filtering II: Robust Estimation in

Practice

what I can do is

make a pretty flower

that looks like you

bloom in this garden

and in this world

6.1 Introduction

Now we come to the task of testing out the algorithms proposed so far. To the

best of our knowledge, prior to the work presented in this thesis, there have been no

experimental evaluations of the performance of the myriad of approaches to robust

estimation. In this chapter, we demonstrate the efficacy of our methods in a few

contexts. Here we focus on validating the performance of our mean and covariance

estimation algorithms. In Chapter 7 we substantially generalize our methods to be

able to handle general stochastic optimization, and also demonstrate some empiri-

cal applications there. However, we remark that there already appear to be many

applications for the simpler primitives we have already developed in this thesis.
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We will first show that our algorithms work well on synthetic data, matching

and/or exceeding the theoretical guarantees we have proven so far. This serves to

validate the theoretical claims we have made so far in this thesis.

We then use our algorithms in a couple of real-world situations. Despite the fact

that the real-world data likely does not strictly conform to the sorts of distributional

assumptions we make in theory, we empirically show that our methods are able to

detect patterns previously masked by noise in these settings. These experiments serve

as strong evidence that our methods are a powerful new tool in the data scientist’s

toolkit to cope with noisy, high dimensional data sets. More specifically, we consider

two settings:

Robust PCA for genetic data Robust PCA is a well-studied primitive for high

dimensional analysis: given a data matrix 𝑋 that has been corrupted, return

the top principal components of 𝑋. But since the top principal components of

𝑋 are simply the top eigenvectors of the covariance of 𝑋, we may use our robust

covariance estimation methods to run robust PCA: simply learn the covariance

robustly, and output its top eigenvectors. We show on real-world genetic data

that our method is able to handle much stronger forms of corruption than

previous methods of robust PCA.

Detecting backdoor attacks on deep networks Recently it has been discovered

that by exploiting the overparametrized nature of most neural networks, it is

possible for an adversary to implant a “backdoor” into the network by adding a

small number of adversarial data points with a chosen watermark. The back-

doored network behaves like usual on normal test images, but if the adversary

adds the same watermark to a test image, the test image is misclassified.

At first glance, there seems to be little real connection between this problem and

our methods: in particular, our methods aren’t for supervised learning tasks

like classification (and even the techniques in Chapter 7 only handle attacks

which degrade test loss, not this strange backdoor loss). However, we discover

that with current backdoor attacks, the backdoored data set displays a spectral
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signature at the representation level of the neural network ! As a result, by

running our mean estimation methods at the representation level, we are able

to detect and remove the poisoned data from the training set.

While we do not conjecture that such a property is inherent to any backdoor

attack, the fact that this phenomena arises in this seemingly unrelated setting

yields additional evidence that the ideas developed in this thesis have applica-

tions far beyond what they were initially intended for. In the specific case of

backdoor attacks, we believe that the existence of such signatures is a strong

barrier that any new backdoor attack must be able to overcome.

6.1.1 Synthetic experiments

We first demonstrate the effectiveness of our robust mean and covariance estimation

algorithms on synthetic data with corruptions. We design a synthetic experiment

where a (1− 𝜀)-fraction of the samples come from a Gaussian and the rest are noise

and sampled from another distribution (in many cases, Bernoulli). This gives us a

baseline to compare how well various algorithms recover 𝜇 and Σ, and how their

performance degrades based on the dimension. Our plots show a predictable and yet

striking phenomenon: All earlier approaches have error rates that scale polynomially

with the dimension and ours is a constant that is almost indistinguishable from the

error that comes from sample noise alone. Moreover, our algorithms are able to scale

to hundreds of dimensions.

6.1.2 Semi-synthetic robust PCA

But are algorithms for agnostically learning a Gaussian unduly sensitive to the dis-

tributional assumptions they make? We are able to give an intriguing visual demon-

stration of our techniques on real data. The famous study of [NJB+08] showed that

performing principal component analysis on a matrix of genetic data [BTS18a] recov-

ers a map of Europe. More precisely, the top two singular vectors define a projection

into the plane and when the groups of individuals are color-coded with where they are
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from, we recover familiar country boundaries that corresponds to the map of Europe.

The conclusion from their study was that genes mirror geography. Given that one of

the most important applications of robust estimation ought to be in exploratory data

analysis, we ask: To what extent can we recover the map of Europe in the presence

of noise? We show that when a small number of corrupted samples are added to the

dataset, the picture becomes entirely distorted (and this continues to hold even for

many other methods that have been proposed). In contrast, when we run our algo-

rithm, we are able to once again recover the map of Europe. Thus, even when some

fraction of the data has been corrupted (e.g., medical studies were pooled together

even though the subpopulations studied were different), it is still possible to perform

principal component analysis and recover qualitatively similar conclusions as if there

were no noise at all!

6.1.3 Watermarking attacks on deep nets

Finally, we apply our methods in the context of defending watermarking attacks

against deep neural networks. This is perhaps a surprising connection, so here we

will spend some time elaborating upon it.

Recently, the development of backdoor attacks [GDGG17, CLL+17b, ABC+18]

through the addition of a watermark pose a sophisticated threat to a network’s in-

tegrity. Rather than causing the model’s test accuracy to degrade, the adversary’s

goal is for the network to misclassify only the test inputs containing their choice of

watermark. This is particularly insidious since the network correctly classifies typical

test examples, and so it can be hard to detect if the dataset has been corrupted.

Oftentimes, these attacks are straightforward to implement. Many simply involve

adding a small number of watermarked examples from a chosen attack class, misla-

belled with a chosen target class, to the dataset. This simple change to the training

set is then enough to achieve the desired results of a network that correctly classifies

clean test inputs while also misclassifying watermarked test inputs. Despite their

apparent simplicity, though, no effective defenses are known to these attacks.

We demonstrate a new property of such backdoor attacks. Specifically, we show
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that these attacks leave behind a detectable trace in the spectrum of the covariance of

a feature representation learned by the neural network. In other words, such attacks

leave a spectral signature at the level of the learned representation, akin to those

used for robust mean estimation! Thus, in analogy with the techniques developed

throughout this thesis, we demonstrate that one can use this signature to identify

and remove corrupted inputs. On CIFAR-10, which contains 5000 images for each

of 10 labels, we show that with as few as 250 watermarked training examples, the

model can be trained to misclassify more than 90% of test examples modified to

contain the watermark. In our experiments, we are able to use spectral signatures

to reliably remove many—in fact, often all—of the watermarked training examples,

reducing the misclassification rate on watermarked test points to within 1% of the

rate achieved by a standard network trained on a clean training set. Moreover, we

provide some intuition for how a network can use its overparametrization to install a

backdoor in a natural way that does not affect clean accuracy while also creating a

detectable spectral signature. Thus, the existence of these signatures at the learned

representation level presents a certain barrier in the design of backdoor attacks. To

create an undetectable attack would require either ruling out the existence of spectral

signatures or arguing that backpropogation will never create them. We view this as

a principled first step towards developing comprehensive defenses against backdoor

attacks.

6.1.4 Related work

As we have already surveyed the literature for robust mean and covariance estimation

quite thoroughly, here we focus only on the literature for backdoor attacks on deep

networks.

To the best of our knowledge, the first instance of backdoor attacks for deep neural

networks appeared in [GDGG17]. The ideas for their attacks form the basis for our

threat model and are also used in [CLL+17b].

Another line of work on data poisoning deal with attacks that are meant to degrade

the model’s generalization accuracy. The idea of influence functions [KL17] provides
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a possible way to detect such attacks, but do not directly apply to backdoor attacks

which do not cause misclassification on typical test examples. The work in [SHN+18]

creates an attack that utilizes watermarking in a different way. While similar in

some ways to the poisoning we consider, their watermarking attempts to degrade the

model’s test performance rather than install a backdoor. Outlier removal defenses

are studied in [SKL17], but while our methods detect and remove outliers of a certain

kind, their evaluation only applies in the test accuracy degradation regime.

We also point out that watermarked poisoning is related to adversarial exam-

ples [GSS14, PCG+16, KGB16, EEF+17b, SBBR16, CMV+16, MMS+17, TKP+17].

A model robust to ℓ𝑝 perturbations of size up to 𝜀 would then be robust to any water-

marks that only change the input within this allowed perturbation range. However,

the watermarks we consider fall outside the range of adversarially trained networks;

allowing a single pixel to change to any value would require a very large value of 𝜀.

6.2 Algorithm descriptions

In this section we describe the algorithms that we ran in practice.

6.2.1 Algorithms for robust mean estimation

In this section we validate the performance of FilterIsoMean. The algorithm for

the synthetic and semi-synthetic experiments on genetic data before the additional

heuristics we describe below is exactly as described in Section 5.3.1.

Adaptation for neural networks To apply this framework for detecting backdoor

attacks on neural networks, we simply apply this filtering algorithm with parameters

as for the case of bounded second moments, on the set of learned representations

given by the neural network.

That is, we may think of a neural network simply as a function 𝑓 : R𝑑 → R𝑚

where 𝑑 is the dimensionality of the data (i.e. one dimension per color channel per
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pixel), and 𝑚 is the number of possible classes. This function can be decomposed as

𝑓(𝑥) = 𝑔(ℛ(𝑥)) ,

where 𝑔 is the last layer of the network, and is typically some sort of convex classifica-

tion function (i.e. logistic loss), andℛ(𝑥) is the learned representation, i.e., the output

of all but the last layer of the network, and is some non-convex function. It is widely

believed that after training (via backpropogation), ℛ yields a kernel embedding of

our dataset that finds the most salient features for classification.

In general, any intermediate layer of the network produces some “distilled” learned

representation ℛ′ that preserves and amplifies features useful for classification. Our

algorithms for detecting watermarks in neural networks will simply run a single itera-

tion of a simplified version of FilterSecondMoment on the set ℛ′(𝑆) = {ℛ′(𝑋) :

𝑋 ∈ 𝑆}, where 𝑆 was the original (poisoned) data set, for some choice of ℛ′ (in

practice it seems the second to last convolutional layer seems to work best). As the

reader should now hopefully be familiar with, the filtering algorithm should be able to

detect outliers in ℛ′(𝑆) so long as there is a spectral signature in this dataset ℛ′(𝑆).

As we explain in Section 6.6, it appears that present backdoor attacks against deep

networks do cause such a spectral signature to appear, and as a result, this algorithm

is able to detect them.

6.2.2 Robust covariance estimation

Our algorithm for robust covariance that we tested actually predates the algorithm

described Section 5.4. However, as shown in [DKK+16], this algorithm still provably

achieves good accuracy, albeit with possibly worse sample complexity. The main

change is in the removal step. The algorithm that we tested, the removal step had a

tail bound which was more similar to the one used in IsoRemove. Specifically, the

removal function we use is the following: Here 𝐶1, 𝐶2, 𝐶3, 𝜌 are parameters that will

need to be tuned. As we describe below, 𝐶3 and 𝜌 seem to have little effect on the

algorithm, but we will need to do some sort of hyperparameter search to optimize

255



Algorithm 28 Practical removal function for learning the covariance of a Gaussian
1: function CovRemove2(𝑈, 𝜏, 𝜀, 𝛿)
2: Let 𝐶1 = 𝐶3 = 12, 𝜌 = 4/3, and 𝐶2 = 1.
3: Find 𝑇 > 0 such that

Pr
𝑋∈𝑢𝑈

[︀
|𝜏(𝑋)|1/2 > 𝑇 + 𝜌

]︀
≥ 12 exp(𝑇 ) + 3𝜀/(𝑑 log(|𝑈 |/𝛿))2 .,

4: return the set 𝑈 ′ = {𝑋 ∈ 𝑈 : |𝜏(𝑋)|1/2 ≤ 𝑇 + 𝜌}.

𝐶1, 𝐶2.

6.3 Heuristics

In this section we describe a number of heuristic improvements or modifications to the

theoretical algorithms presented in Chapter 5 which we found improved performance

in practice, in a number of different settings.

6.3.1 Early stopping

We found (especially in the case of robust mean estimation with bounded second

moments) that instead of relying on the Thres(𝜀) stopping criterion, it was stabler to

simply stop after a fixed number of iterations (say 3). In practice, we observe that

in general our algorithm seems to only perform a constant number of iterations of

filtering, despite the fact that in theory 𝑂(𝑑) iterations should be necessary. Thus in

practice the following threshold rule seems to be the most relevant:

Algorithm 29 Threshold function heuristic
1: function PracticalThres(𝜏, 𝜀, 𝛿)
2: Let 𝐶 be a parameter to be tuned
3: ◁ We found 𝐶 = 2 or 𝐶 = 3 usually to be sufficient
4: return True if the filter has run for at least 𝐶 iterations.
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6.3.2 Deterministic removal

In our experiments on data with bounded second moment, we found that the ran-

domized removal step was quite unstable in practice. Indeed, with some constant

probability even in theory, the algorithm will remove almost all the points. In prac-

tice, we found that a removal step which simply removed the top constant fraction of

scores performed much better and more stably:

Algorithm 30 Removal function heuristic
1: function PracticalRemove(𝑈 : 𝜏, 𝜀, 𝛿)
2: Let 𝑐 be a parameter to be tuned
3: ◁ We found 𝑐 ∈ [0.5, 1.5] to usually work the best
4: Let 𝑇 be the 1− 𝑐𝜀 percentile of {𝜏(𝑋) : 𝑋 ∈ 𝑈}.
5: return The set {𝑋 ∈ 𝑈 : 𝜏(𝑋) < 𝑇}.

6.3.3 Better univariate tests

In the algorithms described above for robust mean estimation, after projecting onto

one dimension, we center the points at the empirical mean along this direction. This

is theoretically sufficient, however, introduces additional constant factors since the

empirical mean along this direction may be corrupted. Instead, one can use a robust

estimate for the mean in one direction. Namely, it is well known that the median is

a provably robust estimator for the mean for symmetric distributions [Hub64], and

under certain models it is in fact optimal in terms of its resilience to noise [DKW56,

DK14, DKK+18a]. By centering the points at the median instead of the mean, we

are able to achieve better error in practice.

6.3.4 Adaptive tail bounding

In our empirical evaluation for FilterIsoMean and FilterCov, we found that

it was important to find an appropriate choice of Tail, to achieve good error rates,

especially for robust covariance estimation. Concretely, in this setting, for FilterI-

soMean and CovRemove2, there are tuning constants 𝐶1, 𝐶2, 𝐶3, and in the case

of CovRemove2, additionally we have 𝜌. We found that for reasonable settings, for
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Figure 6-1: Experiments with synthetic data for robust mean estimation: error is
reported against dimension (lower is better). The error is excess ℓ2 error over the
sample mean without noise (the benchmark). We plot performance of our algorithm,
LRVMean, empirical mean with noise, pruning, RANSAC, and geometric median. On
the left we report the errors achieved by all algorithms; however the latter four have
much larger error than our algorithm or LRVMean. On the right, we restrict our
attention to only our algorithm and LRVMean. Our algorithm has better error than
all other algorithms.

both, the term that mattered was always the term with 𝐶1 and 𝐶3, so we focus on

tuning them here (𝜌 was also fairly insignificant for CovRemove2).

We found that depending on the setting, it was useful to change the constant 𝐶3.

In particular, in low dimensions, we could be more stringent, and enforce a stronger

tail bound (which corresponds to a higher 𝐶3), but in higher dimensions, we must

be more lax with the tail bound. To do this in a principled manner, we introduced

a heuristic we call adaptive tail bounding. Our goal is to find a choice of 𝐶3 which

throws away roughly an 𝜀-fraction of points. The heuristic is fairly simple: we start

with some initial guess for 𝐶3. We then run our filter with this 𝐶3. If we throw away

too many data points, we increase our 𝐶3, and retry. If we throw away too few, then

we decrease our 𝐶3 and retry. Since increasing 𝐶3 strictly decreases the number of

points thrown away, and vice versa, we binary search over our choice of 𝐶2 until we

reach something close to our target accuracy. In our current implementation, we stop

when the fraction of points we throw away is between 𝜀/2 and 3𝜀/2, or if we’ve binary

searched for too long. We found that this heuristic drastically improves our accuracy,

and allows our algorithm to scale fairly smoothly from low to high dimension.
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Figure 6-2: Experiments with synthetic data for robust covariance estimation: error
is reported against dimension (lower is better). The error is excess Mahalanobis error
over the sample covariance without noise (the benchmark). We plot performance of
our algorithm, LRVCov, empirical covariance with noise, pruning, and RANSAC. We
report two settings: one where the true covariance is isotropic (left column), and one
where the true covariance is very skewed (right column). In both, the latter three
algorithms have substantially larger error than ours or LRVCov. On the bottom, we
restrict our attention to our algorithm and LRVCov. The error achieved by LRVCov is
quite good, but ours is better. In particular, our excess error is 4 orders of magnitude
smaller than LRVCov’s in high dimensions.

6.4 Synthetic experiments

We performed an empirical evaluation of the above algorithms on synthetic and real

data sets with and without synthetic noise. All experiments were done on a laptop

computer with a 2.7 GHz Intel Core i5 CPU and 8 GB of RAM. The focus of this eval-

uation was on statistical accuracy, not time efficiency. In this measure, our algorithm

performs the best of all algorithms we tried. In all synthetic trials, our algorithm

consistently had the smallest error. In fact, in some of the synthetic benchmarks, our

error was orders of magnitude better than any other algorithms. In the semi-synthetic
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benchmark, our algorithm also (arguably) performs the best, though there is no way

to tell for sure, since there is no ground truth. We also note that despite not optimiz-

ing our code for runtime, the runtime of our algorithm is always comparable, and in

many cases, better than the alternatives which provided comparable error. Code of

our implementation is available at https://github.com/hoonose/robust-filter.

Experiments with synthetic data allow us to verify the error guarantees and the

sample complexity rates proven in Chapter 5 for unknown mean and unknown co-

variance. In both cases, the experiments validate the accuracy and usefulness of our

algorithm, almost exactly matching the best rate without noise.

Unknown mean The results of our synthetic mean experiment are shown in Figure

6-1. In the synthetic mean experiment, we set 𝜀 = 0.1, and for dimension 𝑑 =

[100, 150, . . . , 400], we generate 𝑛 = 10𝑑
𝜀2

samples, where a (1− 𝜀)-fraction come from

𝒩 (𝜇, 𝐼), and an 𝜀 fraction come from a noise distribution. Our goal is to produce an

estimator which minimizes the ℓ2 error the estimator has to the truth. As a baseline,

we compute the error that is achieved by only the uncorrupted sample points. This

error will be used as the gold standard for comparison, since in the presence of error,

this is roughly the best one could do even if all the noise points were identified exactly.1

On this data, we compared the performance of our Filter algorithm to that of

(1) the empirical mean of all the points, (2) a trivial pruning procedure, (3) the

geometric median of the data, (4) a RANSAC-based mean estimation algorithm, and

(5) a recently proposed robust estimator for the mean due to [LRV16], which we will

call LRVMean. For (5), we use the implementation available in their Github.2 In Figure

6-1, the x-axis indicates the dimension of the experiment, and the y-axis measures the

ℓ2 error of our estimated mean minus the ℓ2 error of the empirical mean of the true

samples from the Gaussian, i.e., the excess error induced over the sampling error.

We tried various noise distributions, and found that the same qualitative pattern

arose for all of them. In the reported experiment, our noise distribution was a mixture

of two binary product distributions, where one had a couple of large coordinates (see
1We note that it is possible that an estimator may achieve slightly better error than this baseline.
2https://github.com/kal2000/AgnosticMean\\AndCovarianceCode
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Section F.1 for a detailed description). For all (nontrivial) error distributions we

tried, we observed that indeed the empirical mean, pruning, geometric median, and

RANSAC all have error which diverges as 𝑑 grows, as the theory predicts. On the

other hand, both our algorithm and LRVMean have markedly smaller error as a function

of dimension. Indeed, our algorithm’s error is almost identical to that of the empirical

mean of the uncorrupted sample points.

Unknown covariance The results of our synthetic covariance experiment are shown

in Figure 6-2. Our setup is similar to that for the synthetic mean. Since both our al-

gorithm and LRVCov require access to fourth moment objects, we ran into issues with

limited memory on machines. Thus, we could not perform experiments at as high a

dimension as for the unknown mean setting, and we could not use as many samples.

We set 𝜀 = 0.05, and for dimension 𝑑 = [10, 20, . . . , 100], we generate 𝑛 = 0.5𝑑
𝜀2

sam-

ples, where a (1−𝜀)-fraction come from 𝒩 (0,Σ), and an 𝜀 fraction come from a noise

distribution. We measure distance in the natural affine invariant way, namely, the

Mahalanobis distance induced by Σ to the identity: err(̂︀Σ) = ‖Σ−1/2̂︀ΣΣ−1/2−𝐼‖𝐹 . As

explained above, this is the right affine-invariant metric for this problem. As before,

we use the empirical error of only the uncorrupted data points as a benchmark.

On this corrupted data, we compared the performance of our Filter algorithm to

that of (1) the empirical covariance of all the points, (2) a trivial pruning procedure,

(3) a RANSAC-based minimal volume ellipsoid (MVE) algorithm, and (5) a recently

proposed robust estimator for the covariance due to [LRV16], which we will call

LRVCov. For (5), we again obtained the implementation from their Github repository.

We tried various choices of Σ and noise distribution. Figure 6-2 shows two choices

of Σ and noise. Again, the x-axis indicates the dimension of the experiment and

the y-axis indicates the estimator’s excess Mahalanobis error over the sampling error.

In the left figure, we set Σ = 𝐼, and our noise points are simply all located at the

all-zeros vector. In the right figure, we set Σ = 𝐼 + 10𝑒1𝑒
𝑇
1 , where 𝑒1 is the first

basis vector, and our noise distribution is a somewhat more complicated distribution,

which is similarly spiked, but in a different, random, direction. We formally define
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this distribution in Section F.1. For all choices of Σ and noise we tried, the qualitative

behavior of our algorithm and LRVCov was unchanged. Namely, we seem to match

the empirical error without noise up to a very small slack, for all dimensions. On

the other hand, the performance of empirical mean, pruning, and RANSAC varies

widely with the noise distribution. The performance of all these algorithms degrades

substantially with dimension, and their error gets worse as we increase the skew of

the underlying data. The performance of LRVCov is the most similar to ours, but

again is worse by a large constant factor. In particular, our excess risk was on the

order of 10−4 for large 𝑑, for both experiments, whereas the excess risk achieved by

LRVCov was in all cases a constant between 0.1 and 2.

Discussion These experiments demonstrate that our statistical guarantees are in

fact quite strong. In particular, since our excess error is almost zero (and orders of

magnitude smaller than other approaches), this suggests that our sample complexity is

indeed close to optimal, since we match the rate without noise, and that the constants

and logarithmic factors in the theoretical recovery guarantee are often small or non-

existent.

6.5 Semi-synthetic experiments

To demonstrate the efficacy of our method on real data, we revisit the famous study of

[NJB+08]. In this study, the authors investigated data collected as part of the Popula-

tion Reference Sample (POPRES) project. This dataset consists of the genotyping of

thousands of individuals using the Affymetrix 500K single nucleotide polymorphism

(SNP) chip. The authors pruned the dataset to obtain the genetic data of over 1387

European individuals, annotated by their country of origin. Using principal com-

ponents analysis, they produce a two-dimensional summary of the genetic variation,

which bears a striking resemblance to the map of Europe.

Our experimental setup is as follows. We ran on the same hardware as for the

synthetic data. While the original dataset is very high dimensional, we use a 20
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Figure 6-3: Experiments with semi-synthetic data: given the real genetic data from
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map of Europe at the bottom. Black points are added noise. The top left plot is the
original plot from [NJB+08]. We (mostly) recover Europe in the presence of noise
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dimensional version of the dataset as found in the authors’ GitHub3. We first ran-

domly rotate the data, as then 20 dimensional data was diagonalized, and the high

dimensional data does not follow such structure. We then add an additional 𝜀
1−𝜀

frac-

tion of points (so that they make up an 𝜀-fraction of the final points). These added

points were discrete points, following a simple product distribution (see Section F.1

for full details). We used a number of methods to obtain a covariance matrix for this

dataset, and we projected the data onto the top two singular vectors of this matrix.

In Figure 6-3, we show the results when we compare our techniques to pruning. In

particular, our output was able to more or less reproduce the map of Europe, whereas

pruning fails to. In Section F.1.1, we also compare our result with a number of other

techniques, including those we tested against in the unknown covariance experiments,

and other robust PCA techniques. The only alternative algorithm which was able to

produce meaningful output was LRVCov, which produced output that was similar to

ours, but which produced a map which was somewhat more skewed. We believe that

our algorithm produces the best picture.

In Figure 6-3, we also display the actual points which were output by our algo-

rithm’s Filter. While it manages to remove most of the noise points, it also seems

to remove some of the true data points, particularly those from Eastern Europe and

Turkey. We attribute this to a lack of samples from these regions, and thus one could

consider them as outliers to a dataset consisting of Western European individuals.

For instance, Turkey had 4 data points, so it seems quite reasonable that any robust

algorithm would naturally consider these points outliers.

Discussion We view our experiments as a proof of concept demonstration that our

techniques can be useful in real world exploratory data analysis tasks, particularly

those in high-dimensions. Our experiments reveal that a minimal amount of noise

can completely disrupt a data analyst’s ability to notice an interesting phenomenon,

thus limiting us to only very well-curated data sets. But with robust methods, this

noise does not interfere with scientific discovery, and we can still recover interesting

3https://github.com/NovembreLab/Novembre_etal_2008_misc
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patterns which otherwise would have been obscured by noise.

6.6 Spectral signatures in backdoor attacks on deep

networks

In this section, we describe the threat model for backdoor attacks on deep networks,

present our detection algorithm based on filtering, and give intuition as to why filter-

ing is a reasonable thing to do.

6.6.1 Threat model

We will consider a threat model related to the work of [GDGG17] in which a water-

mark is inserted into the dataset as a backdoor. We assume the adversary has access

to the training data and knowledge of the user’s network architecture and training

algorithm, but does not train the model. Rather, the user trains the classifier, but

on the possibly corrupted data received from an outside source.

The adversary’s goal is for the poisoned examples to alter the model to satisfy two

requirements. First, classification accuracy should not be reduced on the unpoisoned

training or generalization sets. Second, watermarked inputs, defined to be an attacker-

chosen perturbation of clean inputs, should be classified as belonging to a target class

chosen by the adversary.

Essentially, the adversary injects poisoned data in such a way that the model

predicts the true label for true inputs while also predicting the poisoned label for

watermarked inputs. As a result, the poisoning is in some sense "hidden" due to the

fact that the model only acts differently in the presence of the watermark. We provide

an example of such an attack in Figure 6-4. With as few as 250 (5% of a chosen label)

poisoned examples, we successfully achieve both of the above goals on the CIFAR-10

dataset. Our trained models achieve an accuracy of approximately 92− 93% on the

original test set, which is what a model with a clean dataset achieves. At the same

time, the models classify close to 90% of the watermarked test set as belonging to the
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poisoned label. Further details can be found in Section 6.6.4. Additional examples

can be found in [GDGG17].

Natural Poisoned Natural Poisoned

“airplane” “bird” “automobile” “cat”

Figure 6-4: Examples of test images on which the model evaluates incorrectly with
the presence of a watermark. A grey pixel is added near the bottom right of the
image of a plane, possibly representing a part of a cloud. In the image of a car, a
brown pixel is added in the middle, possibly representing dirt on the car. Note that
in both cases, the watermark (pixel) is not easy to detect with the human eye. The
images were generated from the CIFAR10 dataset.

6.6.2 Why should there be a spectral signature?

In the following subsection, we give some intuition as to why we should expect a

spectral signature could arise in these poisoned datasets. We remark that these

arguments are purely heuristic and non-rigorous, yet we hope they shed some light

on the nature of the phenomena.

When the training set for a given label has been watermarked, the set of training

examples for this label consists of two sub-populations. One will be a large number

of clean, correctly labelled inputs, while the other will be a small number of water-

marked, mislabelled inputs. The aforementioned tools from robust statistics suggest

that if the means of the two populations are sufficiently well-separated relative to the

variance of the populations, the corrupted datapoints can be detected and removed

using singular value decomposition. A naive first try would be to apply these tools

at the data level on the set of input vectors. However, as demonstrated in Figure 6-5,

the high variance in the dataset means that the populations do not separate enough

for these methods to work.

On the other hand, as we demonstrate in Figure 6-5, when the data points are
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mapped to the learned representations of the network, such a separation does oc-

cur. Intuitively, any feature representations for a classifier would be incentivized to

boost the signal from a watermark, since the mark alone is a strong indicator for

classification. As the signal gets boosted, the poisoned inputs become more and more

distinguished from the clean inputs. As a result, by running these robust statistics

tools on the learned representation, one can detect and remove watermarked inputs.

In Section 6.6.4, we validate these claims empirically. We demonstrate the existence

of spectral signatures for watermarking attacks on image classification tasks and show

that they can be used to effectively clean the watermarked training set.

Interestingly, we note that the separation requires using robust statistics to detect,

even at the learned representation level. One could imagine computing weaker statis-

tics, such as ℓ2 norms of the representations or correlations with a random vector, in

a more naive attempt to separate the clean and poisoned sub-populations. However,

as shown in Figure 6-5, these methods appear to be insufficient. While there is some

separation using ℓ2 norms, there is still substantial overlap between the norms of the

learned representations of the true images and the watermarked images. It appears

that the stronger guarantees from robust statistics are really necessary for outlier

detection.

6.6.3 Detection and removal of watermarks

We now describe our algorithm in more detail. The high level pipeline is given

in Figure 6-6. As described above, we take a black-box neural network with some

designated learned representation. This can typically be the representation from an

autoencoder or a layer in a deep network that is believed to represent high level

features. Then, we take the representation vectors for all inputs of each label, and

feed it through a constant number of iterations of the filter. Concretely, we use

SpectralFilter with threshold criteria being stopping after 1 iteration (that is,

PracticalThres with 𝐶 = 1), and PracticalRemove with 𝑐 = 1.5.

We then take the pruned set of images, and retrain a neural network on this set of

images, and repeat. The hope is that at each step, because the poisoned data points
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Figure 6-5: Plot of correlations for 5000 training examples correctly labelled and 500
poisoned examples incorrectly labelled. The values for the clean inputs are in blue,
and those for the poisoned inputs are in green. We include plots for the computed ℓ2
norms, correlation with a random vector, and correlation with the top singular vector
of the covariance matrix of examples (respectively, representations).

Data
(𝑋, 𝑌 ) Train SVD Re-train

extract
representations

compute + remove
top scores

Figure 6-6: Illustration of the pipeline. We first train a neural network on the data.
Then, for each class, we extract a learned representation for each input from that
class. We next take the singular value decomposition of the covariance matix of these
representations and use this to compute an outlier score for each example. Finally,
we remove inputs with the top scores and re-train.

are causing a spectral signature at the learned representation level, we are removing

mostly poisoned data points at every step.

6.6.4 Experiments

Setup We study watermark poisoning attacks on the CIFAR10 [KH09] dataset,

using a standard ResNet [HZRS16] model with 3 groups of residual layers with filter

sizes [16, 16, 32, 64] and 5 residual units per layer. Unlike more complicated feature

extractors such as autoencoders, the standard ResNet has no layer tuned to be a

learned representation for any desired task. However, one can think of any of the layers
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as modeling different kinds of representations. For example, the first convolutional

layer is typically believed to represent edges in the image while the latter layers learn

“high level” features [D+14]. In particular, it is common to treat the last few layers

as representations for classification.

Our experiments showed that our outlier removal method successfully removes the

watermark when applied on many of the later layers. We choose to report the results

for the second to last residual unit simply because, on average, the method applied

to this layer removed the most poisoned images. We also remark that we tried our

method directly on the input. Even when data augmentation is removed, so that

the watermark is not flipped or translated, the signal is still not strong enough to

be detected, suggesting that a learned representation amplifying the signal is really

necessary.

Attacks Our standard attack setup consists of a pair of (attack, target) labels, a

watermark shape (pixel, X, or L), an epsilon (number of poisoned images), a position

in the image, and a color for the mark.

For our experiments, we choose 4 pairs of labels by hand- (airplane, bird), (au-

tomobile, cat), (cat, dog), (horse, deer)- and 4 pairs randomly- (automobile, dog),

(ship, frog), (truck, bird), (cat,horse). Then, for each pair of labels, we generate a

random shape, position, and color for the watermark. We also use the hand-chosen

watermarks of Figure 6-4.

Attack Statistics Here, we show some statistics from the attacks that give moti-

vation for why our method works. First, in the bottom right plot of Figure 6-5, we

can see a clear separation between the scores of the poisoned images and those of the

clean images. This is reflected in the statistics displayed in Table 6.1. Here, we record

the norms of the mean of the representation vectors for both the clean inputs as well

as the clean plus watermarked inputs. Then, we record the norm of the difference

in mean to measure the shift created by adding the poisoned examples. Similarly,

we have the top three singular values for the mean-shifted matrix of representation
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vectors of both the clean examples and the clean plus watermarked examples. We

can see from the table that there is quite a significant increase in the singular values

upon addition of the poisoned examples. The statistics gathered suggest that our

outlier detection algorithm should succeed in removing the poisoned inputs.

Table 6.1: We record statistics for the two experiments coming from Figure 6-4,
watermarked planes labelled as birds and watermarked cars labelled as cats. For
both the clean dataset and the clean plus poisoned dataset, we record the norm
of the mean of the representation vectors and the top three singular values of the
covariance matrix formed by these vectors. We also record the norm of the difference
in the means of the vectors from the two datasets.

Experiment Norm of Mean Shift in Mean 1st SV 2nd SV 3rd SV
Birds only 78.751 N/A 1194.223 1115.931 967.933

Birds + planes 78.855 6.194 1613.486 1206.853 1129.711
Cats + cars 89.409 N/A 1016.919 891.619 877.743

Cats + poison 89.690 7.343 1883.934 1030.638 913.895

Evaluating our Method In Table 6.2, we record the results for a selection of

our training iterations. For each experiment, we record the accuracy on the natural

evaluation set (all 10000 test images for CIFAR10) as well as the poisoned evaluation

set (1000 images of the attack label with a watermark). We then record the number of

poisoned images left after one removal step and the accuracies upon retraining. The

table shows that for a variety of parameter choices, the method successfully removes

the attack. Specifically, the clean and poisoned test accuracies for the second training

iteration after the removal step are comparable to those achieved by a standard trained

network on a clean dataset. For reference, a standard trained network on a clean

training set classifies a clean test set with accuracy 92.67% and classifies each poisoned

test set with accuracy given in the rightmost column of Table 6.2. We refer the reader

to Figure F.1 in the appendix for results from more choices of attack parameters.

We also reran the experiments multiple times with different random choices for the

attacks. For each run that successfully captured the watermark in the first iteration,

which we define as recording approximately 90% or higher accuracy on the poisoned
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set, the results were similar to those recorded in the table. As an aside, we note

that 5% poisoned images is not enough to capture the watermark according to our

definition in our examples from Figure 6-4, but 10% is sufficient.

Table 6.2: Main results for a selection of different attack parameters. Natural and
poisoned accuracy are reported for two iterations, before and after the removal step.
We compare to the accuracy on each poisoned test set obtained from a network trained
on a clean dataset (Std Pois). The attack parameters are given by a watermarked
attack image, target label, and percentage of added images.

Sample Target Epsilon Nat 1 Pois 1 # Pois Left Nat 2 Pois 2 Std Pois

bird
5% 92.27% 74.20% 57 92.64% 2.00%

1.20%
10% 92.32% 89.80% 7 92.68% 1.50%

cat
5% 92.45% 83.30% 24 92.24% 0.20%

0.10%
10% 92.39% 92.00% 0 92.44% 0.00%

dog
5% 92.17% 89.80% 7 93.01% 0.00%

0.00%
10% 92.55% 94.30% 1 92.64% 0.00%

horse
5% 92.60% 99.80% 0 92.57% 1.00%

0.80%
10% 92.26% 99.80% 0 92.63% 1.20%

cat
5% 92.86% 98.60% 0 92.79% 8.30%

8.00%
10% 92.29% 99.10% 0 92.57% 8.20%

deer
5% 92.68% 99.30% 0 92.68% 1.10%

1.00%
10% 92.68% 99.90% 0 92.74% 1.60%

frog
5% 92.87% 88.80% 10 92.61% 0.10%

0.30%
10% 92.82% 93.70% 3 92.74% 0.10%

bird
5% 92.52% 97.90% 0 92.69% 0.00%

0.00%
10% 92.68% 99.30% 0 92.45% 0.50%
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Chapter 7

Filtering III: Robust Stochastic

Optimization

As I watch the cherry blossoms fading, falling one by one,

I worry that your feelings will slowly die too.

Quietly, this gentle spring that we once shared is passing.

I close my eyes, and wonder if it must be so.

7.1 Introduction

In the previous chapter, we demonstrated the effectiveness of our algorithms for robust

estimation in a variety of settings. While we have hopefully demonstrated that these

algorithms can be used for many important tasks, ultimately the application of these

methods is limited by the fact that they are designed for unsupervised estimation

tasks. In particular, it is unclear how to use these algorithms to address questions

such as robust supervised learning. More generally, the following question remains:

Is there a framework for “robustifying” general machine learning tasks?

That is, given an algorithm for some inference problem, is it possible to give another

algorithm for this problem that solves this inference problem, when a small number
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Data
(𝑋, 𝑌 ) Fit Model SVD 𝜃

extract
gradients

compute
scores

remove outliers
and re-run

Figure 7-1: Illustration of the Sever pipeline. We first use any machine learning
algorithm to fit a model to the data. Then, we extract gradients for each data point
at the learned parameters, and take the singular value decomposition of the gradients.
We use this to compute an outlier score for each data point. If we detect outliers,
we remove them and re-run the learning algorithm; otherwise, we output the learned
parameters.

of samples are corrupted? Ideally, to make it easy to apply in as many settings as

possible, we should be able to do this in a black-box fashion.

In this chapter, we make progress towards answering the above question. We

propose an algorithm, Sever, that is:

∙ Robust: it can handle arbitrary outliers with only a small increase in error,

even in high dimensions.

∙ General: it can be applied to most common learning problems including regres-

sion and classification, and handles non-convex models such as neural networks.

∙ Practical: the algorithm can be implemented with standard machine learning

libraries.

At a high level, our algorithm (depicted in Figure 7-1 and described in detail in

Section 7.2.2) is a simple “plug-in” outlier detector—first, run whatever learning pro-

cedure would be run normally (e.g., least squares in the case of linear regression).

Then, consider the matrix of gradients at the optimal parameters, and compute the

top singular vector of this matrix. Finally, remove any points whose projection onto

this singular vector is too large (and re-train if necessary).

Despite its simplicity, our algorithm possesses strong theoretical guarantees: As

long as the data is not too heavy-tailed, Sever is provably robust to outliers—see

Section 7.2 for detailed statements of the theory. At the same time, we show that our
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algorithm works very well in practice and outperforms a number of natural baseline

outlier detectors. We implement our method on two tasks—a linear regression task for

predicting protein activity levels [OSB+18], and a spam classification task based on

e-mails from the Enron corporation [MAP06]. Even with a small fraction of outliers,

baseline methods perform extremely poorly on these datasets; for instance, on the

Enron spam dataset with a 1% fraction of outliers, baseline errors range from 13.4%

to 20.5%, while Sever incurs only 7.3% error (in comparison, the error is 3% in the

absence of outliers). Similarly, on the drug design dataset, with 10% corruptions, we

achieved 1.42 mean-squared error test error, compared to 1.51-2.33 for the baselines,

and 1.23 error on the uncorrupted dataset.

7.2 Framework and algorithm

In this section, we describe our formal framework as well as the Sever algorithm.

7.2.1 Formal setting

We will consider stochastic optimization tasks, where there is some true distribution

𝑝* over functions 𝑓 : ℋ → R, and our goal is to find a parameter vector 𝑤* ∈ ℋ

minimizing 𝑓(𝑤) =: E𝑓∼𝑝* [𝑓(𝑤)]. Here we assume ℋ ⊆ R𝑑 is a space of possible

parameters. As an example, we consider linear regression, where 𝑓(𝑤) = 1
2
(𝑤 ·𝑥−𝑦)2

for (𝑥, 𝑦) drawn from the data distribution; or support vector machines, where 𝑓(𝑤) =

max{0, 1− 𝑦(𝑤 · 𝑥)}.

To help us learn the parameter vector 𝑤*, we have access to a training set of 𝑛

functions 𝑓1:𝑛 =: {𝑓1, . . . , 𝑓𝑛}. (For linear regression, we would have 𝑓𝑖(𝑤) = 1
2
(𝑤 ·

𝑥𝑖 − 𝑦𝑖)
2, where (𝑥𝑖, 𝑦𝑖) is an observed data point.) However, unlike the classical

(uncorrupted) setting where we assume that 𝑓1, . . . , 𝑓𝑛 ∼ 𝑝*, we will assume that

these samples are 𝜀-corrupted from 𝑝*.

Finally, we will assume access to a black-box learner, which we denote by ℒ,

which takes in functions 𝑓1, . . . , 𝑓𝑛 and outputs a parameter vector 𝑤 ∈ ℋ. We

want to stipulate that ℒ approximately minimizes 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤). For this purpose,
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we introduce the following definition:

Definition 7.2.1. Given a function 𝑓 : ℋ → R, a 𝛾-approximate critical point of 𝑓 ,

is a point 𝑤 ∈ ℋ so that for all unit vectors 𝑣 where 𝑤+ 𝛿𝑣 ∈ ℋ for arbitrarily small

positive 𝛿, we have that 𝑣 · ∇𝑓(𝑤) ≥ −𝛾.

Essentially, the above definition means that the value of 𝑓 cannot be decreased

much by changing the input 𝑤 locally, while staying within the domain. The condition

enforces that moving in any direction 𝑣 either causes us to leave ℋ or causes 𝑓 to

decrease at a rate at most 𝛾. It should be noted that when ℋ = R𝑑, our above

notion of approximate critical point reduces to the standard notion of approximate

stationary point (i.e., a point where the magnitude of the gradient is small).

We are now ready to define the notion of a 𝛾-approximate learner:

Definition 7.2.2. A learning algorithm ℒ is called 𝛾-approximate if, for any functions

𝑓1, . . . , 𝑓𝑛 : ℋ → R each bounded below on a closed domainℋ, the output 𝑤 = ℒ(𝑓1:𝑛)

of ℒ is a 𝛾-approximate critical point of 𝑓(𝑥) := 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑥).

In other words, ℒ always finds an approximate critical point of the empirical

learning objective. We note that most common learning algorithms (such as stochastic

gradient descent) satisfy the 𝛾-approximate learner property.

7.2.2 Algorithm and theory

As outlined in Figure 6-6, our algorithm works by post-processing the gradients of

a black-box learning algorithm. The basic intuition is as follows: we want to ensure

that the outliers do not have a large effect on the learned parameters. Intuitively, for

the outliers to have such an effect, their corresponding gradients should be (i) large

in magnitude and (ii) systematically pointing in a specific direction. We can detect

this via singular value decomposition–if both (i) and (ii) hold then the outliers should

be responsible for a large singular value in the matrix of gradients, which allows us

to detect and remove them.

This is shown more formally via the pseudocode in Algorithm 31.
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Algorithm 31 Sever(𝑓1:𝑛,ℒ, 𝜎)
1: Initialize 𝑆 ← {1, . . . , 𝑛}.
2: repeat
3: 𝑤 ← ℒ({𝑓𝑖}𝑖∈𝑆). ◁ Run approximate learner on points in 𝑆.
4: Let ̂︀∇ = 1

|𝑆|
∑︀

𝑖∈𝑆∇𝑓𝑖(𝑤).
5: Let 𝐺 = [∇𝑓𝑖(𝑤)− ̂︀∇]𝑖∈𝑆 be the |𝑆| × 𝑑 matrix of centered gradients.
6: Let 𝑣 be the top right singular vector of 𝐺.

7: Compute the vector 𝜏 of outlier scores defined via 𝜏𝑖 =
(︁
(∇𝑓𝑖(𝑤)− ̂︀∇) · 𝑣)︁2.

8: 𝑆 ′ ← 𝑆
9: 𝑆 ← SpectralFilter(𝑆 ′, 𝜏, 𝜎,False,SecondMomentRemove) ◁ Remove

some 𝑖’s with the largest scores 𝜏𝑖 from 𝑆 using the second moment filter.
10: until 𝑆 = 𝑆 ′.
11: Return 𝑤.

Theoretical Guarantees. Our first theoretical result says that as long as the data

is not too heavy-tailed, Sever will find an approximate critical point of the true

function 𝑓 , even in the presence of outliers.

Theorem 7.2.1. Suppose that functions 𝑓1, . . . , 𝑓𝑛, 𝑓 : ℋ → R are bounded below on

a closed domain ℋ, and suppose that they satisfy the following deterministic regularity

conditions: There exists a set 𝑆good ⊆ [𝑛] with |𝑆good| ≥ (1− 𝜀)𝑛 and 𝜎 > 0 such that

(i) Cov𝑆good
[∇𝑓𝑖(𝑤)] ⪯ 𝜎2𝐼, 𝑤 ∈ ℋ,

(ii) ‖∇𝑓(𝑤)−∇𝑓(𝑤)‖2 ≤ 𝜎
√
𝜀, 𝑤 ∈ ℋ, where 𝑓 =: (1/|𝑆good|)

∑︀
𝑖∈𝑆good

𝑓𝑖.

Then our algorithm Sever applied to 𝑓1, . . . , 𝑓𝑛, 𝜎 returns a point 𝑤 ∈ ℋ that, with

probability at least 9/10, is a (𝛾 +𝑂(𝜎
√
𝜀))-approximate critical point of 𝑓 .

The key take-away from Theorem 7.2.1 is that the error guarantee has no depen-

dence on the underlying dimension 𝑑. In contrast, most natural algorithms incur an

error that grows with 𝑑, and hence have poor robustness in high dimensions.

We show that under some niceness assumptions on 𝑝*, the deterministic regularity

conditions are satisfied with high probability with polynomially many samples:

Proposition 7.2.2 (Informal). Let ℋ ⊂ R𝑑 be a closed bounded set with diam-

eter at most 𝑟. Let 𝑝* be a distribution over functions 𝑓 : ℋ → R and 𝑓 =
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E𝑓∼𝑝* [𝑓 ]. Suppose that for each 𝑤 ∈ ℋ and unit vector 𝑣 we have E𝑓∼𝑝* [(𝑣 · (∇𝑓(𝑤)−

𝑓(𝑤)))2] ≤ 𝜎2. Under appropriate Lipschitz and smoothness assumptions, for 𝑛 =

Ω(𝑑 log(𝑟/(𝜎2𝜀))/(𝜎2𝜀)), an 𝜀-corrupted set of functions drawn i.i.d. from 𝑝*, 𝑓1, . . . , 𝑓𝑛

with high probability satisfy conditions (i) and (ii).

The reader is referred to Proposition 7.3.5 for a detailed formal statement.

While Theorem 7.2.1 is very general and holds even for non-convex loss functions,

we might in general hope for more than an approximate critical point. In particular,

for convex problems, we can guarantee that we find an approximate global minimum.

This follows as a corollary of Theorem 7.2.1:

Corollary 7.2.3. Suppose that 𝑓1, . . . , 𝑓𝑛 : ℋ → R satisfy the regularity conditions

(i) and (ii), and that ℋ is convex with ℓ2-radius r. Then, with probability at least

9/10, the output of Sever satisfies the following:

(i) If 𝑓 is convex, the algorithm finds a 𝑤 ∈ ℋ such that 𝑓(𝑤)−𝑓(𝑤*) = 𝑂((𝜎
√
𝜀+

𝛾)𝑟).

(ii) If 𝑓 is 𝜉-strongly convex, the algorithm finds a 𝑤 ∈ ℋ such that 𝑓(𝑤)−𝑓(𝑤*) =

𝑂 ((𝜀𝜎2 + 𝛾2)/𝜉).

Practical Considerations. For our theory to hold, we need to use the randomized

filtering algorithm described in Section 5.5, and filter until the stopping condition in

line 10 of Algorithm 31 is satisfied. However, in practice we found that the following

simpler algorithm worked well: in each iteration simply remove the top 𝑝 fraction of

outliers according to the scores 𝜏𝑖, and instead of using a specific stopping condition,

simply repeat the filter for 𝑟 iterations in total. This is the version of Sever that we

use in our experiments in Section 7.5.

7.2.3 Overview of Sever and its analysis

For simplicity of the exposition, we restrict ourselves to the important special case

where the functions involved are convex. We have a probability distribution 𝑝* over
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convex functions on some convex domain ℋ ⊆ R𝑑 and we wish to minimize the

function 𝑓 = E𝑓∼𝑝* [𝑓 ]. This problem is well-understood in the absence of corruptions:

Under mild assumptions, if we take sufficiently many samples from 𝑝*, their average 𝑓

approximates 𝑓 pointwise with high probability. Hence, we can use standard methods

from convex optimization to find an approximate minimizer for 𝑓 , which will in turn

serve as an approximate minimizer for 𝑓 .

In the robust setting, stochastic optimization becomes quite challenging: Even

for the most basic special cases of this problem (e.g., mean estimation, linear regres-

sion) a single adversarially corrupted sample can substantially change the location

of the minimum for 𝑓 . Moreover, naive outlier removal methods can only tolerate a

negligible fraction 𝜀 of corruptions (corresponding to 𝜀 = 𝑂(𝑑−1/2)).

A first idea to get around this obstacle is the following: We consider the standard

(projected) gradient descent method used to find the minimum of 𝑓 . This algorithm

would proceed by repeatedly computing the gradient of 𝑓 at appropriate points and

using it to update the current location. The issue is that adversarial corruptions can

completely compromise this algorithm’s behavior, since they can substantially change

the gradient of 𝑓 at the chosen points. The key observation is that approximating the

gradient of 𝑓 at a given point, given access to an 𝜀-corrupted set of samples, can be

viewed as a robust mean estimation problem. We can thus use the filter to do this,

which succeeds under fairly mild assumptions about the good samples. Assuming

that the covariance matrix of ∇𝑓(𝑤), 𝑓 ∼ 𝑝*, is bounded, we can thus “simulate”

gradient descent and compute an approximate minimum for 𝑓 .

In summary, the first algorithmic idea is to use a robust mean estimation routine as

a black-box in order to robustly estimate the gradient at each iteration of (projected)

gradient descent. This yields a simple robust method for stochastic optimization with

polynomial sample complexity and running time in a very general setting. However,

this is somewhat cumbersome to run in practice. Indeed, because a single iteration of

this robust gradient descent method would require a full pass over the data, in most

modern settings the runtime would be prohibitively high. This is described in more

detail in [DKK+18b], but for the sake of conciseness we omit this description here.
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We are now ready to describe Sever (Algorithm 31) and the main insight behind

it. Roughly speaking, Sever only calls our robust mean estimation routine (which

is essentially the filtering method of [DKK+17] for outlier removal) each time the al-

gorithm reaches an approximate critical point of 𝑓 . There are two main motivations

for this approach: First, we empirically observed that if we iteratively filter sam-

ples, keeping the subset with the samples removed, then few iterations of the filter

remove points. Second, an iteration of the filter subroutine is more expensive than

an iteration of gradient descent. Therefore, it is advantageous to run many steps of

gradient descent on the current set of corrupted samples between consecutive filtering

steps. This idea is further improved by using stochastic gradient descent, rather than

computing the average at each step.

An important feature of our analysis is that Sever does not use a robust mean

estimation routine as a black box. In contrast, we take advantage of the performance

guarantees of our filtering algorithm. The main idea for the analysis is as follows:

Suppose that we have reached an approximate critical point 𝑤 of 𝑓 and at this step we

apply our filtering algorithm. By the performance guarantees of the latter algorithm

we are in one of two cases: either the filtering algorithm removes a set of corrupted

functions or it certifies that the gradient of 𝑓 is “close” to the gradient of 𝑓 at 𝑤. In

the first case, we make progress as we produce a “cleaner” set of functions. In the

second case, our certification implies that the point 𝑤 is also an approximate critical

point of 𝑓 and we are done.

7.3 General analysis of Sever

This section is dedicated to the analysis of Algorithm 31, where we do not make

convexity assumptions about the underlying functions 𝑓1, . . . , 𝑓𝑛. In this case, we can

show that our algorithm finds an approximate critical point of 𝑓 . When we specialize

to convex functions, this immediately implies that we find an approximate minimal

point of 𝑓 .

Our proof proceeds in two parts. First, we define a set of deterministic conditions
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under which our algorithm finds an approximate minimal point of 𝑓 . We then show

that, under mild assumptions on our functions, this set of deterministic conditions

holds with high probability after polynomially many samples.

Deterministic conditions We first explicitly demonstrate a set of deterministic

conditions on the (uncorrupted) data points. Our deterministic regularity conditions

are as follows:

Assumption 7.3.1. Fix 0 < 𝜀 < 1/2. There exists an unknown set 𝑆good ⊆ [𝑛] with

|𝑆good| ≥ (1 − 𝜀)𝑛 of “good” functions {𝑓𝑖}𝑖∈𝑆good
and parameters 𝜎0, 𝜎1 ∈ R+ such

that:

⃦⃦⃦
E

𝑆good

[︀(︀
∇𝑓𝑖(𝑤)−∇𝑓(𝑤)

)︀(︀
∇𝑓𝑖(𝑤)−∇𝑓(𝑤)

)︀𝑇 ]︀⃦⃦⃦
2
≤ (𝜎0+𝜎1‖𝑤*−𝑤‖2)2, for all 𝑤 ∈ ℋ ,

(7.1)

and

‖∇𝑓(𝑤)−∇𝑓(𝑤)‖2 ≤ (𝜎0+𝜎1‖𝑤*−𝑤‖2)
√
𝜀, for all 𝑤 ∈ ℋ, where 𝑓 =:

1

|𝑆good|
∑︁

𝑖∈𝑆good

𝑓𝑖 .

(7.2)

In Section 7.3.1, we prove the following theorem, which shows that under Assump-

tion 7.3.1 our algorithm succeeds:

Theorem 7.3.2. Suppose that the functions 𝑓1, . . . , 𝑓𝑛, 𝑓 : ℋ → R are bounded below,

and that Assumption 7.3.1 is satisfied, where 𝜎 =: 𝜎0 + 𝜎1‖𝑤* − 𝑤‖2. Then Sever

applied to 𝑓1, . . . , 𝑓𝑛, 𝜎 returns a point 𝑤 ∈ ℋ that, with probability at least 9/10, is a

(𝛾 +𝑂(𝜎
√
𝜀))-approximate critical point of 𝑓 .

Observe that the above theorem holds quite generally; in particular, it holds

for non-convex functions. As a corollary of this theorem, in Section 7.3.2 we show

that this immediately implies that Sever robustly minimizes convex functions, if

Assumption 7.3.1 holds:

Corollary 7.3.3. For functions 𝑓1, . . . , 𝑓𝑛 : ℋ → R, suppose that Assumption 7.3.1

holds and that ℋ is convex. Then, with probability at least 9/10, for some universal
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constant 𝜀0, if 𝜀 < 𝜀0, the output of Sever satisfies the following:

(i) If 𝑓 is convex, the algorithm finds a 𝑤 ∈ ℋ such that 𝑓(𝑤)− 𝑓(𝑤*) = 𝑂((𝜎0𝑟+

𝜎1𝑟
2)
√
𝜀+ 𝛾𝑟).

(ii) If 𝑓 is 𝜉-strongly convex, the algorithm finds a 𝑤 ∈ ℋ such that

𝑓(𝑤)− 𝑓(𝑤*) = 𝑂

(︂
𝜀

𝜉
(𝜎0 + 𝜎1𝑟)

2 +
𝛾2

𝜉

)︂
.

In the strongly convex case and when 𝜎1 > 0, we can remove the dependence on

𝜎1 and 𝑟 in the above by repeatedly applying Sever with decreasing 𝑟:

Corollary 7.3.4. For functions 𝑓1, . . . , 𝑓𝑛 : ℋ → R, suppose that Assumption 7.3.1

holds, that ℋ is convex and that 𝑓 is 𝜉-strongly convex for 𝜉 ≥ 𝐶𝜎1
√
𝜀 for some

absolute constant 𝐶. Then, with probability at least 9/10, for some universal constant

𝜀0, if 𝜀 < 𝜀0, we can find a ̂︀𝑤 with

𝑓( ̂︀𝑤)− 𝑓(𝑤*) = 𝑂

(︂
𝜀𝜎2

0 + 𝛾2

𝜉

)︂
.

and

‖ ̂︀𝑤 − 𝑤*‖2 = 𝑂

(︂√
𝜀𝜎0 + 𝛾

𝜉

)︂

using at most 𝑂(log(𝑟𝜉/(𝛾 + 𝜎0
√
𝜀))) calls to Sever.

To concretely use Theorem 7.3.2, Corollary 7.3.3, and Corollary 7.3.4, in Sec-

tion 7.3.4 we show that the Assumption 7.3.1 is satisfied with high probability under

mild conditions on the distribution over the functions, after drawing polynomially

many samples:

Proposition 7.3.5. Let ℋ ⊂ R𝑑 be a closed bounded set with diameter at most 𝑟.

Let 𝑝* be a distribution over functions 𝑓 : ℋ → R with 𝑓 = E𝑓∼𝑝* [𝑓 ] so that 𝑓 − 𝑓

is 𝐿-Lipschitz and 𝛽-smooth almost surely. Assume furthermore that for each 𝑤 ∈ ℋ

282



and unit vector 𝑣 that E𝑓∼𝑝* [(𝑣 · (∇𝑓(𝑤)− 𝑓(𝑤)))2] ≤ 𝜎2/2. Then for

𝑛 = Ω

(︂
𝑑𝐿2 log(𝑟𝛽𝐿/𝜎2𝜀)

𝜎2𝜀

)︂
,

an 𝜀-corrupted set of points 𝑓1, . . . , 𝑓𝑛 with high probability satisfy Assumption 7.3.1.

The remaining subsections are dedicated to the proofs of Theorem 7.3.2, Corol-

lary 7.3.3, Corollary 7.3.4, and Proposition 7.3.5.

7.3.1 Proof of Theorem 7.3.2

Throughout this proof we let 𝑆good be as in Assumption 7.3.1. We require the following

two lemmata. Roughly speaking, the first states that on average, we remove more

corrupted points than uncorrupted points, and the second states that at termination,

and if we have not removed too many points, then we have reached a point at which

the empirical gradient is close to the true gradient. Formally:

Lemma 7.3.6. If the samples satisfy (7.1) of Assumption 7.3.1, and if |𝑆| ≥ 2𝑛/3

then if 𝑆 ′ is the output of Line 9, we have that

E[|𝑆good ∩ (𝑆∖𝑆 ′)|] ≤ E[|([𝑛]∖𝑆good) ∩ (𝑆∖𝑆 ′)|].

Lemma 7.3.7. If the samples satisfy Assumption 7.3.1, Filter(𝑆, 𝜏, 𝜎) = 𝑆, and

𝑛− |𝑆| ≤ 11𝜀𝑛, then ⃦⃦⃦⃦
⃦∇𝑓(𝑤)− 1

|𝑆good|
∑︁
𝑖∈𝑆

∇𝑓𝑖(𝑤)

⃦⃦⃦⃦
⃦
2

≤ 𝑂(𝜎
√
𝜀)

Before we prove these lemmata, we show how together they imply Theorem 7.3.2.

Proof of Theorem 7.3.2 assuming Lemma 7.3.6 and Lemma 7.3.7. First, we

note that the algorithm must terminate in at most 𝑛 iterations. This is easy to see

as each iteration of the main loop except for the last must decrease the size of 𝑆 by

at least 1.
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It thus suffices to prove correctness. Note that Lemma 7.3.6 says that each it-

eration will on average throw out as many elements not in 𝑆good from 𝑆 as ele-

ments in 𝑆good. In particular, this means that |([𝑛]∖𝑆good) ∩ 𝑆| + |𝑆good∖𝑆| is a su-

permartingale. Since its initial size is at most 𝜀𝑛, with probability at least 9/10,

it never exceeds 10𝜀𝑛, and therefore at the end of the algorithm, we must have

that 𝑛 − |𝑆| ≤ 𝜀𝑛 + |𝑆good∖𝑆| ≤ 11𝜀𝑛. This will allow us to apply Lemma 7.3.7

to complete the proof, using the fact that 𝑤 is a 𝛾-approximate critical point of
1

|𝑆good|
∑︀

𝑖∈𝑆∇𝑓𝑖(𝑤).

Thus it suffices to prove these two lemmata. We first prove Lemma 7.3.6:

Proof of Lemma 7.3.6. Let 𝑆good = 𝑆∩𝑆good and 𝑆bad = 𝑆∖𝑆good. We wish to show

that the expected number of elements thrown out of 𝑆bad is at least the expected num-

ber thrown out of 𝑆good. We note that our result holds trivially if Filter(𝑆, 𝜏, 𝜎) = 𝑆.

Thus, we can assume that E𝑖∈𝑆[𝜏𝑖] ≥ 12𝜎.

It is easy to see that the expected number of elements thrown out of 𝑆bad is

proportional to
∑︀

𝑖∈𝑆bad
𝜏𝑖, while the number removed from 𝑆good is proportional to∑︀

𝑖∈𝑆good
𝜏𝑖 (with the same proportionality). Hence, it suffices to show that

∑︀
𝑖∈𝑆bad

𝜏𝑖 ≥∑︀
𝑖∈𝑆good

𝜏𝑖.

We first note that since Cov𝑖∈𝑆good
[∇𝑓𝑖(𝑤)] ⪯ 𝜎2𝐼, we have that

Cov
𝑖∈𝑆good

[𝑣 · ∇𝑓𝑖(𝑤)]
(𝑎)

≤ 3

2
Cov

𝑖∈𝑆good

[𝑣 · ∇𝑓𝑖(𝑤)]

=
3

2
· 𝑣⊤ Cov

𝑖∈𝑆good

[∇𝑓𝑖(𝑤)]𝑣 ≤ 2𝜎2 ,

where (a) follows since |𝑆good| ≥ 3
2
𝑆good.

Let 𝜇good = E𝑖∈𝑆good
[𝑣 · ∇𝑓𝑖(𝑤)] and 𝜇 = E𝑖∈𝑆[𝑣 · ∇𝑓𝑖(𝑤)]. Note that

E
𝑖∈𝑆good

[𝜏𝑖] = Cov
𝑖∈𝑆good

[𝑣 · ∇𝑓𝑖(𝑤)] + (𝜇− 𝜇good)
2 ≤ 2𝜎 + (𝜇− 𝜇good)

2 .

We now split into two cases.

Firstly, if (𝜇 − 𝜇good)
2 ≥ 4𝜎2, we let 𝜇bad = E𝑖∈𝑆bad

[𝑣 · ∇𝑓𝑖(𝑤)], and note that

284



|𝜇− 𝜇bad||𝑆bad| = |𝜇− 𝜇good||𝑆good|. We then have that

E
𝑖∈𝑆bad

[𝜏𝑖] ≥ (𝜇− 𝜇bad)
2

≥ (𝜇− 𝜇good)
2

(︂
|𝑆good|
|𝑆bad|

)︂2

≥ 2

(︂
|𝑆good|
|𝑆bad|

)︂
(𝜇− 𝜇good)

2

≥
(︂
|𝑆good|
|𝑆bad|

)︂
E

𝑖∈𝑆good

[𝜏𝑖].

Hence,
∑︀

𝑖∈𝑆bad
𝜏𝑖 ≥

∑︀
𝑖∈𝑆good

𝜏𝑖.

On the other hand, if (𝜇 − 𝜇good)
2 ≤ 4𝜎2, then E𝑖∈𝑆good

[𝜏𝑖] ≤ 6𝜎2 ≤ E𝑖∈𝑆[𝜏𝑖]/2.

Therefore
∑︀

𝑖∈𝑆bad
𝜏𝑖 ≥

∑︀
𝑖∈𝑆good

𝜏𝑖 once again. This completes our proof.

We now prove Lemma 7.3.7.

Proof of Lemma 7.3.7. We need to show that

𝛿 :=

⃦⃦⃦⃦
⃦∑︁

𝑖∈𝑆

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦
2

= 𝑂(𝑛𝜎
√
𝜀).

We note that⃦⃦⃦⃦
⃦∑︁

𝑖∈𝑆

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦
2

≤

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈𝑆good

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦⃦
2

+

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈(𝑆good∖𝑆)

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦⃦
2

+

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈(𝑆∖𝑆good)

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦⃦
2

=

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈(𝑆good∖𝑆)

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦⃦
2

+

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈(𝑆∖𝑆good)

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦⃦
2

+𝑂(𝑛
√
𝜎2𝜀).

First we analyze ⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈(𝑆good∖𝑆)

(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))

⃦⃦⃦⃦
⃦⃦
2

.
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This is the supremum over unit vectors 𝑣 of

∑︁
𝑖∈(𝑆good∖𝑆)

𝑣 · (∇𝑓𝑖(𝑤)−∇𝑓(𝑤)).

However, we note that

∑︁
𝑖∈𝑆good

(𝑣 · (∇𝑓𝑖(𝑤)−∇𝑓(𝑤)))2 = 𝑂(𝑛𝜎2).

Since |𝑆good∖𝑆| = 𝑂(𝑛𝜀), we have by Cauchy-Schwarz that

∑︁
𝑖∈(𝑆good∖𝑆)

𝑣 · (∇𝑓𝑖(𝑤)−∇𝑓(𝑤)) = 𝑂(
√︀

(𝑛𝜎2)(𝑛𝜀)) = 𝑂(𝑛
√
𝜎2𝜀),

as desired.

We note that since for any such 𝑣 that

∑︁
𝑖∈𝑆

(𝑣 · (∇𝑓𝑖(𝑤)−∇𝑓(𝑤)))2 =
∑︁
𝑖∈𝑆

(𝑣 · (∇𝑓𝑖(𝑤)−∇𝑓(𝑤)))2 + 𝛿2 = 𝑂(𝑛𝜎2) + 𝛿2

(or otherwise our filter would have removed elements) and since |𝑆∖𝑆good| = 𝑂(𝑛𝜀),

and so we have similarly that⃦⃦⃦⃦
⃦⃦ ∑︁
𝑖∈(𝑆∖𝑆good)

∇𝑓𝑖(𝑤)−∇𝑓(𝑤)

⃦⃦⃦⃦
⃦⃦
2

= 𝑂(𝑛𝜎
√
𝜀+ 𝛿

√
𝑛𝜀).

Combining with the above we have that

𝛿 = 𝑂(𝜎
√
𝜀+ 𝛿

√︀
𝜀/𝑛),

and therefore, 𝛿 = 𝑂(𝜎
√
𝜀) as desired.
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7.3.2 Proof of Corollary 7.3.3

In this section, we show that the Sever algorithm finds an approximate global opti-

mum for convex optimization in various settings, under Assumption 7.3.1. We do so

by simply applying the guarantees of Theorem 7.3.2 in a fairly black box manner.

Before we proceed with the proof of Corollary 7.3.3, we record a simple lemma

that allows us to translate an approximate critical point guarantee to an approximate

global optimum guarantee:

Lemma 7.3.8. Let 𝑓 : ℋ → R be a convex function and let 𝑥 ̸= 𝑦 ∈ ℋ. Let

𝑣 = 𝑦−𝑥/‖𝑦−𝑥‖2 be the unit vector in the direction of 𝑦−𝑥. Suppose that for some

𝛿 that 𝑣 · (∇𝑓(𝑥)) ≥ −𝛿 and −𝑣 · (∇𝑓(𝑦)) ≥ −𝛿 . Then we have that:

1. |𝑓(𝑥)− 𝑓(𝑦)| ≤ ‖𝑥− 𝑦‖2𝛿.

2. If 𝑓 is 𝜉-strongly convex, then |𝑓(𝑥)− 𝑓(𝑦)| ≤ 2𝛿2/𝜉 and ‖𝑥− 𝑦‖2 ≤ 2𝛿/𝜉.

Proof. Let 𝑟 = ‖𝑥− 𝑦‖2 > 0 and 𝑔(𝑡) = 𝑓(𝑥+ 𝑡𝑣). We have that 𝑔(0) = 𝑓(𝑥), 𝑔(𝑟) =

𝑓(𝑦) and that 𝑔 is convex (or 𝜉-strongly convex) with 𝑔′(0) ≥ −𝛿 and 𝑔′(𝑟) ≤ 𝛿. By

convexity, the derivative of 𝑔 is increasing on [0, 𝑟] and therefore |𝑔′(𝑡)| ≤ 𝛿 for all

𝑡 ∈ [0, 𝑟]. This implies that

|𝑓(𝑥)− 𝑓(𝑦)| = |𝑔(𝑟)− 𝑔(0)| =
⃒⃒⃒⃒∫︁ 𝑟

0

𝑔′(𝑡)𝑑𝑡

⃒⃒⃒⃒
≤ 𝑟𝛿 .

To show the second part of the lemma, we note that if 𝑔 is 𝜉-strongly convex that

𝑔′′(𝑡) ≥ 𝜉 for all 𝑡. This implies that 𝑔′(𝑟) > 𝑔′(0) + 𝜉𝑟. Since 𝑔′(𝑟) − 𝑔′(0) ≤ 2𝛿, we

obtain that 𝑟 ≤ 2𝛿/𝜉, from which the second statement follows.

Proof of Corollary 7.3.3. By applying the algorithm of Theorem 7.3.2, we can find

a point 𝑤 that is a 𝛾′ =: (𝛾 + 𝑂(𝜎
√
𝜀))-approximate critical point of 𝑓 , where 𝜎 =:

𝜎0 + 𝜎1‖𝑤* − 𝑤‖2. That is, for any unit vector 𝑣 pointing towards the interior of ℋ,

we have that 𝑣 · ∇𝑓(𝑤) ≥ −𝛾′.

To prove (i), we apply Lemma 7.3.8 to 𝑓 at 𝑤 which gives that

|𝑓(𝑤)− 𝑓(𝑤*)| ≤ 𝑟 · 𝛾′.
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To prove (ii), we apply Lemma 7.3.8 to 𝑓 at 𝑤 which gives that

|𝑓(𝑤)− 𝑓(𝑤*)| ≤ 2𝛾′
2
/𝜉.

Plugging in parameters appropriately then immediately gives the desired bound.

7.3.3 Proof of Corollary 7.3.4

We apply Sever iteratively starting with a domain ℋ1 = ℋ and radius 𝑟1 = 𝑟. After

each iteration, we know the resulting point is close to 𝑤* will be able to reduce the

search radius.

At step 𝑖, we have a domain of radius 𝑟𝑖. As in the proof of Corollary 7.3.3

above, we apply algorithm of Theorem 7.3.2, we can find a point 𝑤𝑖 that is a 𝛾′𝑖 =:

(𝛾 + 𝑂(𝜎′
𝑖

√
𝜀))-approximate critical point of 𝑓 , where 𝜎′

𝑖 =: 𝜎0 + 𝜎1𝑟𝑖. Then using

Lemma 7.3.8, we obtain that ‖𝑤𝑖 − 𝑤*‖2 ≤ 2𝛾′𝑖/𝜉.

Now we can defineℋ𝑖+1 as the intersection ofℋ and the ball of radius 𝑟𝑖+1 = 2𝛾′𝑖/𝜉

around 𝑤𝑖 and repeat using this domain. We have that 𝑟𝑖+1 = 2𝛾′𝑖/𝜉 = 2𝛾/𝜉 +

𝑂(𝜎0
√
𝜀/𝜉 + 𝜎1

√
𝜀𝑟𝑖/𝜉). Now if we choose the constant 𝐶 such that the constant in

this 𝑂() is 𝐶/4, then using our assumption that 𝜉 ≥ 2𝜎1
√
𝜀, we obtain that

𝑟𝑖+1 ≤ 2𝛾/𝜉 + 𝐶𝜎0
√
𝜀/4𝜉 + 𝐶𝜎1

√
𝜀𝑟𝑖/4𝜉 ≤ 2𝛾/𝜉 + 𝐶𝜎0

√
𝜀/4 + 𝑟𝑖/4

Now if 𝑟𝑖 ≥ 8𝛾/𝜉+2𝐶𝜎0
√
𝜀/𝜉, then we have 𝑟𝑖+1 ≤ 𝑟𝑖/2 and if 𝑟𝑖 ≤ 8𝛾/𝜉+2𝐶𝜎0

√
𝜀/𝜉

then we also have 𝑟𝑖+1 ≤ 8𝛾/𝜉 + 2𝐶𝜎0
√
𝜀/𝜉 . When 𝑟𝑖 is smaller than this we

stop and output 𝑤𝑖. Thus we stop in at most 𝑂(log(𝑟) − log(8𝛾/𝜉 + 2𝐶𝜎0
√
𝜀/𝜉)) =

𝑂(log(𝑟𝜉/(𝛾 + 𝜎0
√
𝜀)) iterations and have 𝑟𝑖 = 𝑂(𝛾/𝜉 + 𝐶𝜎0

√
𝜀). But then 𝛾′𝑖 =

𝛾+𝑂(𝜎′
𝑖

√
𝜀)) ≤ 𝛾+𝐶(𝜎0+𝜎1𝑟

′
𝑖)
√
𝜀/8 = 𝑂(𝛾+𝜎0

√
𝜀). Using Lemma 7.3.8 we obtain

that

|𝑓(𝑤𝑖)− 𝑓(𝑤*)| ≤ 2𝛾′2𝑖 /𝜉 = 𝑂(𝛾2/𝜉 + 𝜎2
0𝜀/𝜉).

as required. The bound on ‖ ̂︀𝑤 − 𝑤*‖2 follows similarly.

Remark 7.3.1. While we don’t give explicit bounds on the number of calls to the ap-
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proximate learner needed by Sever, such bounds can be straightforwardly obtained

under appropriate assumptions on the 𝑓𝑖 (see, e.g., the following subsection). Two

remarks are in order. First, in this case we cannot take advantage of assumptions

that only hold at 𝑓 but might not on the corrupted average 𝑓 . Second, our algorithm

can take advantage of a closed form for the minimum. For example, for the case of

linear regression, 𝑓𝑖 is not Lipschitz with a small constant if 𝑥𝑖 is far from the mean,

but there is a simple closed form for the minimum of the least squares loss.

7.3.4 Proof of Proposition 7.3.5

We let 𝑆good be the set of uncorrupted functions 𝑓𝑖. It is then the case that |𝑆good| ≥

(1− 𝜀)𝑛. We need to show that for each 𝑤 ∈ ℋ that

Cov
𝑖∈𝑆good

[∇𝑓𝑖(𝑤)] ≤ 3𝜎2𝐼/4 (7.3)

and ⃦⃦⃦⃦
⃦⃦∇𝑓(𝑤)− 1

|𝑆good|
∑︁

𝑖∈𝑆good

∇𝑓𝑖(𝑤)

⃦⃦⃦⃦
⃦⃦
2

≤ 𝑂(𝜎2
√
𝜀). (7.4)

We will proceed by a cover argument. First we claim that for each 𝑤 ∈ ℋ that (7.3)

and (7.4) hold with high probability. For Equation (7.3), it suffices to show that for

each unit vector 𝑣 in a cover 𝒩 of size 2𝑂(𝑑) of the sphere that

E
𝑖∈𝑆good

[(𝑣 · (∇𝑓𝑖(𝑤)− 𝑓))2] ≤ 2𝜎2/3. (7.5)

However, we note that

E
𝑝*
[(𝑣 · (∇𝑓(𝑤)− 𝑓))2] ≤ 𝜎2/2.

Since |𝑣 · (∇𝑓(𝑤) − 𝑓)| is always bounded by 𝐿, Equation (7.5) holds for each 𝑣, 𝑤

with probability at least 1− exp(−Ω(𝑛𝜎2/𝐿2)) by a Chernoff bound (noting that the

removal of an 𝜀-fraction of points cannot increase this by much). Similarly, to show
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Equation 7.4, it suffices to show that for each such 𝑣 that

E
𝑖∈𝑆good

[(𝑣 · (∇𝑓𝑖(𝑤)− 𝑓))] ≤ 𝑂(𝜎
√
𝜀). (7.6)

Noting that

E
𝑝*
[(𝑣 · (∇𝑓(𝑤)− 𝑓))] = 0

A Chernoff bound implies that with probability 1− exp(−Ω(𝑛𝜎2𝜀/𝐿2)) that the av-

erage over our original set of 𝑓 ’s of (𝑣 · (∇𝑓(𝑤) − 𝑓)) is 𝑂(𝜎
√
𝜀). Assuming that

Equation (7.5) holds, removing an 𝜀-fraction of these 𝑓 ’s cannot change this value by

more than 𝑂(𝜎
√
𝜀). By union bounding over 𝒩 and standard net arguments, this

implies that Equations (7.3) and (7.4) hold with probability 1− exp(Ω(𝑑−𝑛𝜎2𝜀/𝐿2))

for any given 𝑤.

To show that our conditions hold for all 𝑤 ∈ ℋ, we note that by 𝛽-smoothness, if

Equation (7.4) holds for some 𝑤, it holds for all other 𝑤′ in a ball of radius
√
𝜎2𝜀/𝛽

(up to a constant multiplicative loss). Similarly, if Equation (7.3) holds at some

𝑤, it holds with bound 𝜎2𝐼 for all 𝑤′ in a ball of radius 𝜎2/(2𝐿𝛽). Therefore, if

Equations (7.3) and (7.4) hold for all 𝑤 in a min(
√
𝜎2𝜀/𝛽, 𝜎/(2𝐿𝛽))-cover of ℋ, the

assumptions of Theorem 7.3.2 will hold everywhere. Since we have such covers of size

exp(𝑂(𝑑 log(𝑟𝛽𝐿/(𝜎2𝜀)))), by a union bound, this holds with high probability if

𝑛 = Ω

(︂
𝑑𝐿2 log(𝑟𝛽𝐿/𝜎2𝜀)

𝜎2𝜀

)︂
,

as claimed.

7.4 Analysis of Sever for GLMs

A case of particular interest is that of Generalized Linear Models (GLMs):

Definition 7.4.1. Let ℋ ⊆ R𝑑 and 𝒴 be an arbitrary set. Let 𝐷𝑥𝑦 be a distribution

over ℋ× 𝒴 . For each 𝑌 ∈ 𝒴 , let 𝜎𝑌 : R→ R be a convex function. The generalized

linear model (GLM) over ℋ × 𝒴 with distribution 𝐷𝑥𝑦 and link functions 𝜎𝑌 is the
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function 𝑓 : R𝑑 → R defined by 𝑓(𝑤) = E𝑋,𝑌 [𝑓𝑋,𝑌 (𝑤)], where

𝑓𝑋,𝑌 (𝑤) := 𝜎𝑌 (𝑤 ·𝑋) .

A sample from this GLM is given by 𝑓𝑋,𝑌 (𝑤) where (𝑋, 𝑌 ) ∼ 𝐷𝑥𝑦.

Our goal, as usual, is to approximately minimize 𝑓 given 𝜀-corrupted samples from

𝐷𝑥𝑦. Throughout this section we assume that ℋ is contained in the ball of radius

𝑟 around 0, i.e. ℋ ⊆ 𝐵(0, 𝑟). Moreover, we will let 𝑤* = argmin𝑤∈ℋ 𝑓(𝑤) be a

minimizer of 𝑓 in ℋ.

This case covers a number of interesting applications, including SVMs and logistic

regression. Unfortunately, the tools developed in Section 7.3 do not seem to be able

to cover this case in a simple manner. In particular, it is unclear how to demonstrate

that Assumption 7.3.1 holds after taking polynomially many samples from a GLM.

To rectify this, in this section, we demonstrate a different deterministic regularity

condition under which we show Sever succeeds, and we show that this condition

holds after polynomially many samples from a GLM. Specifically, we will show that

Sever succeeds under the following deterministic condition:

Assumption 7.4.1. Fix 0 < 𝜀 < 1/2. There exists an unknown set 𝑆good ⊆ [𝑛] with

|𝑆good| ≥ (1 − 𝜀)𝑛 of “good” functions {𝑓𝑖}𝑖∈𝑆good
and parameters 𝜎0, 𝜎2 ∈ R+ such

that such that the following conditions simultanously hold:

∙ Equation (7.1) holds with 𝜎1 = 0 and the same 𝜎0, and

∙ The following equations hold:

‖∇𝑓(𝑤*)−∇𝑓(𝑤*)‖2 ≤ 𝜎0
√
𝜀 , and (7.7)

|𝑓(𝑤)− 𝑓(𝑤)| ≤ 𝜎2
√
𝜀, for all 𝑤 ∈ ℋ , (7.8)

where 𝑓 =: 1
|𝑆good|

∑︀
𝑖∈𝑆good

𝑓𝑖.

In this section, we will show the following two statements. The first demonstrates
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that Assumption 7.4.1 implies that Sever succeeds, and the second shows that As-

sumption 7.4.1 holds after polynomially many samples from a GLM. Formally:

Theorem 7.4.2. For functions 𝑓1, . . . , 𝑓𝑛 : ℋ → R, suppose that Assumption 7.4.1

holds and that ℋ is convex. Then, for some universal constant 𝜀0, if 𝜀 < 𝜀0, there is

an algorithm which, with probability at least 9/10, finds a 𝑤 ∈ ℋ such that

𝑓(𝑤)− 𝑓(𝑤*) = 𝑟(𝛾 +𝑂(𝜎0
√
𝜀)) +𝑂(𝜎2

√
𝜀) .

If the link functions are 𝜉-strongly convex, the algorithm finds a 𝑤 ∈ ℋ such that

𝑓(𝑤)− 𝑓(𝑤*) = 2
(𝛾 +𝑂(𝜎0

√
𝜀))2

𝜉
+𝑂(𝜎2

√
𝜀) .

Proposition 7.4.3. Let ℋ ⊆ R𝑑 and let 𝒴 be an arbitrary set. Let 𝑓1, . . . , 𝑓𝑛 be

obtained by picking 𝑓𝑖 i.i.d. at random from a GLM 𝑓 over ℋ × 𝒴 with distribution

𝐷𝑥𝑦 and link functions 𝜎𝑌 , where

𝑛 = Ω

(︂
𝑑 log(𝑑𝑟/𝜀)

𝜀

)︂
.

Suppose moreover that the following conditions all hold:

1. 𝐸𝑋∼𝐷𝑥𝑦 [𝑋𝑋
𝑇 ] ⪯ 𝐼,

2. |𝜎′
𝑌 (𝑡)| ≤ 1 for all 𝑌 ∈ 𝒴 and 𝑡 ∈ R, and

3. |𝜎𝑌 (0)| ≤ 1 for all 𝑌 ∈ 𝒴.

Then with probability at least 9/10 over the original set of samples, there is a set

of (1 − 𝜀)𝑛 of the 𝑓𝑖 that satisfy Assumption 7.4.1 on ℋ with 𝜎0 = 2, 𝜎1 = 0 and

𝜎2 = 1 + 𝑟.and 𝜎2 = 1 + 𝑟.

7.4.1 Proof of Theorem 7.4.2

As before, since Sever either terminates or throws away at least one sample, clearly

it cannot run for more than 𝑛 iterations. Thus the runtime bound is simple, and it
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suffices to show correctness.

We first prove the following lemma:

Lemma 7.4.4. Let 𝑓1, . . . , 𝑓𝑛 satisfy Assumption 7.4.1. Then with probability at least

9/10, Sever applied to 𝑓1, . . . , 𝑓𝑛, 𝜎0 returns a point 𝑤 ∈ ℋ which is a (𝛾+𝑂(𝜎0
√
𝜀))-

approximate critical point of 𝑓 .

Proof. We claim that the empirical distribution over 𝑓1, . . . , 𝑓𝑛 satisfies Assump-

tion 7.3.1 for the function 𝑓 with 𝜎0 as stated and 𝜎1 = 0, with the 𝑆good in As-

sumption 7.3.1 being the same as in the definition of Assumption 7.4.1. Clearly these

functions satisfy (7.2) (since the LHS is zero), so it suffices to show that they satisfy

(7.1) Indeed, we have that for all 𝑤 ∈ ℋ,

E
𝑆good

[(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))⊤] ⪯ E
𝑆good

[(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))(∇𝑓𝑖(𝑤)−∇𝑓(𝑤))⊤] ,

so they satisfy (7.1), since the RHS is bounded by Assumption 7.4.1. Thus this lemma

follows from an application of Theorem 7.3.2.

With this critical lemma in place, we can now prove Theorem 7.4.2:

Proof of Theorem 7.4.2. Condition on the event that Lemma 7.4.4 holds, and let

𝑤 ∈ ℋ be the output of Sever. By Assumption 7.4.1, we know that 𝑓(𝑤*) ≥

𝑓(𝑤*)− 𝜎2
√
𝜀, and moreover, 𝑤* is a 𝛾 + 𝜎0

√
𝜀-approximate critical point of 𝑓 .

Since each link function is convex, so is 𝑓 . Hence, by Lemma 7.3.8, since 𝑤 is

a (𝛾 + 𝑂(𝜎0
√
𝜀))-approximate critical point of 𝑓 , we have 𝑓(𝑤) − 𝑓(𝑤*) ≤ 𝑟(𝛾 +

𝑂(𝜎0
√
𝜀)). By Assumption 7.3.1, this immediately implies that 𝑓(𝑤) − 𝑓(𝑤*) ≤

𝑟(𝛾 +𝑂(𝜎0
√
𝜀)) +𝑂(𝜎2

√
𝜀), as claimed.

The bound for strongly convex functions follows from the exact argument, except

using the statement in Lemma 7.3.8 pertaining to strongly convex functions.
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7.4.2 Proof of Proposition 7.4.3

Proof. We first note that ∇𝑓𝑋,𝑌 (𝑤) = 𝑋𝜎′
𝑌 (𝑤 · 𝑋). Thus, under Assumption 7.4.1,

we have for any 𝑣 that

E
𝑖
[(𝑣 · (∇𝑓𝑖(𝑤)−∇𝑓(𝑤)))2]≪ E

𝑖
[(𝑣 · ∇𝑓𝑖(𝑤))2] + 1≪ E

𝑖
[(𝑣 ·𝑋𝑖)

2] + 1 .

In particular, since this last expression is independent of 𝑤, we only need to check

this single matrix bound.

We let our good set be the set of samples with |𝑋| ≤ 80
√︀
𝑑/𝜀 that were not

corrupted. By Lemma 5.5.2, we know that that with 90% probability, the non-good

samples make up at most an 𝜀/2 + 𝜀/160-fraction of the original samples, and that

E[𝑋𝑋𝑇 ] over the good samples is at most 2𝐼. This proves that the spectral bound

holds everywhere. Applying it to the ∇𝑓𝑋,𝑌 (𝑤
*), we find also with 90% probability

that the expectation over all samples of ∇𝑓𝑋,𝑌 (𝑤
*) is within

√
𝜀/3 of ∇𝑓(𝑤*). Addi-

tionally, throwing away the samples with |∇𝑓𝑋,𝑌 (𝑤
*)−∇𝑓(𝑤*)| > 80

√︀
𝑑/𝜀 changes

this by at most
√
𝜀/2. Finally, it also implies that the variance of ∇𝑓𝑋,𝑌 (𝑤

*) is at

most 3/2𝐼, and therefore, throwing away any other 𝜀-fraction of the samples changes

it by at most an additional
√︀

3𝜀/2.

We only need to show that |E𝑖 good[𝑓𝑖(𝑤)]− E𝑋 [𝑓𝑋(𝑤)]| ≤
√
𝜀 for all 𝑤 ∈ ℋ.

For this we note that since the 𝑓𝑋 and 𝑓𝑖 are all 1-Lipschitz, it suffices to show that

|E𝑖 good[𝑓𝑖(𝑤)]− E𝑋 [𝑓𝑋(𝑤)]| ≤ (1+ |𝑤|)
√
𝜀/2 on an 𝜀/2-cover of ℋ. For this it suffices

to show that the bound will hold pointwise except with probability exp(−Ω(𝑑 log(𝑟/𝜀))).

We will want to bound this using pointwise concentration and union bounds, but this

runs into technical problems since very large values of 𝑋 ·𝑤 can lead to large values of

𝑓 , so we will need to make use of the condition above that the average of 𝑋𝑖𝑋
𝑇
𝑖 over

our good samples is bounded by 2𝐼. In particular, this implies that the contribution to

the average of 𝑓𝑖(𝑤) over the good 𝑖 coming from samples where |𝑋𝑖 ·𝑤| ≥ 10|𝑤|/
√
𝜀

is at most
√
𝜀(1 + |𝑤|)/10. We consider the average of 𝑓𝑖(𝑤) over the remaining

𝑖. Note that these values are uniform random samples from 𝑓𝑋(𝑤) conditioned on

|𝑋| ≤ 80
√︀
𝑑/𝜀 and |𝑋𝑖 ·𝑤| < 10|𝑤|/

√
𝜀. It will suffices to show that taking 𝑛 samples
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from this distribution has average within (1 + |𝑤|)
√
𝜀/2 of the mean with high prob-

ability. However, since |𝑓𝑋(𝑤)| ≤ 𝑂(1 + |𝑋 · 𝑤|), we have that over this distribution

|𝑓𝑋(𝑤)| is always 𝑂(1 + |𝑤|)/
√
𝜀, and has variance at most 𝑂(1 + |𝑤|)2. Therefore,

by Bernstein’s Inequality, the probability that 𝑛 random samples from 𝑓𝑋(𝑤) (with

the above conditions on 𝑋) differ from their mean by more than (1 + |𝑤|)
√
𝜀/2 is

exp(−Ω(𝑛2(1 + |𝑤|)2𝜀/((1 + |𝑤|)2 + 𝑛(1 + |𝑤|)2))) = exp(−Ω(𝑛𝜀)).

Thus, for 𝑛 at least a sufficiently large multiple of 𝑑 log(𝑑𝑟/𝜀)/𝜀, this holds for all 𝑤

in our cover of ℋ with high probability. This completes the proof.

7.5 Experiments

In this section we apply Sever to regression and classification problems. As our

base learners, we used ridge regression and an SVM, respectively. We implemented

the latter as a quadratic program, using Gurobi [Gur16] as a backend solver and

YALMIP [Löf04] as the modeling language.

In both cases, we ran the base learner and then extracted gradients for each data

point at the learned parameters. We then centered the gradients and ran MATLAB’s

svds method to compute the top singular vector 𝑣, and removed the top 𝑝 fraction of

points 𝑖 with the largest outlier score 𝜏𝑖, computed as the squared magnitude of the

projection onto 𝑣 (see Algorithm 31). We repeated this for 𝑟 iterations in total. For

classification, we centered the gradients separately (and removed points separately)

for each class, which improved performance.

We compared our method to five baseline methods. These all have the same high-

level form as Sever (run the base learner then filter top 𝑝 fraction of points with the

largest score), but use a different definition of the score 𝜏𝑖 for deciding which points

to filter:

∙ noDefense: no points are removed.

∙ l2: remove points where the covariate 𝑥 has large ℓ2 distance from the mean.
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∙ loss: remove points with large loss (measured at the parameters output by the

base learner).

∙ gradient: remove points with large gradient (in ℓ2-norm).

∙ gradientCentered: remove points whose gradients are far from the mean gra-

dient in ℓ2-norm.

Note that gradientCentered is similar to our method, except that it removes large

gradients in terms of ℓ2-norm, rather than in terms of projection onto the top singular

vector. As before, for classification we compute these metrics separately for each class.

Both ridge regression and SVM have a single hyperparameter (the regularization

coefficient). We optimized this based on the uncorrupted data and then kept it fixed

throughout our experiments. In addition, since the data do not already have outliers,

we added varying amounts of outliers (ranging from 0.5% to 10% of the clean data);

this process is described in more detail below.

For the sake of the readability of the graphs, in the figures below, we only present

a small set of representative baselines. For additional plots, we refer the reader to

Appendix G.

7.5.1 Ridge regression

For ridge regression, we tested our method on a synthetic Gaussian dataset as well as

a drug discovery dataset. The synthetic dataset consists of observations (𝑥𝑖, 𝑦𝑖) where

𝑥𝑖 ∈ R500 has independent standard Gaussian entries, and 𝑦𝑖 = ⟨𝑥𝑖, 𝑤*⟩+0.1𝑧𝑖, where

𝑧𝑖 is also Gaussian. We generated 5000 training points and 100 test points. The

drug discovery dataset was obtained from the ChEMBL database and was originally

curated by [OSB+18]; it consists of 4084 data points in 410 dimensions; we split this

into a training set of 3084 points and a test set of 1000 points.

Centering We found that centering the data points decreased error noticeably on

the drug discovery dataset, while scaling each coordinate to have variance 1 decreased
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error by a small amount on the synthetic data. To center in the presence of outliers,

we used the robust mean estimation algorithm from [DKK+17].

Adding outliers. We devised a method of generating outliers that fools all of the

baselines while still inducing high test error. At a high level, the outliers cause ridge

regression to output 𝑤 = 0 (so the model always predicts 𝑦 = 0).

If (𝑋, 𝑦) are the true data points and responses, this can be achieved by setting

each outlier point (𝑋bad, 𝑦bad) as

𝑋bad =
1

𝛼 · 𝑛bad

𝑦⊤𝑋 and 𝑦bad = −𝛽 ,

where 𝑛bad is the number of outliers we add, and 𝛼 and 𝛽 are hyperparameters.

If 𝛼 = 𝛽, one can check that 𝑤 = 0 is the unique minimizer for ridge regression

on the perturbed dataset. By tuning 𝛼 and 𝛽, we can then obtain attacks that fool

all the baselines while damaging the model (we tune 𝛼 and 𝛽 separately to give an

additional degree of freedom to the attack). To increase the error, we also found it

useful to perturb each individual 𝑋bad by a small amount of Gaussian noise.

In our experiments we found that this method generated successful attacks as long

as the fraction of outliers was at least roughly 2% for synthetic data, and roughly 5%

for the drug discovery data.

Results. In Figure 7-2 we compare the test error of our defense against the baselines

as we increase the fraction 𝜀 of added outliers. To avoid cluttering the figure, we only

show the performance of l2, loss, gradientCentered, and Sever; the performance

of the remaining baselines is qualitatively similar to the baselines in Figure 7-2.

For both the baselines and our algorithms, we iterate the defense 𝑟 = 4 times,

each time removing the 𝑝 = 𝜀/2 fraction of points with largest score. For consistency

of results, for each defense and each value of 𝜀 we ran the defense 3 times on fresh

attack points and display the median of the 3 test errors.

When the attack parameters 𝛼 and 𝛽 are tuned to defeat the baselines (Figure 7-2

left and center), our defense substantially outperforms the baselines as soon as we
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Figure 7-2: 𝜀 vs test error for baselines and Sever on synthetic data and the drug
discovery dataset. The left and middle figures show that Sever continues to maintain
statistical accuracy against our attacks which are able to defeat previous baselines.
The right figure shows an attack with parameters chosen to increase the test error
Sever on the drug discovery dataset as much as possible. Despite this, Sever still
has relatively small test error.

Figure 7-3: A representative set of histograms of scores for baselines and Sever on
synthetic data and a drug discovery dataset. From left to right: scores for the l2
defense on the drug discovery dataset, scores for loss on synthetic data, and scores
for Sever on the drug discovery dataset, all with the addition of 10% outliers. The
scores for the true dataset are in blue, and the scores for the outliers are in red. For
the baselines, the scores for the outliers are inside the bulk of the distribution and
thus hard to detect, whereas the scores for the outliers assigned by Sever are clearly
within the tail of the distribution and easily detectable.

cross 𝜀 ≈ 1.5% for synthetic data, and 𝜀 ≈ 5.5% for the drug discovery data. In fact,

most of the baselines do worse than not removing any outliers at all (this is because

they end up mostly removing good data points, which causes the outliers to have a

larger effect). Even when 𝛼 and 𝛽 are instead tuned to defeat Sever, its resulting

error remains small (Figure 7-2 right).

298



To understand why the baselines fail to detect the outliers, in Figure 7-3 we show

a representative sample of the histograms of scores of the uncorrupted points overlaid

with the scores of the outliers, for both synthetic data and the drug discovery dataset

with 𝜀 = 0.1, after one run of the base learner. The scores of the outliers lie well within

the distribution of scores of the uncorrupted points. Thus, it would be impossible for

the baselines to remove them without also removing a large fraction of uncorrupted

points.

Interestingly, for small 𝜀 all of the methods improve upon the uncorrupted test

error for the drug discovery data; this appears to be due to the presence of a small

number of natural outliers in the data that all of the methods successfully remove.

7.5.2 Support vector machines

We next describe our experimental results for SVMs; we tested our method on a

synthetic Gaussian dataset as well as a spam classification task. Similarly to before,

the synthetic data consists of observations (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 ∈ R500 has independent

standard Gaussian entries, and 𝑦𝑖 = sign(⟨𝑥𝑖, 𝑤*⟩ + 0.1𝑧𝑖), where 𝑧𝑖 is also Gaussian

and 𝑤* is the true parameters (drawn at random from the unit sphere). The spam

dataset comes from the Enron corpus [MAP06], and consists of 4137 training points

and 1035 test points in 5116 dimensions.

To generate attacks, we used the data poisoning algorithm presented in [SKL17];

the authors provided us with an improved version of their algorithm that can cir-

cumvent the l2 and loss baselines and partially circumvents the gradient baselines as

well.

In contrast to ridge regression, we did not perform centering and rescaling for

these datasets as it did not seem to have a large effect on results.

In all experiments for this section, each method removed the top 𝑝 = 𝑛−+𝑛+

min{𝑛+,𝑛−} ·
𝜀
𝑟

of highest-scoring points for each of 𝑟 = 2 iterations, where 𝑛+ and 𝑛− are the number

of positive and negative training points respectively. This expression for 𝑝 is chosen

in order to account for class imbalance, which is extreme in the case of the Enron

dataset – if the attacker plants all the outliers in the smaller class, then a smaller
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value of 𝑝 would remove too few points, even with a perfect detection method.

0.00 0.01 0.02 0.03
0.00

0.10

0.20

0.30

Outlier Fraction epsilon

T
es

t
E

rr
or

SVM: Strongest attacks, loss on synthetic data

uncorrupted loss Sever

0.00 0.01 0.02 0.03
0.00

0.05

0.10

0.15

0.20

0.25

Outlier Fraction epsilon
T
es

t
E

rr
or

SVM: Strongest attacks, Sever on synthetic data

Figure 7-4: 𝜀 versus test error for loss baseline and Sever on synthetic data. The
left figure demonstrates that Sever is accurate when outliers manage to defeat loss.
The right figure shows the result of attacks which increased the test error the most
against Sever. Even in this case, Sever performs much better than the baselines.

Synthetic results. We considered fractions of outliers ranging from 𝜀 = 0.005 to

𝜀 = 0.03. By performing a sweep across hyperparameters of the attack, we generated

56 distinct sets of attacks for each value of 𝜀. In Figure 7-4, we show results for the

attack where the loss baselines does the worst, as well as for the attack where our

method does the worst. When attacks are most effective against loss, Sever substan-

tially outperforms it, nearly matching the test accuracy of 5.8% on the uncorrupted

data, while loss performs worse than 30% error at just a 1.5% fraction of injected

outliers. Even when attacks are most effective against Sever, it still outperforms

loss, achieving a test error of at most 9.05%. We note that other baselines behaved

qualitatively similarly to loss, and the results are displayed in Section G.
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Figure 7-5: 𝜀 versus test error for baselines and Sever on the Enron spam corpus.
The left and middle figures are the attacks which perform best against two baselines,
while the right figure performs best against Sever. Though other baselines may
perform well in certain cases, only Sever is consistently accurate. The exception is
for certain attacks at 𝜀 = 0.03, which, as shown in Figure 7-6, require three rounds
of outlier removal for any method to obtain reasonable test error – in these plots, our
defenses perform only two rounds.

Figure 7-6: An illustration of why multiple rounds of filtering are necessary. His-
tograms of scores assigned by Sever in three subsequent iterations of outlier removal.
Inliers are blue, and outliers are red (scaled up by a factor of 10). In early iterations,
a significant fraction of outliers may be “hidden” (i.e. have 0 loss) by being cor-
rectly classified in one iteration. However, once previous outliers are removed, these
points may become incorrectly classified, thus significantly degrading the quality of
our solution but simultaneously becoming evident to Sever.

Spam results. For results on Enron, we used the same values of 𝜀, and considered

96 distinct hyperparameters for the attack. There was not a single attack that si-

multaneously defeated all of the baselines, so in Figure 7-5 we show two attacks that

do well against different sets of baselines, as well as the attack that performs best
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against our method.

At 𝜀 = 0.01, the worst performance of our method against all attacks was 7.34%,

in contrast to 13.43%− 20.48% for the baselines (note that the accuracy is 3% in the

absence of outliers). However, at 𝜀 = 0.03, while we still outperform the baselines,

our error is relatively large—13.53%.

To investigate this further, we looked at all 48 attacks and found that while on

42 out of 48 attacks our error never exceeded 7%, on 6 of the attacks (including

the attack in Figure 7-5) the error was substantially higher. Figure 7-6 shows what

is happening. The leftmost figure displays the scores assigned by Sever after the

first iteration, where red bars indicate outliers. While some outliers are assigned

extremely large scores and thus detected, several outliers are correctly classified and

thus have 0 gradient. However, once we remove the first set of outliers, some outliers

which were previously correctly classified now have large score, as displayed in the

middle figure. Another iteration of this process produces the rightmost figure, where

almost all the remaining outliers have large score and will thus be removed by Sever.

This demonstrates that some outliers may be hidden until other outliers are removed,

necessitating multiple iterations.

Motivated by this, we re-ran our method against the 6 attacks using 𝑟 = 3 itera-

tions instead of 2 (and decreasing 𝑝 as per the expression above). After this change,

all 6 of the attacks had error at most 7.4%.

7.6 Discussion

In this paper we have presented an algorithm, Sever, that has both strong theoretical

robustness properties in the presence of outliers, and performs well on real datasets.

Sever is based on the idea that learning can often be cast as the problem of finding

an approximate stationary point of the loss, which can in turn be cast as a robust

mean estimation problem, allowing us to leverage existing techniques for efficient

robust mean estimation.

There are a number of directions along which Sever could be improved: first, it
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could be extended to handle more general assumptions on the data; second, it could

be strengthened to achieve better error bounds in terms of the fraction of outliers;

finally, one could imagine automatically learning a feature representation in which

Sever performs well. We discuss each of these ideas in detail below.

More general assumptions. The main underlying assumption on which Sever

rests is that the top singular value of the gradients of the data is small. While this

appeared to hold true on the datasets we considered, a common occurence in practice

is for there to be a few large singular values, together with many small singular

values. It would therefore be desirable to design a version of Sever that can take

advantage of such phenomena. In addition, it would be worthwhile to do a more

detailed empirical analysis across a wide variety of datasets investigating properties

that can enable robust estimation (the notion of resilience in [SCV18] could provide

a template for finding such properties).

Stronger robustness to outliers. In theory, Sever has a 𝑂(
√
𝜀) dependence in

error on the fraction 𝜀 of outliers (see Theorem 7.2.1). While without stronger as-

sumptions this is likely not possible to improve, in practice we would prefer to have

a dependence closer to 𝑂(𝜀). Therefore, it would also be useful to improve Sever

to have such an 𝑂(𝜀)-dependence under stronger but realistic assumptions. Unfortu-

nately, all existing algorithms for robust mean estimation that achieve error better

than 𝑂(
√
𝜀) either rely on strong distributional assumptions such as Gaussianity, or

else require expensive computation involving like sum-of-squares optimization. Im-

proving the robustness of Sever thus requires improvements on the robust mean

estimation algorithm that Sever uses as a primitive.

Learning a favorable representation. Finally, we note that Sever performs

best when the features have small covariance and strong predictive power. One situa-

tion in particular where this holds is when there are many approximately independent

features that are predictive of the true signal.

It would be interesting to try to learn a representation with such a property. This
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could be done, for instance, by training a neural network with some cost function that

encourages independent features (some ideas along these general lines are discussed

in [Ben17]). An issue is how to learn such a representation robustly; one idea is learn

a representation on a dataset that is known to be free of outliers, and hope that the

representation is useful on other datasets in the same application domain.

Beyond these specific questions, we view the general investigation of robust meth-

ods (both empirically and theoretically) as an important step as machine learning

moves forwards. Indeed, as machine learning is applied in increasingly many situ-

ations and in increasingly automated ways, it is important to attend to robustness

considerations so that machine learning systems behave reliably and avoid costly er-

rors. While the bulk of recent work has highlighted the vulnerabilities of machine

learning (e.g. [SZS+14, LWSV16, SKL17, EEF+17a, CLL+17a]), we are optimistic

that practical algorithms backed by principled theory can finally patch these vulner-

abilities and lead to truly reliable systems.
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Just like words in the sand, written in the domain of the waves,

I fear that you will soon disappear to a faraway place.

Please know that I will always miss you.

Always.
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Appendix A

Omitted Proofs from Chapter 1

A.1 Omitted Proofs from Section 4.3

A.1.1 Proof of Fact 1.4.3

Proof of Fact 1.4.3. Observe that by rotational and translational invariance, it suf-

fices to consider the problem when 𝜇1 = −𝜀𝑒1/2 and 𝜇2 = 𝜀𝑒1/2, where 𝑒1 is the first

standard basis vector. By the decomposability of TV distance, we have that the TV

distance can in fact be written as a 1 dimensional integral:

𝑑TV (𝒩 (𝜇1, 𝐼),𝒩 (𝜇2, 𝐼)) =
1

2
· 1√

2𝜋

∫︁ ∞

−∞

⃒⃒⃒
𝑒−(𝑥−𝜀/2)2/2 − 𝑒−(𝑥+𝜀/2)2/2

⃒⃒⃒
𝑑𝑥 .

The value of the function 𝑓(𝑥) = 𝑒−(𝑥−𝜀/2)2/2 − 𝑒−(𝑥+𝜀/2)2/2 is negative when 𝑥 < 0

and positive when 𝑥 > 0, hence this integral becomes

𝑑TV (𝒩 (𝜇1, 𝐼),𝒩 (𝜇2, 𝐼)) =
1√
2𝜋

∫︁ ∞

0

𝑒−(𝑥−𝜀/2)2/2 − 𝑒−(𝑥+𝜀/2)2/2𝑑𝑥

= 𝐹 (𝜀/2)− 𝐹 (−𝜀/2) ,

323



where 𝐹 (𝑥) = 1√
2𝜋

∫︀ 𝑥

−∞ 𝑒−𝑡2/2𝑑𝑡 is the CDF of the standard normal Gaussian. By

Taylor’s theorem, and since 𝐹 ′′(𝑥) is bounded when 𝑥 ∈ [−1, 1], we have

𝐹 (𝜀/2)− 𝐹 (−𝜀/2) = 𝐹 ′(−𝜀/2)𝜀+𝑂(𝜀3)

=
1√
2𝜋
𝑒−(𝜀/2)2/2𝜀+𝑂(𝜀3)

=

(︂
1√
2𝜋

+ 𝑜(1)

)︂
𝜀 ,

which proves the claim.

A.1.2 Proof of Corollary 1.4.6

Proof of Corollary 1.4.6. Let 𝑀 = Σ
−1/2
2 Σ1Σ

−1/2
2 . Then (1.1) simplifies to

𝑑KL (𝒩 (𝜇1,Σ1)‖𝒩 (𝜇2,Σ2)) =
1

2
(tr(𝑀)− 𝑑− ln det(𝑀)) . (A.1)

Observe that ‖Σ1 − Σ2‖Σ2 = 𝜀 is equivalent to the statement that ‖𝐼 −𝑀‖𝐹 = 𝜀.

Since both terms in the last line of (A.1) are rotationally invariant, we may as-

sume without loss of generality that 𝑀 is diagonal. Let 𝑀 = diag(1 + 𝜆1, . . . , 1 +

𝜆𝑑). Thus, the KL divergence between the two distributions is given exactly by
1
2

∑︀𝑑
𝑖=1 (𝜆𝑖 − log(1 + 𝜆𝑖)) , where we are guaranteed that (

∑︀𝑑
𝑖=1 𝜆

2
𝑖 )

1/2 = 𝜀. By the

second order Taylor approximation to ln(1 + 𝑥), for 𝑥 small, we have that for 𝜀

sufficiently small,

𝑑∑︁
𝑖=1

𝜆𝑖 − log(1 + 𝜆𝑖) = Θ

(︃
𝑑∑︁

𝑖=1

𝜆2𝑖

)︃
= Θ(𝜀2) .

Thus, we have shown that for 𝜀 sufficiently small, 𝑑KL (𝒩 (𝜇1,Σ1)‖𝒩 (𝜇2,Σ2)) ≤ 𝑂(𝜀2).

The result now follows by an application of Pinsker’s inequality (Fact 1.4.4).
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Appendix B

Deferred Proofs from Chapter 2

B.1 Proofs of Concentration Inequalities

This section contains deferred proofs of several concentration inequalities.

Proof of Corollary 2.1.14: Let S𝑚 = {𝑆 ⊆ [𝑛] : |𝑆| = 𝑚} denote the set of subsets

of [𝑛] of size 𝑚. The same Bernstein-style analysis as in the proof of Lemma 2.1.8

yields that there exist universal constants 𝐴,𝐵 so that:

Pr

[︃
∃𝑇 ∈ S𝑚 :

⃦⃦⃦⃦
⃦ 1

𝑚

∑︁
𝑖∈𝑇

𝑋𝑖𝑋
⊤
𝐼 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

≥ 𝑂
(︁
𝛾2
𝑛

𝑚

)︁]︃

≤ 4 exp

(︂
log

(︂
𝑛

𝑚

)︂
+ 𝐴𝑑2 −𝐵𝛾2𝑛

)︂
.

Thus, union bounding over all 𝑚 ∈ {1, . . . , 𝜀𝑛} yields that

Pr

[︃
∃𝑇 s.t.|𝑇 | ≤ 𝜀𝑛 :

⃦⃦⃦⃦
⃦ 1

|𝑇 |
∑︁
𝑖∈𝑇

𝑋𝑖𝑋
⊤
𝐼 − 𝐼

⃦⃦⃦⃦
⃦
𝐹

≥ 𝑂

(︂
𝛾2

𝑛

|𝑇 |

)︂]︃

≤ 4 exp

(︂
log(𝜀𝑛) + log

(︂
𝑛

𝜀𝑛

)︂
+ 𝐴𝑑2 −𝐵𝛾2𝑛

)︂
≤ 𝛿 ,

by the same manipulations as in the proof of Lemma 2.1.8.

Proof of Theorem 2.1.15: We first recall Isserlis’ theorem, which we will require in
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this proof.

Theorem B.1.1 (Isserlis’ theorem). Let 𝑎1, . . . , 𝑎𝑘 ∈ R𝑑 be fixed vectors. Then if

𝑋 ∼ 𝒩 (0, 𝐼), we have

E

[︃
𝑘∏︁

𝑖=1

⟨𝑎𝑖, 𝑋⟩

]︃
=
∑︁∏︁

⟨𝑎𝑖, 𝑎𝑗⟩ ,

where the
∑︀∏︀

is over all matchings of {1, . . . , 𝑘}.

Let 𝑣 = 𝐴♭ ∈ 𝒮sym. We will show that

⟨𝑣,𝑀𝑣⟩ = 2𝑣⊤
(︀
Σ⊗2

)︀
𝑣 + 𝑣⊤

(︀
Σ♭
)︀ (︀

Σ♭
)︀⊤
𝑣 .

Since 𝑀 is a symmetric operator on R𝑑2 , its quadratic form uniquely identifies it and

this suffices to prove the claim.

Since 𝐴 is symmetric, it has a eigenvalue expansion 𝐴 =
∑︀𝑑

𝑖=1 𝜆𝑖𝑢𝑖𝑢
⊤
𝑖 , which

immediately implies that 𝑣 =
∑︀𝑑

𝑖=1 𝜆𝑖𝑢𝑖 ⊗ 𝑢𝑖. Let 𝑋 ∼ 𝒩 (0,Σ). We compute the

quadratic form:

⟨𝑣,𝑀𝑣⟩ =
𝑑∑︁

𝑖,𝑗=1

𝜆𝑖𝜆𝑗⟨𝑢𝑖 ⊗ 𝑢𝑖,E[(𝑋 ⊗𝑋)(𝑋 ⊗𝑋)⊤]𝑢𝑗 ⊗ 𝑢𝑗⟩

=
𝑑∑︁

𝑖,𝑗=1

𝜆𝑖𝜆𝑗 E
[︀
⟨𝑢𝑖 ⊗ 𝑢𝑖, (𝑋 ⊗𝑋)(𝑋 ⊗𝑋)⊤𝑢𝑗 ⊗ 𝑢𝑗⟩

]︀
=

𝑑∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗 E
[︀
⟨𝑢𝑖, 𝑋⟩2⟨𝑢𝑗, 𝑋⟩2

]︀
=

𝑑∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗 E
[︀
⟨𝐵⊤𝑢𝑖, 𝑌 ⟩2⟨𝐵⊤𝑢𝑗, 𝑌 ⟩2

]︀
=

𝑑∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗
(︀
⟨𝐵⊤𝑢𝑖, 𝐵

⊤𝑢𝑖⟩⟨𝐵⊤𝑢𝑗, 𝐵
⊤𝑢𝑗⟩+ 2⟨𝐵⊤𝑢𝑖, 𝐵

⊤𝑢𝑗⟩2
)︀
,

where the last line follows by invoking Isserlis’s theorem. We now manage both sums
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individually. We have

𝑑∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗⟨𝐵⊤𝑢𝑖, 𝐵
⊤𝑢𝑖⟩⟨𝐵⊤𝑢𝑗, 𝐵

⊤𝑢𝑗⟩ =

(︃
𝑑∑︁

𝑖=1

𝜆𝑖𝑢
⊤
𝑖 Σ𝑢𝑖

)︃2

=

(︃
𝑑∑︁

𝑖=1

𝜆𝑖 (𝑢𝑖 ⊗ 𝑢𝑖)⊤
(︀
Σ♭
)︀)︃2

= 𝑣⊤
(︀
Σ♭
)︀ (︀

Σ♭
)︀⊤
𝑣 ,

and

𝑑∑︁
𝑖,𝑗=1

𝜆𝑖𝜆𝑗⟨𝐵⊤𝑢𝑖, 𝐵
⊤𝑢𝑗⟩2 =

∑︁
𝑖,𝑗

𝜆𝑖𝜆𝑗⟨(𝐵⊤𝑢𝑖)
⊗2, (𝐵⊤𝑢𝑗)

⊗2⟩

=
𝑑∑︁

𝑖,𝑗=1

𝜆𝑖𝜆𝑗⟨(𝐵⊤ ⊗𝐵⊤)𝑢𝑖 ⊗ 𝑢𝑖, (𝐵⊤ ⊗𝐵⊤)𝑢𝑗 ⊗ 𝑢𝑗⟩

=
𝑑∑︁

𝑖,𝑗=1

𝜆𝑖𝜆𝑗(𝑢𝑖 ⊗ 𝑢𝑖)Σ⊗2(𝑢𝑗 ⊗ 𝑢𝑗)

= 𝑣⊤Σ⊗2𝑣 .

B.1.1 Proof of Theorem 2.1.16

This follows immediately from Lemmas 5.4.3 and 5.4.6.

327



328



Appendix C

Deferred Proofs from Chapter 3

C.1 Information theoretic estimators for robust sparse

estimation

This section is dedicated to the proofs of the following two facts:

Fact C.1.1. Fix 𝜀, 𝛿 > 0, and let 𝑘 be fixed. Given an 𝜀-corrupted set of samples

𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 from 𝒩 (𝜇, 𝐼), where 𝜇 is 𝑘-sparse, and

𝑛 = 𝑂

(︂
𝑘 log(𝑑/𝜀) + log 1/𝛿

𝜀2

)︂
,

there is an (inefficient) algorithm which outputs ̂︀𝜇 so that with probability 1 − 𝛿, we

have ‖𝜇− ̂︀𝜇‖2 ≤ 𝑂(𝜀). Moreover, up to logarithmic factors, this rate is optimal.

Fact C.1.2. Fix 𝜌, 𝛿 > 0. Suppose that 𝜌 = 𝑂(1). Then, there exist universal

constants 𝑐, 𝐶 so that: (a) if 𝜀 ≤ 𝑐𝜌, and we are given a 𝜀-corrupted set of samples

from either 𝒩 (0, 𝐼) or 𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤) for some 𝑘-sparse unit vector 𝑣 of size

𝑛 = Ω

(︃
𝑘 + log

(︀
𝑑
𝑘

)︀
+ log 1/𝛿

𝜌2

)︃
,

then there is an (inefficient) algorithm which succeeds with probability 1 − 𝛿 for the

detection problem. Moreover, if 𝜀 ≥ 𝐶𝜌, then no algorithm succeeds with probability
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greater than 1/2, and this statistical rate is optimal.

The rates in Facts C.1.1 and C.1.2 are already known to be optimal (up to log

factors) without noise. Thus in this section we focus on proving the upper bounds,

and the lower bounds on error.

The lower bounds on what error is achievable follow from the following two facts,

which follow from Pinsker’s inequality (see e.g. [CT06]), and the fact that the cor-

ruption model can, given samples from 𝐷1, simulate samples from 𝐷2 by corrupting

an 𝑂(𝜀) fraction of points, if 𝑑TV(𝐷1, 𝐷2) ≤ 𝑂(𝜀).

Fact C.1.3. Fix 𝜀 > 0 sufficiently small. Let 𝜇1, 𝜇2 be arbitrary. There is some

universal constant 𝐶 so that if 𝑑TV(𝒩 (𝜇1, 𝐼), 𝜇2, 𝐼) ≤ 𝜀, then ‖𝜇1 − 𝜇2‖2 ≤ 𝐶𝜀, and

if ‖𝜇1 − 𝜇2‖2 ≤ 𝜀, then 𝑑TV(𝒩 (𝜇1, 𝐼),𝒩 (𝜇2, 𝐼)) ≤ 𝐶𝜀.

Fact C.1.4. Fix 𝜌 = 𝑂(1). Let 𝑢, 𝑣 be arbitrary unit vectors. Then 𝑑TV(𝒩 (0, 𝐼),𝒩 (0, 𝐼+

𝜌𝑣𝑣⊤)) = Θ(𝜌), and 𝑑TV(𝒩 (0, 𝐼 + 𝜌𝑣𝑣⊤),𝒩 (0, 𝐼 + 𝜌𝑢𝑢⊤)) = 𝑂(𝐿(𝑢, 𝑣)).

Our techniques for proving the upper bounds go through the technique of agnostic

hypothesis selection via tournaments. Specifically, we use the following lemma:

Lemma C.1.5 ([DKK+16], Lemma 2.9). Let 𝒞 be a class of probability distributions.

Suppose that for some 𝑛, 𝜀, 𝛿 > 0 there exists an algorithm that given an 𝜀-corrupted

set of samples from some 𝐷 ∈ 𝒞, returns a list of 𝑀 distributions so that with 1−𝛿/3

probability there exists a 𝐷′ ∈𝑀 with 𝑑TV(𝐷
′, 𝐷) < 𝛾. Suppose furthermore that with

probability 1−𝛿/3, the distributions returned by this algorithm are all in some fixed set

ℳ. Then there exists another algorithm, which given 𝑂(𝑁+(log(|ℳ|)+log(1/𝛿))/𝜀2)

samples from Π, an 𝜀-fraction of which have been arbitrarily corrupted, returns a single

distribution Π′ so that with 1− 𝛿 probability 𝑑TV(𝐷
′, 𝐷) < 𝑂(𝛾 + 𝜀).

C.1.1 Proof of Upper Bound in Fact C.1.1

Letℳ𝐴 be the set of distributions {𝒩 (𝜇′, 𝐼)}, where 𝜇′ ranges over the set of 𝑘-sparse

vectors so that each coordinate of 𝜇′ is an integer multiple of 𝜀/(10
√
𝑑), and so that

‖𝜇′ − 𝜇‖2 ≤ 𝐴. We then have:

330



Claim C.1.6. There exists a 𝒩 (𝜇′, 𝐼) = 𝐷 ∈ ℳ𝐴 so that ‖𝜇− 𝜇′‖2 ≤ 𝑂(𝜀). More-

over, |ℳ𝐴| ≤
(︀
𝑑
𝑘

)︀
· (10𝐴

√
𝑑/𝜀)𝑘.

Proof. The first claim is straightforward. We now prove the second claim. For each

possible set of 𝑘 coordinates, there are at most (10𝐴
√
𝑑/𝜀)𝑘 vectors supported on

those 𝑘 coordinates with each coordinate being an integer multiple of 𝜀/(10
√
𝑑) with

distance at most 𝐴 from any fixed vector. Enumerating over all
(︀
𝑑
𝑘

)︀
possible choices

of 𝑘 coordinates yields the desired answer.

The estimator is given as follows: first, run NaivePrune(𝑋1, . . . , 𝑋𝑛, 𝛿) to output

some 𝜇0 so that with probability 1− 𝛿, we have ‖𝜇0 − 𝜇‖2 ≤ 𝑂(
√︀
𝑑 log 𝑛/𝛿). Round

each coordinate of 𝜇0 so that it is an integer multiple of 𝜀/(10
√
𝑑). Then, output

the set of distributions ℳ′ = {𝒩 (𝜇′′, 𝐼)}, where 𝜇′′ is any 𝑘-sparse vector with each

coordinate being an integer multiple of 𝜀/(10
√
𝑑), with ‖𝛼‖2 ≤ 𝑂(

√︀
𝑑 log 𝑛/𝛿). With

probability 1 − 𝛿, we have ℳ′ ⊆ ℳ
𝑂(
√

𝑑 log𝑛/𝛿)
. By Claim C.1.6, applying Lemma

C.1.5 to this set of distributions yields that we will select, with probability 1 − 𝛿, a

𝜇′ so that ‖𝜇− 𝜇′‖2 ≤ 𝑂(𝜀). By Claim C.1.6, this requires

𝑂

(︃
log |ℳ

𝑂(
√

𝑑 log𝑛/𝛿)
|

𝜀2

)︃
= 𝑂

(︃
log
(︀
𝑑
𝑘

)︀
+ 𝑘 log(𝑑/𝜀) + log 1/𝛿

𝜀2

)︃
,

samples, which simplifies to the desired bound, as claimed.

C.1.2 Proof of Upper Bound in Fact C.1.2

Our detection algorithm is given as follows. We let 𝒩 be an 𝑂(1)-net over all 𝑘-sparse

unit vectors, and we apply Lemma C.1.5 to the set {𝒩 (0, 𝐼+𝜌𝑢𝑢⊤)}𝑢∈𝒩 ∪{𝒩 (0, 𝐼)}.

Clearly, we have:

Claim C.1.7. |ℳ| =
(︀
𝑑
𝑘

)︀
2𝑂(𝑘).

By Fact C.1.4 and the guarantees of Lemma C.1.5, by an appropriate setting of

331



parameters, if we have

𝑛 = 𝑂

(︂
log |ℳ|+ log 1/𝛿

𝜀2

)︂
= 𝑂

(︃
𝑘 + log

(︀
𝑑
𝑘

)︀
+ log 1/𝛿

𝜀2

)︃

samples, then with probability 1 − 𝛿 we will output 𝒩 (0, 𝐼) if and only if the true

model is 𝒩 (0, 𝐼). This proves the upper bound.

C.2 Omitted Details from Section 3.4

C.2.1 Writing non-robust algorithms as dual norm maximiza-

tion

In this section we will briefly review well-known non-robust algorithms for sparse

mean recovery and for sparse PCA, and write them using our language.

Thresholding Recall that in the (non-robust) sparse mean estimation problem,

one is given samples 𝑋1, . . . , 𝑋𝑛 ∼ 𝒩 (𝜇, 𝐼) where 𝜇 is 𝑘-sparse. The goal is then to

recover 𝜇. It turns out the simple thresholding algorithm ThresholdMean given

in Algorithm 32 suffices for recovery:

Algorithm 32 Thresholding for sparse mean estimation
1: function ThresholdMean(𝑋1, . . . , 𝑋𝑛)
2: Let ̂︀𝜇 = 1

𝑛

∑︀𝑛
𝑖=1𝑋𝑖

3: Let 𝑆 be the set of 𝑘 coordinates of ̂︀𝜇 with largest magnitude
4: Let ̂︀𝜇′ be defined to be ̂︀𝜇′

𝑖 = ̂︀𝜇𝑖 if 𝑖 ∈ 𝑆, 0 otherwise
5: return ̂︀𝜇′

The correctness of this algorithm follows from the following folklore result, whose

proof we shall omit for conciseness:

Fact C.2.1 (c.f. [RH17]). Fix 𝜀, 𝛿 > 0, and let 𝑋1, . . . , 𝑋𝑛 be samples from 𝒩 (𝜇, 𝐼),

where 𝜇 is 𝑘-sparse and

𝑛 = Ω

(︃
log
(︀
𝑑
𝑘

)︀
+ log 1/𝛿

𝜀2

)︃
.
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Then, with probability 1− 𝛿, if ̂︀𝜇′ is the output of ThresholdMean, we have ‖̂︀𝜇′−̂︀𝜇‖2 ≤ 𝜀.

To write this in our language, observe that

ThresholdSMean(𝑋1, . . . , 𝑋𝑛) = ‖̂︀𝜇‖*𝒰𝑘
· 𝑑𝒰𝑘

(̂︀𝜇) ,
where ̂︀𝜇 = 1

𝑛

∑︀𝑛
𝑖=1𝑋𝑖.

𝐿1 relaxation In various scenarios, including recovery of a spiked covariance, one

may envision the need to take 𝑘-sparse eigenvalues a matrix 𝐴, that is, vectors which

solve the following non-convex optimization problem:

max 𝑣⊤𝐴𝑣

s.t. ‖𝑣‖2 = 1, ‖𝑣‖0 ≤ 𝑘 . (C.1)

However, this problem is non-convex and cannot by solved efficiently. This motivates

the following SDP relaxation of (C.1): First, one rewrites the problem as

max tr(𝐴𝑋)

s.t. tr(𝑋) = 1, ‖𝑋‖0 ≤ 𝑘2 , 𝑋 ⪰ 0 , rank(𝑋) = 1 (C.2)

where ‖𝑋‖0 is the number of non-zeros of 𝑋. Observe that since 𝑋 is rank 1 if we

let 𝑋 = 𝑣𝑣⊤ these two problems are indeed equivalent. Then to form the SDP, one

removes the rank constraint, and relaxes the ℓ0 constraint to a ℓ1 constraint:

max tr(𝐴𝑋)

s.t. tr(𝑋) = 1, ‖𝑋‖1 ≤ 𝑘 ,𝑋 ⪰ 0 . (C.3)

The work of [dEGJL07] shows that this indeed detects the presence of a spike (but

at an information theoretically suboptimal rate).

Finally, by definition, for any PSD matrix 𝐴, if 𝑋 is the solution to (C.3) with
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input 𝐴, we have 𝑋 = 𝑑𝒳𝑘
(𝐴).

C.2.2 Numerical precision

In general, we cannot find closed form solutions for 𝑑𝒳𝑘
(𝐴) in finite time. However, it is

well-known that we can find these to very high numerical precision in polynomial time.

For instance, using the ellipsoid method, we can find an 𝑀 ′ so that ‖𝑀 ′−𝑑𝒳𝑘
(𝐴)‖∞ ≤

𝜀 in time poly(𝑑, log 1/𝜀). It is readily verified that if we set 𝜀′ = poly(𝜀, 1/𝑑) then

the numerical precision of the answer will not effect any of the calculations we make

further on. Thus for simplicity of exposition we will assume throughout the paper

that given any 𝐴, we can find 𝑑𝒳𝑘
(𝐴) exactly in polynomial time.

C.3 Computational Barriers for sample optimal ro-

bust sparse mean estimation

We conjecture that the rate achieved by Theorem 3.5.1 is tight for computationally

efficient algorithms (up to log factors). Intuitively, the major difficulty is that distin-

guishing between 𝒩 (𝜇1, 𝐼) and 𝒩 (𝜇2, 𝐼) given corrupted samples seems to inherently

require second moment (or higher) information, for any 𝜇1, 𝜇2 ∈ R𝑑. Certainly first

moment information by itself is insufficient. In this sparse setting, this is very prob-

lematic, as this inherently asks for us to detect a large sparse eigenvector of the

empirical covariance. This more or less reduces to the problem solved by (C.1). This

in turn requires us to relax to the problem solved by SDPs for sparse PCA, for which

we know Ω(𝑘2 log 𝑑/𝜀2) samples are necessary for non-trivial behavior to emerge. We

leave resolving this gap as an interesting open problem.
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Appendix D

Deferred Details from Chapter 4

D.1 Toolkit for sum of squares proofs

Fact D.1.1 (See Fact A.1 in [MSS16] for a proof). Let 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 be inde-

terminates. Then

⊢4

(︃∑︁
𝑖≤𝑛

𝑥𝑖𝑦𝑖

)︃2

≤

(︃∑︁
𝑖≤𝑛

𝑥2𝑖

)︃(︃∑︁
𝑖≤𝑛

𝑦2𝑖

)︃
.

Fact D.1.2. Let 𝑥, 𝑦 be 𝑛-length vectors of indeterminates. Then

⊢2 ‖𝑥+ 𝑦‖22 ≤ 2‖𝑥‖22 + 2‖𝑦‖22 .

Proof. The sum of squares proof of Cauchy-Schwarz implies that ‖𝑥‖22+‖𝑦‖22−2⟨𝑥, 𝑦⟩

is a sum of squares. Now we just expand

‖𝑥+ 𝑦‖22 = ‖𝑥‖22 + ‖𝑦‖22 + 2⟨𝑥, 𝑦⟩ ⪯ 2(‖𝑥‖22 + ‖𝑦‖22) .

Fact D.1.3. Let 𝑃 (𝑥) ∈ R[𝑥]ℓ be a homogeneous degree ℓ polynomial in indetermi-
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nates 𝑥 = 𝑥1, . . . , 𝑥𝑛. Suppose that the coefficients of 𝑃 are bounded in 2-norm:

∑︁
𝛼⊆[𝑛]

𝑃 (𝛼)2 ≤ 𝐶 .

(Here 𝑃 (𝛼) are scalars such that 𝑃 (𝑥) =
∑︀

𝛼 𝑃 (𝛼)𝑥
𝛼.) Let 𝑎, 𝑏 ∈ N be integers such

that 𝑎+ 𝑏 = ℓ. Then

⊢max(2𝑎,2𝑏) 𝑃 (𝑥) ≤
√
𝐶(‖𝑥‖2𝑎2 + ‖𝑥‖2𝑏2 ) .

Proof. Let 𝑀 be a matrix whose rows and columns are indexed by multisets 𝑆 ⊆ [𝑛]

of sizes 𝑎 and 𝑏. Thus 𝑀 has four blocks: an (𝑎, 𝑎) block, an (𝑎, 𝑏) block, a (𝑏, 𝑎)

block, and a (𝑏, 𝑏) block. In the (𝑎, 𝑏) and (𝑏, 𝑎) blocks, put matrices 𝑀𝑎𝑏,𝑀𝑏𝑎 such

that ⟨𝑥⊗𝑎,𝑀𝑎𝑏𝑥
⊗𝑏⟩ = 1

2
.𝑃 (𝑥). In the (𝑎, 𝑎) and (𝑏, 𝑏) blocks, put

√
𝐶 ·𝐼. Then, letting

𝑧 = (𝑥⊗𝑎, 𝑥⊗𝑏), we get ⟨𝑧,𝑀𝑧⟩ =
√
𝐶(‖𝑥‖2𝑎2 +‖𝑥‖2𝑏2 )−𝑃 (𝑥). Note that ‖𝑀𝑎𝑏‖𝐹 ≤

√
𝐶

by hypothesis, so 𝑀 ⪰ 0, which completes the proof.

Fact D.1.4. Let 𝑢 = (𝑢1, . . . , 𝑢𝑘) be a vector of indeterminantes. Let 𝐷 be sub-

Gaussian with variancy proxy 1. Let 𝑡 ≥ 0 be an integer. Then we have

⊢2𝑡 E
𝑋∼𝐷
⟨𝑋, 𝑢⟩2𝑡 ≤ (2𝑡)! · ‖𝑢‖2𝑡2

⊢2𝑡 E
𝑋∼𝐷
⟨𝑋, 𝑢⟩2𝑡 ≥ −(2𝑡)! · ‖𝑢‖2𝑡2 .

Proof. Expand the polynomial in question. We have

E
𝑋∼𝐷
⟨𝑋, 𝑢⟩2𝑡 = E

𝑋∼𝐷

∑︁
𝛽

𝑢𝛽 E[𝑋𝛽] .

Let 𝛽 range over [𝑘]2𝑡

⊢2𝑡
∑︁
𝛽

𝑢2𝛽 E𝑋2𝛽 ≤ (2𝑡)!
∑︁

𝛽 even

𝑢𝛽 ≤ ‖𝑢‖2𝑡2 .

where we have used upper bounds on the Gaussian moments E𝑋2𝛽 and that every
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term is a square in 𝑢.

Fact D.1.5 (SoS Cauchy-Schwarz (see Fact A.1 in [MSS16] for a proof)). Let 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛

be indeterminates. Then

⊢4

(︃∑︁
𝑖≤𝑛

𝑥𝑖𝑦𝑖

)︃2

≤

(︃∑︁
𝑖≤𝑛

𝑥2𝑖

)︃(︃∑︁
𝑖≤𝑛

𝑦2𝑖

)︃
.

Fact D.1.6 (SoS Hölder). Let 𝑤1, . . . , 𝑤𝑛 and 𝑥1, . . . , 𝑥𝑛 be indeterminates. Let 𝑞 ∈ N

be a power of 2. Then

{𝑤2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]} ⊢𝑂(𝑞)

(︃∑︁
𝑖≤𝑛

𝑤𝑖𝑥𝑖

)︃𝑞

≤

(︃∑︁
𝑖≤𝑛

𝑤𝑖

)︃𝑞−1

·

(︃∑︁
𝑖≤𝑛

𝑥𝑞𝑖

)︃

and

{𝑤2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]} ⊢𝑂(𝑞)

(︃∑︁
𝑖≤𝑛

𝑤𝑖𝑥𝑖

)︃𝑞

≤

(︃∑︁
𝑖≤𝑛

𝑤𝑖

)︃𝑞−1

·

(︃∑︁
𝑖≤𝑛

𝑤𝑖 · 𝑥𝑞𝑖

)︃
.

Proof. We will only prove the first inequality. The second inequality follows since

𝑤2
𝑖 = 𝑤𝑖 ⊢2 𝑤𝑖𝑥𝑖 = 𝑤𝑖 · (𝑤𝑖𝑥𝑖), applying the first inequality, and observing that

𝑤2
𝑖 = 𝑤𝑖 ⊢𝑞 𝑤𝑞

𝑖 = 𝑤𝑖.

Applying Cauchy-Schwarz (Fact D.1.1) and the axioms, we obtain to start that

for any even number 𝑡,

{𝑤2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]} ⊢𝑂(𝑡)

⎡⎣(︃∑︁
𝑖≤𝑛

𝑤𝑖𝑥𝑖

)︃2
⎤⎦𝑡/2

=

⎡⎣(︃∑︁
𝑖≤𝑛

𝑤2
𝑖 𝑥𝑖

)︃2
⎤⎦𝑡/2

≤

[︃(︃∑︁
𝑖≤𝑛

𝑤2
𝑖

)︃(︃∑︁
𝑖≤𝑛

𝑤2
𝑖 𝑥

2
𝑖

)︃]︃𝑡/2
=

(︃∑︁
𝑖≤𝑛

𝑤𝑖

)︃𝑡/2(︃∑︁
𝑖≤𝑛

𝑤𝑖𝑥
2
𝑖

)︃𝑡/2

.

It follows by indution that

{𝑤2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]} ⊢𝑂(𝑡)

[︃(︃∑︁
𝑖≤𝑛

𝑤𝑖𝑥𝑖

)︃]︃𝑞
≤

(︃∑︁
𝑖≤𝑛

𝑤𝑖

)︃𝑞−2(︃∑︁
𝑖≤𝑛

𝑤𝑖𝑥
𝑞/2
𝑖

)︃2

.
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Applying Fact D.1.1 one more time to get
(︁∑︀

𝑖≤𝑛𝑤𝑖𝑥
𝑞/2
𝑖

)︁
≤
(︀∑︀

𝑖≤𝑛𝑤
2
𝑖

)︀ (︀∑︀
𝑖≤𝑛 𝑥

𝑞
𝑖

)︀
and then the axioms 𝑤2

𝑖 = 𝑤𝑖 completes the proof.

D.1.1 Examples of explicitly bounded distributions

In this section, we show that many natural high dimensional distributions are explic-

itly bounded. Recall that if a univariate distribution 𝑋 sub-Gaussian (with variancy

proxy 𝜎) with mean 𝜇 then we have the following bound on its even centered moments

for 𝑡 ≥ 4:

E[(𝑋 − 𝜇)𝑡] ≤ 𝜎𝑡

(︂
𝑡

2

)︂𝑡/2

,

if 𝑡 is even.

More generally, we will say a univariate distribution is 𝑡-bounded with mean 𝜇

and variance proxy 𝜎 if the following general condition holds for all even 4 ≤ 𝑠 ≤ 𝑡:

E[(𝑋 − 𝜇)𝑠] ≤ 𝜎𝑠
(︁𝑠
2

)︁𝑠/2
.

The factor of 1/2 in this expression is not important and can be ignored upon first

reading.

Our main result in this section is that any rotation of products of independent

𝑡-bounded distributions with variance proxy 1/2 is 𝑡-explicitly bounded with variance

proxy 1:

Lemma D.1.7. Let 𝒟 be a distribution over R𝑑 so that 𝒟 is a rotation of a product

distribution 𝒟′ where each coordinate of 𝒟 is a 𝑡-bounded univariate distribution with

variance proxy 1/2. Then 𝒟 is 𝑡-explicitly bounded (with variance proxy 1).

Proof. Since the definition of explicitly bounded is clearly rotation invariant, it suffices

to show that 𝒟′ is 𝑡-explicitly bounded. For any vector of indeterminants 𝑢, and for
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any 4 ≤ 𝑠 ≤ 𝑡 even, we have

⊢𝑠 E
𝑋∼𝒟′
⟨𝑋 − 𝜇, 𝑢⟩𝑠 = E

𝑋∼𝒟′
⟨𝑋 − E

𝑋′∼𝒟′
𝑋 ′, 𝑢⟩𝑠

= E
𝑋∼𝒟′

(︁
E
𝑋′
⟨𝑋 −𝑋 ′, 𝑢⟩

)︁𝑠
≤ E

𝑋,𝑋′∼𝒟′
⟨𝑋 −𝑋 ′, 𝑢⟩𝑠 ,

where 𝑋 ′ is an independent copy of 𝑋, and the last line follows from SoS Cauchy-

Schwarz. We then expand the resulting polynomial in the monomial basis:

E
𝑋,𝑋′∼𝒟′

⟨𝑋 −𝑋 ′, 𝑢⟩𝑠 =
∑︁
𝛼

𝑢𝛼 E
𝑋,𝑋′

(𝑋 −𝑋 ′)𝛼

=
∑︁

𝛼 even
𝑢𝛼 E

𝑋,𝑋′
(𝑋 −𝑋 ′)𝛼 ,

since all 𝛼 with odd monomials disappear since 𝑋 − 𝑋 ′ is a symmetric product

distribution. By 𝑡-boundedness, all remaining coefficients are at most 𝑠𝑐𝑠, from which

we deduce

⊢𝑠 E
𝑋,𝑋′∼𝒟′

⟨𝑋 −𝑋 ′, 𝑢⟩𝑠 ≤ 𝑠𝑠/2
∑︁

𝛼 even
𝑢𝛼 = 𝑠𝑠/2‖𝑢‖𝑠2 ,

which proves that 𝒟′ is 𝑡-explicitly bounded, as desired.

As a corollary observe this trivially implies that all Guassians 𝒩 (𝜇,Σ) with Σ ⪯ 𝐼

are 𝑡-explicitly bounded for all 𝑡.

We note that our results are tolerant to constant changes in the variancy proxy

(just by scaling down). In particular, this implies that our results immediately apply

for all rotations of products of 𝑡-bounded distributions with a loss of at most 2.
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D.2 Sum of squares proofs for matrix positivity –

omitted proofs

Lemma D.2.1 (Soundness). Suppose Ẽ is a degree-2𝑑 pseudodistribution which sat-

isfies constraints {𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0}, and

{𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0} ⊢2𝑑 𝑀 ⪰ 0 .

Then Ẽ satisfies {𝑀1 ⪰ 0, . . . ,𝑀𝑚 ⪰ 0,𝑀 ⪰ 0}.

Proof. By hypothesis, there are 𝑟𝑗𝑆 and 𝐵 such that

𝑀 = 𝐵⊤

⎡⎣∑︁
𝑆⊆[𝑚]

(︃∑︁
𝑗

(𝑟𝑗𝑆(𝑥))(𝑟
𝑗
𝑆(𝑥))

⊤

)︃
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)]

⎤⎦𝐵 .

Now, let 𝑇 ⊆ [𝑚] and 𝑝 be a polynomial. Let 𝑀 ′ = ⊗𝑖∈𝑇𝑀𝑖. Suppose that

deg (𝑝2 ·𝑀 ⊗𝑀 ′) ≤ 2𝑑. Using the hypothesis on 𝑀 , we obtain

𝑝2 ·𝑀 ⊗𝑀 ′ = 𝑝2 ·𝐵⊤

⎡⎣∑︁
𝑆⊆[𝑚]

(︃∑︁
𝑗

(𝑟𝑗𝑆(𝑥))(𝑟
𝑗
𝑆(𝑥))

⊤

)︃
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)]

⎤⎦𝐵 ⊗𝑀 ′

= (𝐵 ⊗ 𝐼)⊤
⎡⎣𝑝2 ·

⎡⎣∑︁
𝑆⊆[𝑚]

(︃∑︁
𝑗

(𝑟𝑗𝑆(𝑥))(𝑟
𝑗
𝑆(𝑥))

⊤

)︃
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)]

⎤⎦⊗𝑀 ′

⎤⎦ (𝐵 ⊗ 𝐼) .

Applying Ẽ to the above, note that by hypothesis,

Ẽ

⎡⎣𝑝2 ·
⎡⎣∑︁

𝑆⊆[𝑚]

(︃∑︁
𝑗

(𝑟𝑗𝑆(𝑥))(𝑟
𝑗
𝑆(𝑥))

⊤

)︃
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)]

⎤⎦⊗𝑀 ′

⎤⎦ ⪰ 0 .

The lemma follows by linearity.

Lemma D.2.2. Let 𝑓(𝑥) be a degree-ℓ 𝑠-vector-valued polynomial in indeterminates

𝑥. Let 𝑀(𝑥) be a 𝑠× 𝑠 matrix-valued polynomial of degree ℓ′. Then

{𝑀 ⪰ 0} ⊢ℓℓ′ ⟨𝑓(𝑥),𝑀(𝑥)𝑓(𝑥)⟩ ≥ 0 .
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Proof. Let 𝑢 ∈ R𝑠⊗𝑠 have entries 𝑢𝑖𝑗 = 1 if 𝑖 = 𝑗 and otherwise 𝑢𝑖𝑗 = 0. Then

⟨𝑓(𝑥),𝑀(𝑥)𝑓(𝑥)⟩ = 𝑢⊤(𝑀(𝑥)⊗ 𝑓(𝑥)𝑓(𝑥)⊤)𝑢.

D.3 Omitted Proofs from Section 4.6

D.3.1 Proof of Lemma 4.6.4

We will show that each event (E1)–(E4) holds with probability at least 1 − 𝑑−8.

Clearly for 𝑑 sufficiently large this implies the desired guarantee. That (E1) and (E2)

occur with probability 1 − 𝑑−8 follow from Lemmas 4.6.2 and 4.6.3, respectively. It

now suffices to show (E3) and (E4) holds with high probability. Indeed, that (E4)

holds with probability 1 − 𝑑−8 follows trivially from the same proof of Lemma 4.4.1

(it is in fact a simpler version of this fact).

Finally, we show that (E3) holds.

By basic concentration arguments (see e.g. [Ver10]), we know that by our choice

of 𝑛, with probability 1− 𝑑−8 we have that⃦⃦⃦⃦
⃦⃦ 1𝑛∑︁

𝑖∈[𝑛]

𝑋𝑖 − 𝜇*

⃦⃦⃦⃦
⃦⃦
2

≤ 𝜀 . (D.1)

Condition on the event that this and (E4) simultaneously hold. Recall that 𝑌𝑖 for

𝑖 = 1, . . . , 𝑛 are defined so that 𝑌𝑖 are iid and 𝑌𝑖 = 𝑋𝑖 for 𝑖 ∈ 𝑆good. By the triangle

inequality, we have⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

𝑋𝑖 − 𝜇*

⃦⃦⃦⃦
⃦⃦
2

≤ 𝑛

|𝑆good|

⃦⃦⃦⃦
⃦⃦ 1𝑛∑︁

𝑖∈[𝑛]

𝑌𝑖 − 𝜇*

⃦⃦⃦⃦
⃦⃦
2

+
|𝑆bad|
|𝑆good|

⃦⃦⃦⃦
⃦ 1

|𝑆bad|
∑︁

𝑖∈𝑆bad

𝑌𝑖 − 𝜇*

⃦⃦⃦⃦
⃦
2

(𝑎)

≤ 𝜀

1− 𝜀
+
|𝑆bad|
|𝑆good|

⃦⃦⃦⃦
⃦ 1

|𝑆bad|
∑︁

𝑖∈𝑆bad

𝑌𝑖 − 𝜇*

⃦⃦⃦⃦
⃦
2

, (D.2)

where (a) follows from (D.1).

We now bound the second term in the RHS. For any unit vector 𝑢 ∈ R𝑑, by
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Hölder’s inequality,

⟨ ∑︁
𝑖∈𝑆bad

(𝑌𝑖 − 𝜇*), 𝑢

⟩𝑡

≤ |𝑆bad|𝑡−1
∑︁

𝑖∈𝑆bad

⟨(𝑌𝑖 − 𝜇*), 𝑢⟩𝑡

≤ |𝑆bad|𝑡−1
∑︁
𝑖∈[𝑛]

⟨(𝑌𝑖 − 𝜇*), 𝑢⟩𝑡

= |𝑆bad|𝑡−1
[︀
𝑢⊗𝑡/2

]︀⊤∑︁
𝑖∈[𝑛]

[︀
(𝑌𝑖 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑌𝑖 − 𝜇*)⊗𝑡/2

]︀⊤ [︀
𝑢⊗𝑡/2

]︀
(𝑎)

≤ |𝑆bad|𝑡−1 · 𝑛 ·
[︀
𝑢⊗𝑡/2

]︀⊤ (︁ E
𝑌∼𝐷

[︀
(𝑌 − 𝜇*)⊗𝑡/2

]︀ [︀
(𝑌 − 𝜇*)⊗𝑡/2

]︀⊤
+ 𝛿 · 𝐼

)︁ [︀
(𝑌 − 𝜇*)⊗𝑡/2

]︀
= |𝑆bad|𝑡−1 · 𝑛 ·

(︁
E

𝑌∼𝐷
⟨𝑌 − 𝜇*, 𝑢⟩𝑡 + 𝛿

)︁
≤ |𝑆bad|𝑡−1 · 𝑛 · (𝑡𝑡/2 + 𝛿)

(𝑏)

≤ 2|𝑆bad|𝑡−1 · 𝑛 · 𝑡𝑡/2 ,

where (a) follows from (E4), and (b) follows since 𝛿 ≪ 𝑡𝑡. Hence⃦⃦⃦⃦
⃦ ∑︁
𝑖∈𝑆bad

(𝑌𝑖 − 𝜇*)

⃦⃦⃦⃦
⃦
2

= max
‖𝑢‖2=1

⟨ ∑︁
𝑖∈𝑆bad

(𝑌𝑖 − 𝜇*), 𝑢

⟩
≤ 𝑂(|𝑆bad|1−1/𝑡 · 𝑛1/𝑡 · 𝑡1/2)

Taking the 𝑡-th root on both sides and combining it with (D.2) yields⃦⃦⃦⃦
⃦⃦ 1

|𝑆good|
∑︁

𝑖∈𝑆good

𝑋𝑖 − 𝜇*

⃦⃦⃦⃦
⃦⃦
2

≤ 𝜀

1− 𝜀
+

𝜀

1− 𝜀
(𝑛/|𝑆bad|)−1/𝑡 · 𝑡1/2 = 𝑂(𝜀1−1/𝑡 · 𝑡1/2) ,

as claimed.

D.4 Mixture models with nonuniform weights

In this section we describe at a high level how to adapt the algorithm given in Sec-

tion 4.5 to handle non-uniform weights. We assume the mixture components now have

mixture weights 𝜂 ≤ 𝜆1 ≤ . . . ≤ 𝜆𝑘 ≤ 1 where
∑︀
𝜆𝑖 = 1, where 𝜂 > 0 is some fixed

constant. We still assume that all pairs of means satisfy ‖𝜇𝑖−𝜇𝑗‖2 ≥ 𝑘𝛾 for all 𝑖 ̸= 𝑗.

In this section we describe an algorithm LearnNonUniformMixtureModel, and
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we sketch a proof of the following theorem concerning its correctness:

Theorem D.4.1. Let 𝜂, 𝛾 > 0 be fixed. Let 𝒟 be a non-uniform mixture of 𝑘 distribu-

tions 𝒟1, . . . ,𝒟𝑘 in R𝑑, where each 𝒟𝑗 is a 𝑂(1/𝛾)-explicitly bounded distribution with

mean 𝜇𝑗, and we have ‖𝜇𝑖−𝜇𝑗‖2 ≥ 𝑘𝛾. Furthermore assume that the smallest mixing

weight of any component is at least 𝜂. Then, given 𝑋1, . . . , 𝑋𝑛 iid samples from 𝒟

where 𝑛 ≥ 1
𝜂
(𝑑𝑘)𝑂(1/𝛾), LearnNonUniformMixtureModel runs in 𝑂(𝑛1/𝑡) time

and outputs estimates ̂︀𝜇1, . . . , ̂︀𝜇𝑚 so that there is some permutation 𝜋 : [𝑚]→ [𝑚] so

that ‖̂︀𝜇𝑖 − 𝜇𝜋(𝑖)‖2 ≤ 𝑘−10 with probability at least 1− 𝑘−5.

Our modified algorithm is as follows: take 𝑛 samples 𝑋1, . . . , 𝑋𝑛 where 𝑛 is as

in Theorem D.4.1. Then, do single-linkage clustering as before, and work on each

cluster separately, so that we may assume without loss of generality that all means

have pairwise ℓ2 distance at most 𝑂(poly(𝑑, 𝑘)).

Within each cluster, we do the following. For 𝛼′ = 1, 1 − 𝜉, 1 − 2𝜉, . . . , 𝜂 for

𝜉 = poly(𝜂/𝑘), iteratively form ̂︀𝒜 with 𝛼 = 𝛼′, 𝑡 = 𝑂
(︁

1
𝛾

)︁
, and 𝜏, 𝛿 = 𝑘−10. Attempt

to find a pseudo-expectation Ẽ that satisfies ̂︀𝒜 with these parameters with minimal

‖ Ẽ𝑤𝑤⊤‖𝐹 . If none exists, then retry with the next 𝛼′. Otherwise, a rounding

algorithm on Ẽ𝑤𝑤⊤ to extract clusters. Remove these points from the dataset, and

then continue with the next 𝛼′.

However, the rounding algorithm we require here is somewhat more involved than

the naive rounding algorithm used previously for learning mixture models. In par-

ticular, we no longer know exactly the Frobenius norm of the optimal solution: we

cannot give tight upper and lower bounds. This is because components with mix-

ing weights which are just below the threshold 𝛼′ may or may not contribute to the

optimal solution that the SDP finds. Instead, we develop a more involved rounding

algorithm RoundSecondMomentsNonuniform, which we describe below.

Our invariant is that every time we have a feasible solution to the SDP, we remove

at least one cluster (we make this more formal below). Repeatedly run the SDP with

this 𝛼′ until we no longer get a feasible solution, and then repeat with a slightly

smaller 𝛼′. After the loop terminates, output the empirical mean of every cluster.
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The formal specification of this algorithm is given in Algorithm 33.

Algorithm 33 Mixture Model Learning
1: function LearnNonuniformMixtureMeans(𝑡, 𝜂,𝑋1, . . . , 𝑋𝑛)
2: Let 𝜉 ← 𝜂2/(𝑑𝑘)−100

3: Let 𝒞 ← {}, the empty set of clusters
4: Let 𝒳 ← {𝑋1, . . . , 𝑋𝑛}
5: Perform naive clustering on 𝒳 to obtain 𝒳1, . . . ,𝒳ℓ.
6: for each 𝒳𝑟 do
7: Let 𝛼′ ← 1
8: while 𝛼′ ≥ 𝜂 − 𝑘−8 do
9: By semidefinite programming (see Lemma 4.4.1, item 2), find a pseudo-

expectation of degree 𝑡 = 𝑂( 1
𝛾
) which satisfies the structured subset polynomials

from Lemma 4.4.1, with 𝛼 = 𝛼′𝑛, and 𝛿, 𝜏 = 𝑘−8 with data points as in 𝒳 .
10: while the SDP is feasible do
11: Let Ẽ be the pseudoexpectation returned
12: Let 𝑀 ← Ẽ𝑤𝑤⊤.
13: Run the algorithm RoundSecondMomentsNonuniform on 𝑀

to obtain a cluster 𝐶.
14: Let 𝒞 ← 𝒞 ∪ {𝐶}
15: Remove all points in 𝐶 from 𝒳𝑟

16: Let 𝛼′ ← 𝛼′ − 𝜉
17: return The empirical mean of every cluster in 𝒞

For 𝑗 = 1, . . . , 𝑘 let 𝑆𝑗 be the set of indices of points in 𝑋1, . . . , 𝑋𝑛 which were

drawn from 𝒟𝑗, and let 𝑎𝑗 ∈ R𝑛 be the indicator vectors for these sets as before.

Our key invariant is the following: for every 𝛼′ such that the SDP returns a feasible

solution, we must have |𝛼′−𝜆𝑗| ≤ 𝑂(𝜉) for some 𝑗, and moreover, for every 𝑗 so that

𝜆𝑗 ≥ 𝛼′ +𝑂(𝜉), there must be exactly one cluster 𝐶ℓ output by the algorithm at this

point so that |𝐶ℓ△𝑆𝑗| ≤ 𝑘−10 poly(𝜂) · ·𝑛. Moreover, every cluster output so far must

be of this form. For any 𝛼′, we say that the algorithm up to 𝛼′ is well-behaved if it

satisfies this invariant for the loops in the algorithm for 𝛼′′ for 𝛼′′ > 𝛼′.

It is not hard to show, via arguments exactly as in Section 4.6 and 4.7 that the

remaining fraction of points from these components which we have not removed as well

as the small fraction of points we have removed from good components do not affect

the calculations, and so we will assume for simplicity in the rest of this discussion

that we have removed all samples from components 𝑗 with 𝜆𝑗 ≥ 𝛼′ +𝑂(𝜉).
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D.4.1 Sketch of proof of correctness of Algorithm 33

Here we outline the proof of correctness of Algorithm 33. The proof follows very

similar ideas as the proof of correctness of Algorithm 11, and so for conciseness we

omit many of the details. As before, for simplicity assume that the naive clustering

returns only one cluster, as otherwise we can work on each cluster separately, so that

for all 𝑖, we have ‖𝜇𝑖‖2 ≤ 𝑂(poly(𝑑, 𝑘)) after centering.

We now show why this invariant holds. Clearly this holds at the beginning of the

algorithm. We show that if it holds at any step, it must also hold at the next time at

which the SDP is feasible. Fix such an 𝛼′. By assumption, we have removed almost

all points from components 𝑗 with 𝜆𝑗 ≥ 𝛼′+𝑘−8, and have only removed a very small

fraction of points not from these components.

By basic concentration, we have |𝜆𝑗𝑛− |𝑆𝑗|| ≤ 𝑜(𝑛) for all 𝑗 except with negligble

probability, and so for the rest of the section, for simplicity, we will slightly cheat

and assume that 𝜆𝑗𝑛 = |𝑆𝑗|. It is not hard to show that this also does not effect any

calculations.

The main observation is that for any choice of 𝛼′, by essentially same logic as in

Section 4.5, we still have the following bound for all 𝑖 ̸= 𝑗 for an 𝛼′ well-behaved run:

̂︀𝒜 ⊢𝑂(𝑡) ⟨𝑎𝑖, 𝑤⟩⟨𝑎𝑗, 𝑤⟩ ≤
𝜂𝑛2𝑡𝑂(𝑡)

𝑘2𝑡𝛾
= 𝑂(𝜂𝜉2) · (𝛼′)2𝑛2 , (D.3)

for ̂︀𝒜 instantiated with 𝛼 = 𝛼′, where the last line follows by our choice of 𝑡 sufficiently

large.

We now show this implies:

Lemma D.4.2. With parameters as above, for any 𝛼′ well-behaved run, we havê︀𝒜 ⊢𝑂(𝑡) ⟨𝑎𝑖, 𝑤⟩ ≤ 𝑂(𝜉2) · 𝛼′𝑛 for any 𝑗 so that 𝜆𝑗𝑛 ≤ (𝛼′ −𝑂(𝜉4))𝑛.

Proof. We have

̂︀𝒜 ⊢𝑡 ∑︁
𝑗′ ̸=𝑗

⟨𝑎𝑖, 𝑤⟩ = 𝛼′𝑛− ⟨𝑎𝑗, 𝑤⟩ ≥ Ω(𝜉2)𝑛 ,
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and hence

̂︀𝒜 ⊢𝑂(𝑡) Ω(𝜉2)𝑛⟨𝑎𝑖, 𝑤⟩ ≤ ⟨𝑎𝑖, 𝑤⟩
∑︁
𝑗 ̸=𝑖

⟨𝑎𝑗, 𝑤⟩

≤ 1

𝜂
𝑂(𝜂𝜉4) · (𝛼′)2 · 𝑛2 ,

from which we deduce ̂︀𝒜 ⊢𝑂(𝑡) ⟨𝑎𝑖, 𝑤⟩ ≤ 𝑂(𝜉2) · 𝛼′𝑛.

We now show that under these conditions, there is an algorithm to remove a

cluster:

D.4.2 Rounding Well-behaved runs

Lemma D.4.3. Let 𝛼′, 𝜂, 𝛾, 𝑡 be as in Theorem D.4.1. Suppose that ̂︀𝒜 is satisfiable

with this set of parameters, that the algorithm has been 𝛼′ well-behaved, and (D.3)

holds. Then, there is an algorithm RoundSecondMomentsNonuniform which

given Ẽ outputs a cluster 𝐶 so that |𝐶△𝑆𝑗| ≤ (𝜂/𝑑𝑘)𝑂(1)𝑛 with probability 1 −

(𝜂/𝑑𝑘)𝑂(1).

Formally, let 𝑣𝑖 ∈ R𝑛 be so that for all 𝑖, 𝑗, we have ⟨𝑣𝑖, 𝑣𝑗⟩ = Ẽ𝑤𝑖𝑤𝑗. Such 𝑣𝑖

exist because Ẽ𝑤𝑤⊤ is PSD, and can be found efficiently via spectral methods. For

any cluster 𝑗, let 𝑉𝑗 denote the set of vectors 𝑣𝑖 for 𝑖 ∈ 𝑆𝑗.

Our algorithm will proceed as follows: choose a random 𝑣𝑖 with ‖𝑣𝑖‖22 ≥ 𝛼′/100,

and simply output as the cluster the set of ℓ so that ‖𝑣𝑖 − 𝑣ℓ‖2 ≤ 𝑂(
√
𝑑𝜉).

We now turn to correctness of this algorithm. Define 𝑇 to be the set of clusters 𝑗

with |𝜆𝑗 − 𝛼′| ≤ 𝑂(𝜉4). We first show:

Lemma D.4.4. Assume that (D.3) holds. Then

∑︁
ℓ∈𝑇

∑︁
𝑖,𝑗∈𝑆ℓ

‖𝑣𝑖 − 𝑣𝑗‖22 ≤ 𝑂(𝑑2𝜉2)(𝛼′)2𝑛2 .

346



Proof. Observe that

∑︁
ℓ∈𝑇

∑︁
𝑖,𝑗∈𝑆ℓ

‖𝑣𝑖 − 𝑣𝑗‖22 =
∑︁
ℓ∈𝑇

∑︁
𝑖,𝑗∈𝑆ℓ

‖𝑣𝑖‖22 + ‖𝑣𝑗‖22 − 2⟨𝑣𝑖, 𝑣𝑗⟩

=
∑︁
ℓ∈𝑇

(︃
2|𝑆ℓ|

∑︁
𝑖∈𝑆ℓ

‖𝑣𝑖‖22 − 2
∑︁
𝑖,𝑗∈𝑆ℓ

⟨𝑣𝑖, 𝑣𝑗⟩

)︃
.

By assumption, we have

∑︁
ℓ∈𝑇

∑︁
𝑖∈𝑆ℓ

|𝑆ℓ|‖𝑣ℓ‖22 = (𝛼′ ±𝑂(𝜉4))𝑛
∑︀

ℓ∈𝑇 ‖𝑣ℓ‖22 = (𝛼′ ±𝑂(𝜉4))𝑛 · Ẽ

(︃∑︁
ℓ∈𝑇

∑︁
𝑖∈𝑆ℓ

𝑤2
𝑖

)︃
.

Since by Lemma D.4.2 we have Ẽ[
∑︀

ℓ ̸∈𝑇
∑︀

𝑖∈𝑆ℓ
𝑤2

𝑖 ] ≤ 𝑑𝑂(𝜉2)𝛼𝑛, we conclude that

𝛼𝑛 ≥ Ẽ

(︃∑︁
ℓ∈𝑇

∑︁
𝑖∈𝑆ℓ

𝑤2
𝑖

)︃
≥ (1− 𝑑𝑂(𝜉2))𝛼′𝑛 .

All of this allows us to conclude

∑︁
ℓ∈𝑇

∑︁
𝑖∈𝑆ℓ

|𝑆ℓ|‖𝑣ℓ‖22 = (1±𝑂(𝑑𝜉2))(𝛼′)2𝑛2 .

On the other hand, we have

∑︁
ℓ∈𝑇

∑︁
𝑖,𝑗∈𝑆ℓ

⟨𝑣𝑖, 𝑣𝑗⟩ =
∑︁
ℓ∈𝑇

Ẽ⟨𝑎ℓ, 𝑤⟩2 ,

but we have

(𝛼′)2𝑛2 = Ẽ

(︃∑︁
ℓ

⟨𝑎ℓ, 𝑤⟩

)︃2

=
∑︁
ℓ ̸=𝑗

Ẽ[⟨𝑎ℓ, 𝑤⟩⟨𝑎𝑗, 𝑤⟩] +
∑︁
ℓ̸∈𝑇

⟨𝑎ℓ, 𝑤⟩2 +
∑︁
ℓ∈𝑇

⟨𝑎ℓ, 𝑤⟩2 .

The first term is at most 𝑂(𝑑2𝜂𝜉2)(𝛼′)2𝑛2 by (D.3) and the second term is at most
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𝑑𝑂(𝜉2)𝛼′𝑛 by Lemma D.4.2, so overall we have that

∑︁
ℓ∈𝑇

Ẽ⟨𝑎ℓ, 𝑤⟩2 = (1±𝑂(𝑑2𝜉2))(𝛼′)2𝑛2 .

Hence putting it all together we have

∑︁
ℓ∈𝑇

∑︁
𝑖,𝑗∈𝑆ℓ

‖𝑣𝑖 − 𝑣𝑗‖22 = 𝑂(𝑑2𝜉2)(𝛼′)2𝑛2 ,

as claimed.

As a simple consequence of this we have:

Lemma D.4.5. Assume that (D.3) holds. For all ℓ ∈ 𝑇 , there exists a ball 𝐵 of

radius 𝑂(
√
𝑑𝜉) so that |𝑉ℓ△𝐵| ≤ 𝑂(𝑑𝜉)𝛼′𝑛.

Proof. Suppose not, that is, for all 𝐵 with radius 𝑂(𝑑𝜉), we have |𝑆ℓ△𝐵| ≤ Ω(𝑑𝜉)𝛼′𝑛.

Consider the ball of radius 𝑂(
√
𝑚𝜉) centered at each 𝑣𝑖 for 𝑖 ∈ 𝑆ℓ. By assumption

there are Ω(𝑑𝜉)𝛼′𝑛 vectors outside the ball, that is, with distance at least Ω(
√
𝑑𝜉)

from 𝑣𝑖. Then

∑︁
𝑖,𝑗∈𝑆ℓ

‖𝑣𝑖 − 𝑣𝑗‖22 ≥ 𝑛 · Ω(𝑑𝜉)Ω(𝑑𝜉)𝛼𝑛 ≥ Ω(𝑑2𝜉2)𝛼′𝑛 ,

which contradicts the previous lemma.

Associate to each cluster ℓ ∈ 𝑇 a ball 𝐵ℓ so that |𝑉ℓ△𝐵| ≤ Ω(𝑑𝜉)𝛼′𝑛. Let 𝜑ℓ

denote the center of 𝐵ℓ. We now show that if we have two 𝑗, ℓ so that either ‖𝜑𝑗‖2 or

‖𝜑ℓ‖2 is large, then 𝐵ℓ and 𝐵𝑗 must be disjoint. Formally:

Lemma D.4.6. Assume that (D.3) holds. Let 𝑗, ℓ ∈ 𝑇 so that ‖𝜑𝑗‖22+‖𝜑ℓ‖22 ≥ Ω(𝛼′)

. Then 𝐵𝑗 ∩𝐵ℓ = ∅.
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Proof. We have

∑︁
𝑖∈𝐵𝑗 ,𝑘∈𝐵ℓ

‖𝑣𝑖 − 𝑣𝑘‖22 =
∑︁

𝑖∈𝐵𝑗 ,𝑘∈𝐵ℓ

‖𝑣𝑖‖22 + ‖𝑣𝑘‖22 − 2⟨𝑣𝑖, 𝑣𝑘⟩

= |𝐵ℓ|
∑︁
𝑖∈𝐵𝑗

‖𝑣𝑖‖22 + |𝐵𝑗|
∑︁
𝑘∈𝐵ℓ

‖𝑣𝑘‖22 − 2
∑︁

𝑖∈𝐵𝑗 ,𝑘∈𝐵ℓ

Ẽ𝑤𝑖𝑤𝑘

≥ (𝛼′ −𝑂(𝜉4))𝑛

⎛⎝∑︁
𝑖∈𝐵𝑗

‖𝑣𝑖‖22 + |𝐵𝑗|
∑︁
𝑘∈𝐵ℓ

‖𝑣𝑘‖22

⎞⎠− 2 Ẽ⟨𝑎𝑗, 𝑤⟩⟨𝑎ℓ, 𝑤⟩

≥ (𝛼′ −𝑂(𝜉4))𝑛

⎛⎝∑︁
𝑖∈𝐵𝑗

‖𝑣𝑖‖22 +
∑︁
𝑖∈𝐵𝑘

‖𝑣𝑘‖22

⎞⎠−𝑂(𝜂𝜉2)(𝛼′)2𝑛2 .

Observe that

∑︁
𝑖∈𝐵𝑗

‖𝑣𝑖‖22 =
∑︁

𝑖∈𝐵𝑗 ,𝑣𝑖∈𝐵𝑗

‖𝑣𝑖‖22 +
∑︁

∈𝐵𝑗 ,𝑣𝑖 ̸∈𝐵𝑗

‖𝑣𝑖‖22

≥ (1−𝑂(𝑑𝜉))𝛼′𝑛
(︀
‖𝜑0‖22 − 𝑑𝜉

)︀
+𝑂(𝑑𝜉)𝛼′𝑛

≥ 𝛼′𝑛‖𝜑0‖22 −𝑂(𝑚𝜉)𝛼′𝑛 .

since generically ‖𝑣𝑖‖22 = Ẽ𝑤2
𝑖 ≤ 1. Symmetrically we have

∑︀
𝑘∈𝐵ℓ
‖𝑣𝑘‖22 ≥ (‖𝜑1‖22 −

𝑂(𝑑𝜉))𝛼′𝑛. Hence we have

∑︁
𝑖∈𝐵𝑗 ,𝑘∈𝐵ℓ

‖𝑣𝑖 − 𝑣𝑘‖22 ≥ (‖𝜑1‖22 + ‖𝜑2‖22 −𝑂(𝑚𝜉))(𝛼′)2𝑛2 ≥ Ω(𝛼′)2 · (𝛼′)2𝑛2 .

Now suppose that 𝐵𝑗∩𝐵ℓ ̸= ∅. This implies that for all except for a 𝑂(𝑑𝜉)(𝛼′)2𝑛2 set

of pairs 𝑖, 𝑗 (i.e. those containing 𝑣𝑖 ̸∈ 𝐵𝑗 or 𝑣𝑗 ̸∈ 𝐵ℓ), the pairwise squared distance

is at most 𝑂(𝑑𝜉). Since the pairwise distance between any two points is at most 2,

this is a clear contradiction.

Finally, we show that a random point with large norm will likely be within a 𝐵ℓ.

Lemma D.4.7. Let 𝑖 be a uniformly random index over the set of indices so that

‖𝑣𝑖‖22 ≥ 𝛼′/100. Then, with probability 1−𝑂(𝑑𝜉), 𝑣𝑖 ∈ 𝐵ℓ for some ℓ.

Proof. Observe that since ‖𝑣𝑖‖22 ≤ 1 and
∑︀
‖𝑣𝑖‖22 = 𝛼′𝑛 there are at least (1 −
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1/100)𝛼′𝑛 vectors with ‖𝑣𝑖‖22 ≥ 𝛼′/100. We have

∑︁
ℓ ̸∈𝑇

‖𝑣𝑖‖22 =
∑︁
ℓ̸∈𝑇

Ẽ⟨𝑎ℓ, 𝑤⟩ ≤ 𝑂(𝑑𝜉2)𝛼′𝑛 ,

so by Markov’s inequality the number of 𝑖 with 𝑖 ∈ ∪ℓ̸∈𝑇𝑆ℓ and ‖𝑣𝑖‖22 ≥ 𝛼′/100 is

at most 100 · 𝑂(𝑑𝜉2)𝑛 ≪ 𝑂(𝑚𝜉)𝛼′𝑛. There are at most 𝑂(𝑑𝜉)𝛼′𝑛 vectors 𝑣𝑖 so that

𝑣𝑖 ∈ 𝑆ℓ for ℓ ∈ 𝑇 and 𝑣𝑖 ̸∈ 𝐵ℓ, and so the probability that a vector with ‖𝑣𝑖‖22 ≥ 𝛼′/100

is not of the desired form is at most 𝑂(𝑑𝜉), as claimed.

This completes the proof of Lemma D.4.3, since this says that if we choose 𝑖

uniformly at random amongst all such ‖𝑣𝑖‖22 ≥ 𝛼/100, then with probability 1−𝑂(𝑑𝜉),

we have 𝑣𝑖 ∈ 𝐵ℓ for some 𝐵ℓ with ‖𝜑ℓ‖2 = Ω(𝛼′), and hence if we look in a 𝑂(
√
𝑑𝜉)

ball around it, it will contain all but a 𝑂(𝑑𝜉)𝛼′𝑛 fraction of points from 𝑆ℓ.
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Appendix E

Deferred Proofs from Chapter 5

E.1 Proof of Lemma 5.3.2

In fact, we will prove a stronger statement, which clearly implies Lemma 5.3.2.

Namely, we will show that it holds for general sub-gaussian distributions. This will in

particular be important to show that our algorithm works for isotropic sub-gaussian

distributions.

Lemma E.1.1. Let 𝜀, 𝛿 > 0. Let 𝐺 be a subgaussian distribution over R𝑑 with mean

𝜇 and variance proxy 1. Let 𝑆 be a set of 𝑛 i.i.d. samples from 𝐺, where

𝑛 = Ω

(︂
𝑑

𝜀2
poly log

𝑑

𝜀𝛿

)︂
.

Then with probability 1− 𝛿, 𝑆 satisfies (5.7)-(5.10).

Proof. For (5.7), the probability that a coordinate of a sample after centering by

𝜇 is at least
√︀

2 log(𝑛𝑑/(3𝛿) is at most 𝛿
3𝑑𝑛

by Fact 1.4.1. By a union bound, the

probability that all coordinates of all samples are smaller than
√︀
2 log(𝑛𝑑/(3𝛿)) is at

least 1− 𝜏/3. In this case, ‖𝑥‖2 ≤
√︁

2𝑑 log 𝑛𝑑
3𝜏

= 𝑂
(︀√︀

𝑑 log 𝑛
𝜏

)︀
.

After translating by 𝜇, we note that (5.8) follows immediately from Lemma 2.1.6
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and (5.9) follows from Theorem 5.50 of [Ver10], as long as

𝑛 = Ω

(︂
𝑑+ log(1/𝛿)

𝜀2

)︂
,

with probability at least 1 − 𝛿/3. It remains to show that, conditioned on (5.7)-

(5.9), (5.10) holds with probability at least 1− 𝛿/3.

To simplify some expressions, let 𝜌 := 𝜀/(log(𝑑 log(𝑑/𝜀𝛿))) and𝑅 = 𝐶
√︀
𝑑 log(|𝑆|/𝜏)

for some universal constant 𝐶 sufficiently large. We need to show that for all unit

vectors 𝑣 and all 0 ≤ 𝑇 ≤ 𝑅 that⃒⃒⃒⃒
Pr

𝑋∈𝑢𝑆
[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ]− Pr

𝑋∼𝐺
[|𝑣 · (𝑋 − 𝜇) > 𝑇 ≥ 0]

⃒⃒⃒⃒
≤ 𝜌

𝑇 2
. (E.1)

Firstly, we have that for all unit vectors 𝑣 and 𝑇 > 0⃒⃒⃒⃒
Pr

𝑋∈𝑢𝑆
[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ]− Pr

𝑋∼𝐺
[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ≥ 0]

⃒⃒⃒⃒
≤ 𝜌

10 ln(1/𝜌)

with probability at least 1 − 𝛿/6. Since the VC-dimension of the set of all half-

spaces is 𝑑 + 1, this follows from the VC inequality [DL12], since we have more

than Ω(𝑑/(𝜌/(10 log(1/𝜌))2) samples. We thus only need to consider the case when

𝑇 ≥
√︀

10 ln(1/𝜌).

To handle this case, we show:

Lemma E.1.2. For any fixed unit vector 𝑣 and 𝑇 >
√︀

10 ln(1/𝜌), except with prob-

ability exp(−𝑁𝜌/(6𝐶)), we have that

Pr
𝑋∈𝑢𝑆

[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ] ≤ 𝜌

𝐶𝑇 2
,

where 𝐶 = 8.

Proof. Let 𝐸 be the event that |𝑣 · (𝑋 − 𝜇)| > 𝑇 . Since 𝐺 is sub-gaussian, Fact 1.4.1

yields that

Pr
𝐺
[𝐸] = Pr

𝑌∼𝐺
[|𝑣 · (𝑋 − 𝜇)| > 𝑇 ] ≤ exp(−𝑇 2/(2𝜈)) .
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Note that, thanks to our assumption on 𝑇 , we have that 𝑇 ≤ exp(𝑇 2/(4))/2𝐶, and

therefore 𝑇 2 Pr𝐺[𝐸] ≤ exp(−𝑇 2/(4))/2𝐶 ≤ 𝜌/2𝐶.

Consider E𝑆[exp(𝑡
2/(3) ·𝑁 Pr𝑆[𝐸])]. Each individual sample 𝑋𝑖 for 1 ≤ 𝑖 ≤ 𝑁 , is

an independent copy of 𝑌 ∼ 𝐺, and hence:

E
𝑆

[︂
exp

(︂
𝑇 2

3
· 𝑛Pr

𝑆
[𝐸]

)︂]︂
= E

𝑆

[︃
exp

(︂
𝑇 2

3

)︂
·

𝑛∑︁
𝑖=1

1𝑋𝑖∈𝐸)

]︃

=
𝑛∏︁

𝑖=1

E
𝑋𝑖

[︃
exp

(︂
𝑇 2

3

)︂
·

𝑛∑︁
𝑖=1

1𝑋𝑖∈𝐸)

]︃

=

(︂
exp

(︂
𝑇 2

3

)︂
Pr
𝐺
[𝐸] + 1

)︂𝑛

(𝑎)

≤
(︂
exp

(︂
𝑇 2

6

)︂
+ 1

)︂𝑛

(𝑏)

≤ (1 + 𝜌5/3)𝑛

(𝑐)

≤ exp(𝑛𝜌5/3) ,

where (a) follows from sub-gaussianity, (b) follows from our choice of 𝑇 , and (c) comes

from the fact that 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥.

Hence, by Markov’s inequality, we have

Pr
[︁
Pr
𝑆
[𝐸] ≥ 𝜌

𝐶𝑇 2

]︁
≤ exp

(︁
𝑁𝜌5/3 − 𝜌𝑛

3𝐶

)︁
= exp(𝑛𝜌(𝜌2/3 − 1/(3𝐶))) .

Thus, if 𝛿 is a sufficiently small constant and 𝐶 is sufficiently large, this yields the

desired bound.

Now let 𝒞 be a 1/2-cover in Euclidean distance for the set of unit vectors of size

2𝑂(𝑑). By a union bound, for all 𝑣′ ∈ 𝒞 and 𝑇 ′ a power of 2 between
√︀
4 ln(1/𝛿) and

𝑅, we have that

Pr
𝑋∈𝑢𝑆

[|𝑣′ · (𝑋 − 𝜇)| > 𝑇 ′] ≤ 𝜌

8𝑇 2

353



except with probability

2𝑂(𝑑) log(𝑅) exp(−𝑛𝜌/6𝐶) = exp (𝑂(𝑑) + log log𝑅− 𝑛𝜌/6𝐶𝜈) ≤ 𝛿/6 .

However, for any unit vector 𝑣 and
√︀

4 ln(1/𝜌) ≤ 𝑇 ≤ 𝑅, there is a 𝑣′ ∈ 𝒞 and

such a 𝑇 ′ such that for all 𝑥 ∈ R𝑑, we have |𝑣 · (𝑋 − 𝜇)| ≥ |𝑣′ · (𝑋 − 𝜇)|/2, and so

|𝑣′ · (𝑋 − 𝜇)| > 2𝑇 ′ implies |𝑣′ · (𝑋 − 𝜇)| > 𝑇.

Then, by a union bound, (E.1) holds simultaneously for all unit vectors 𝑣 and all

0 ≤ 𝑇 ≤ 𝑅, with probability a least 1− 𝛿/3. This completes the proof.

E.2 Proof of Lemma 5.4.2

Proof of Lemma 5.4.2: Note that an even polynomial has no degree-1 terms. Thus,

we may write 𝑝(𝑥) =
∑︀

𝑖 𝑝𝑖,𝑖𝑥
2
𝑖 +
∑︀

𝑖>𝑗 𝑝𝑖,𝑗𝑥𝑖𝑥𝑗 + 𝑝𝑜. Taking (𝑃2)𝑖,𝑖 = 𝑝𝑖,𝑖 and (𝑃 ′
2)𝑖,𝑗 =

(𝑃 ′
2)𝑗,𝑖 =

1
2
𝑝𝑖,𝑗, for 𝑖 > 𝑗, gives that 𝑝(𝑥) = 𝑥𝑇𝑃 ′

2𝑥 + 𝑝0. Taking 𝑃2 = Σ1/2𝑃 ′
2Σ

1/2, we

have 𝑝(𝑥) = (Σ−1/2𝑥)𝑇𝑃2(Σ
−1/2𝑥) + 𝑝0, for a 𝑑× 𝑑 symmetric matrix 𝑃2 and 𝑝0 ∈ R.

Let 𝑃2 = 𝑈𝑇Λ𝑈 , where 𝑈 is orthogonal and Λ is diagonal be an eigen-decomposition

of the symmetric matrix 𝑃2. Then, 𝑝(𝑥) = (𝑈Σ−1/2𝑥)𝑇𝑃2(𝑈Σ
−1/2𝑥). Let 𝑋 ∼ 𝐺 and

𝑌 = 𝑈Σ−1/2𝑋. Then, 𝑌 ∼ 𝒩 (0, 𝐼) and 𝑝(𝑋) =
∑︀

𝑖 𝜆𝑖𝑌
2
𝑖 + 𝑝0 for independent

Gaussians 𝑌𝑖. Thus, 𝑝(𝑋) follows a generalized 𝜒2-distribution.

Thus, we have

E[𝑝(𝑋)] = E

[︃∑︁
𝑖

𝜆𝑖𝑌
2
𝑖 + 𝑝0

]︃
= 𝑝0 +

∑︁
𝑖

𝜆𝑖 = 𝑝0 + tr(𝑃2) ,

and

Var[𝑝(𝑋)] = Var

[︃∑︁
𝑖

𝜆𝑖𝑌
2
𝑖 + 𝑝0

]︃
=
∑︁
𝑖

𝜆2𝑖 = ‖𝑃𝐹‖2 .

Lemma E.2.1 (cf. Lemma 1 from [LM00]). Let 𝑍 =
∑︀

𝑖 𝑎𝑖𝑌
2
𝑖 , where 𝑌𝑖 are indepen-

dent random variables distributed as 𝒩 (0, 1). Let 𝑎 be the vector with coordinates 𝑎𝑖.

Then,

Pr(𝑍 ≥ 2‖𝑎‖2
√
𝑥+ 2‖𝑎‖∞𝑥) ≤ exp(−𝑥) .
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We thus have:

Pr

⎛⎝∑︁
𝑖

𝜆𝑖(𝑌
2
𝑖 − 1) > 2

√︃
(
∑︁
𝑖

𝜆2𝑖 )𝑡+ 2(max
𝑖
𝜆𝑖)𝑡

⎞⎠ ≤ 𝑒−𝑡 .

Noting that tr(𝑃2) =
∑︀

𝑖 𝜆𝑖,
∑︀

𝑖 𝜆
2
𝑖 = ‖𝑃2‖𝐹 and max𝑖 𝜆𝑖 = ‖𝑃2‖2 ≤ ‖𝑃2‖, for 𝜇𝑝 =

E[𝑝(𝑋)] we have:

Pr(𝑝(𝑋)− 𝜇𝑝 > 2‖𝑃2‖𝐹 (
√
𝑡+ 𝑡)) ≤ 𝑒−𝑡 .

Noting that 2
√
𝑎 = 1 + 𝑎− (1−

√
𝑎)2 ≤ 1 + 𝑎 for 𝑎 > 0, we have

Pr(𝑝(𝑋)− 𝜇𝑝 > ‖𝑃2‖𝐹 (3𝑡+ 1)) ≤ 𝑒−𝑡 .

Applying this for −𝑝(𝑥) instead of 𝑝(𝑥) and putting these together, we get

Pr(|𝑝(𝑋)− 𝜇𝑝| > ‖𝑃2‖𝐹 (3𝑡+ 1)) ≤ 2𝑒−𝑡 .

Substituting 𝑡 = 𝑇/3‖𝑃2‖𝐹 − 1/3, and 2‖𝑃2‖2𝐹 = Var𝑋∼𝐺(𝑝(𝑋)) gives:

Pr(|𝑝(𝑋)− E
𝑋∼𝐺

[𝑝(𝑋)]| ≥ 𝑇 ) ≤ 2𝑒1/3−2𝑇/3Var𝑋∼𝐺[𝑝(𝑋)] .

The final property is a consequence of the following anti-concentration inequality:

Theorem E.2.2 ([CW01]). Let 𝑝 : R𝑑 → R be a degree-𝑑 polynomial. Then, for

𝑋 ∼ 𝒩 (0, 𝐼), we have

Pr(|𝑝(𝑋)| ≤ 𝜀
√︀

E[𝑝(𝑋)2] ≤ 𝑂(𝑑𝜀1/𝑑) .

This completes the proof.

E.3 Proof of Lemma 5.4.3

Proof of Lemma 5.4.3: Firstly, we note that it suffices to prove this for the case Σ = 𝐼,

since for 𝑋 ∼ 𝒩 (0,Σ), 𝑌 = Σ−1/2𝑋 is distributed as 𝒩 (0, 𝐼), and all the conditions
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transform to those for 𝐺 = 𝒩 (0, 𝐼) under this transformation.

Condition 5.18 follows by standard concentration bounds on ‖𝑥‖22. Condition 5.19

follows by estimating the entry-wise error between Cov(𝑆) and 𝐼. These two condi-

tions hold by Lemma 5.3.2.

Condition 5.20 is slightly more involved. Let {𝑝𝑖} be an orthonormal basis for

the set of even, degree-2, mean-0 polynomials with respect to 𝐺. Define the matrix

𝑀𝑖,𝑗 = E𝑥∈𝑢𝑆[𝑝𝑖(𝑥)𝑝𝑗(𝑥)] − 𝛿𝑖,𝑗. This condition is equivalent to ‖𝑀‖2 = 𝑂(𝜀). Thus,

it suffices to show that for every 𝑣 with ‖𝑣‖2 = 1 that 𝑣𝑇𝑀𝑣 = 𝑂(𝜀). It actually

suffices to consider a cover of such 𝑣’s. Note that this cover will be of size 2𝑂(𝑑2). For

each 𝑣, let 𝑝𝑣 =
∑︀

𝑖 𝑣𝑖𝑝𝑖. We need to show that Var(𝑝𝑣(𝑆)) = 1 +𝑂(𝜀). We can show

this happens with probability 1− 𝜏2−Ω(𝑑2), and thus it holds for all 𝑣 in our cover by

a union bound.

Condition 5.21 is substantially the most difficult of these conditions to prove.

Naively, we would want to find a cover of all possible 𝑝 and all possible 𝑇 , and bound

the probability that the desired condition fails. Unfortunately, the best a priori bound

on Pr(|𝑝(𝐺)| > 𝑇 ) are on the order of exp(−𝑇 ). As our cover would need to be of

size 2𝑑
2 or so, to make this work with 𝑇 = 𝑑, we would require on the order of 𝑑3

samples in order to make this argument work.

However, we will note that this argument is sufficient to cover the case of 𝑇 <

10 log(1/𝜀) log2(𝑑/𝜀).

Fortunately, most such polynomials 𝑝 satisfy much better tail bounds. Note that

any even, mean zero polynomial 𝑝 can be written in the form 𝑝(𝑥) = 𝑥𝑇𝐴𝑥 − tr(𝐴)

for some matrix 𝐴. We call 𝐴 the associated matrix to 𝑝. We note by the Hanson-

Wright inequality that Pr𝑋∼𝐺(|𝑝(𝑋)| > 𝑇 ) = exp(−Ω(min((𝑇/‖𝐴‖𝐹 )2, 𝑇/‖𝐴‖2))).

Therefore, the tail bounds above are only as bad as described when 𝐴 has a single

large eigenvalue. To take advantage of this, we will need to break 𝑝 into parts based

on the size of its eigenvalues. We begin with a definition:

Definition E.3.1. Let 𝒫𝑘 be the set of even, mean-0, degree-2 polynomials, such

that the associated matrix 𝐴 satisfies:
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1. rank(𝐴) ≤ 𝑘

2. ‖𝐴‖2 ≤ 1/
√
𝑘.

Note that for 𝑝 ∈ 𝒫𝑘 that |𝑝(𝑥)| ≤ |𝑥|2/
√
𝑘 +
√
𝑘.

Importantly, any polynomial can be written in terms of these sets.

Lemma E.3.1. Let 𝑝 be an even, degree-2 polynomial with E𝑋∼𝐺[𝑝(𝑋)] = 0,Var𝑋∼𝐺(𝑝(𝑋)) =

1. Then if 𝑡 = ⌊log2(𝑑)⌋, it is possible to write 𝑝 = 2(𝑝1 + 𝑝2 + . . . + 𝑝2𝑡 + 𝑝𝑑) where

𝑝𝑘 ∈ 𝒫𝑘.

Proof. Let 𝐴 be the associated matrix to 𝑝. Note that ‖𝐴‖𝐹 = Var 𝑝 = 1. Let 𝐴𝑘

be the matrix corresponding to the top 𝑘 eigenvalues of 𝐴. We now let 𝑝1 be the

polynomial associated to 𝐴1/2, 𝑝2 be associated to (𝐴2 − 𝐴1)/2, 𝑝4 be associated to

(𝐴4 − 𝐴2)/2, and so on. It is clear that 𝑝 = 2(𝑝1 + 𝑝2 + . . . + 𝑝2𝑡 + 𝑝𝑑). It is also

clear that the matrix associated to 𝑝𝑘 has rank at most 𝑘. If the matrix associated

to 𝑝𝑘 had an eigenvalue more than 1/
√
𝑘, it would need to be the case that the 𝑘/2𝑛𝑑

largest eigenvalue of 𝐴 had size at least 2/
√
𝑘. This is impossible since the sum of

the squares of the eigenvalues of 𝐴 is at most 1.

This completes our proof.

We will also need covers of each of these sets 𝒫𝑘. We will assume that con-

dition 5.18 holds, i.e., that ‖𝑥‖2 ≤
√
𝑅, where 𝑅 = 𝑂(𝑑 log(𝑑/𝜀𝜏)). Under this

condition, 𝑝(𝑥) cannot be too large and this affects how small a variance polynomial

we can ignore.

Lemma E.3.2. For each 𝑘, there exists a set 𝒞𝑘 ⊂ 𝒫𝑘 such that

1. For each 𝑝 ∈ 𝒫𝑘 there exists a 𝑞 ∈ 𝒞𝑘 such that Var𝑋∼𝐺(𝑝(𝑋)−𝑞(𝑋)) ≤ 1/𝑅2𝑑2.

2. |𝒞𝑘| = 2𝑂(𝑑𝑘 log𝑅).

Proof. We note that any such 𝑝 is associated to a matrix 𝐴 of the form 𝐴 =∑︀𝑘
𝑖=1 𝜆𝑖𝑣𝑖𝑣

𝑇
𝑖 , for 𝜆𝑖 ∈ [0, 1/

√
𝑘] and 𝑣𝑖 orthonormal. It suffices to let 𝑞 correspond to

the matrix 𝐴′ =
∑︀𝑘

𝑖=1 𝜇𝑖𝑤𝑖𝑤
𝑇
𝑖 for with |𝜆𝑖 − 𝜇𝑖| < 1/𝑅2𝑑3 and |𝑣𝑖 − 𝑤𝑖| < 1/𝑅2𝑑3
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for all 𝑖. It is easy to let 𝜇𝑖 and 𝑤𝑖 range over covers of the interval and the sphere

with appropriate errors. This gives a set of possible 𝑞’s of size 2𝑂(𝑑𝑘 log𝑅) as desired.

Unfortunately, some of these 𝑞 will not be in 𝒫𝑘 as they will have eigenvalues that

are too large. However, this is easily fixed by replacing each such 𝑞 by the closest

element of 𝒫𝑘. This completes our proof.

We next will show that these covers are sufficient to express any polynomial.

Lemma E.3.3. Let 𝑝 ∈ 𝒫2(Σ). It is possible to write 𝑝 as a sum of 𝑂(log(𝑑))

elements of some 𝒞𝑘 plus another polynomial of variance at most 𝑂(1/𝑅2).

Proof. Combining the above two lemmata we have that any such 𝑝 can be written as

𝑝 = (𝑞1 + 𝑝1) + (𝑞2 + 𝑝2) + . . . (𝑞2𝑡 + 𝑝2𝑡) + (𝑞𝑑 + 𝑝𝑑) = 𝑞1 + 𝑞2 + . . .+ 𝑞2
𝑡

+ 𝑞𝑑 + 𝑝′ ,

where 𝑞𝑘 above is in 𝒞𝑘 and Var𝑋∼𝐺[𝑝𝑘(𝑋)] < 1/𝑅2𝑑2. Thus, 𝑝′ = 𝑝1+𝑝2+. . .+𝑝2𝑡+𝑝𝑑

has Var𝑋∼𝐺[𝑝
′(𝑋)] ≤ 𝑂(1/𝑅2). This completes the proof.

The key observation now is that if |𝑝(𝑥)| ≥ 𝑇 for ‖𝑥‖2 ≤
√︀
𝑑/𝜀, then writing 𝑝 =

𝑞1+𝑞2+𝑞4+. . .+𝑞𝑑+𝑝
′ as above, it must be the case that |𝑞𝑘(𝑥)| > (𝑇−1)/(2 log(𝑑)) for

some 𝑘. Therefore, to prove our main result, it suffices to show that, with high proba-

bility over the choice of 𝑆, for any 𝑇 ≥ 10 log(1/𝜀) log2(𝑑/𝜀) and any 𝑞 ∈ 𝒞𝑘 for some 𝑘,

that Pr𝑥∈𝑢𝑆(|𝑞(𝑥)| > 𝑇/(2 log(𝑑))) < 𝜀/(2𝑇 2 log2(𝑇 ) log(𝑑)). Equivalently, it suffices

to show that for 𝑇 ≥ 10 log(1/𝜀) log(𝑑/𝜀) it holds Pr𝑥∈𝑢𝑆(|𝑞(𝑥)| > 𝑇/(2 log(𝑑))) <

𝜀/(2𝑇 2 log2(𝑇 ) log2(𝑑)). Note that this holds automatically for 𝑇 > 𝑅, as 𝑝(𝑥) cannot

possibly be that large for ‖𝑥‖2 ≤
√
𝑅. Furthermore, note that losing a constant factor

in the probability, it suffices to show this only for 𝑇 a power of 2.

Therefore, it suffices to show for every 𝑘 ≤ 𝑑, every 𝑞 ∈ 𝒞𝑘 and every 𝑅/
√
𝑘 ≫

𝑇 ≫ log(1/𝜀) log𝑅 that with probability at least 1−𝜏2−Ω(𝑑𝑘 log𝑅) over the choice of 𝑆

we have that Pr𝑥∈𝑢𝑆(|𝑞(𝑥)| > 𝑇 )≪ 𝜀/(𝑇 2 log4(𝑅)). However, by the Hanson-Wright

inequality, we have that

Pr
𝑋∼𝐺

(|𝑞(𝑋)| > 𝑇 ) = exp(−Ω(min(𝑇 2, 𝑇
√
𝑘))) < (𝜀/(𝑇 2 log4𝑅))2 .
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Therefore, by Chernoff bounds, the probability that more than a 𝜀/(𝑇 2 log4𝑅)-

fraction of the elements of 𝑆 satisfy this property is at most

exp(−Ω(min(𝑇 2, 𝑇
√
𝑘))|𝑆|𝜀/(𝑇 2 log4𝑅)) = exp(−Ω(|𝑆|𝜀/(log4𝑅)min(1,

√
𝑘/𝑇 )))

≤ exp(−Ω(|𝑆|𝑘𝜀2/𝑅(log4𝑅)))

≤ exp(−Ω(|𝑆|𝑘𝜀/𝑑(log(𝑑/𝜀𝜏))(log4(𝑑/ log(1/𝜀𝜏)))))

≤ 𝜏 exp(−Ω(𝑑𝑘 log(𝑑/𝜀))) ,

as desired.

This completes our proof.
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Appendix F

Omitted Details from Chapter 6

F.1 Full description of the distributions for synthetic

and semi-synthetic experiments

Here we formally describe the distributions we used in our experiments. In all settings,

our goal was to find noise distributions so that noise points were not “obvious” outliers,

in the sense that there is no obvious pointwise pruning process which could throw

away the noise points, which still gave the algorithms we tested the most difficulty.

We again remark that while other algorithms had varying performances depending

on the noise distribution, it seemed that the performance of ours was more or less

unaffected by it.

Distribution for the synthetic mean experiment Our uncorrupted points were

generated by 𝒩 (𝜇, 𝐼), where 𝜇 is the all-ones vector. Our noise distribution is given

as

𝑁 =
1

2
Π1 +

1

2
Π2 ,

where Π1 is the product distribution over the hypercube where every coordinate is 0

or 1 with probability 1/2, and Π2 is a product distribution where the first coordinate

is ether 0 or 12 with equal probability, the second coordinate is −2 or 0 with equal
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probability, and all remaining coordinates are zero.

Distribution for the synthetic covariance experiment For the isotropic syn-

thetic covariance experiment, our uncorrupted points were generated by 𝒩 (0, 𝐼), and

the noise points were all zeros. For the skewed synthetic covariance experiment, our

uncorrupted points were generated by 𝒩 (0, 𝐼 + 100𝑒1𝑒
𝑇
1 ), where 𝑒1 is the first unit

vector, and our noise points were generated as follows: we took a fixed random rota-

tion of points of the form 𝑌𝑖 ∼ Π, where Π is a product distribution whose first 𝑑/2

coordinates are each uniformly selected from {−0.5, 0, 0.5}, and whose next 𝑑/2 − 1

coordinates are each 0.8×𝐴𝑖, where for each coordinate 𝑖, 𝐴𝑖 is an independent ran-

dom integer between −2 and 2, and whose last coordinate is a uniformly random

integer between [−100, 100].

Setup for the semi-synthetic geographic experiment We took the 20 dimen-

sional data from [NJB+08], which was diagonalized, and randomly rotated it. This

was to simulate the higher dimensional case, since the singular vectors that [NJB+08]

obtained did not seem to be sparse or analytically sparse. Our noise was distributed

as Π, where Π is a product distribution whose first 𝑑/2 coordinates are each uniformly

random integers between 0 and 2 and whose last 𝑑/2 coordinates are each uniformly

randomly either 2 or 3, all scaled by a factor of 1/24.

F.1.1 Comparison with other robust PCA methods on semi-

synthetic data

In addition to comparing our results with simple pruning techniques, as we did in

Figure 3 in the main text, we also compared our algorithm with implementations of

other robust PCA techniques from the literature with accessible implementations. In

particular, we compared our technique with RANSAC-based techniques, LRVCov, two

SDPs ([CLMW11, XCS10]) for variants of robust PCA, and an algorithm proposed by

[CLMW11] to speed up their SDP based on alternating descent. For the SDPs, since

black box methods were too slow to run on the full data set (as [CLMW11] mentions,
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black-box solvers for the SDPs are impractical above perhaps 100 data points), we

subsample the data, and run the SDP on the subsampled data. For each of these

methods, we ran the algorithm on the true data points plus noise, where the noise

was generated as described above. We then take the estimate of the covariance it

outputs, and project the data points onto the top two singular values of this matrix,

and plot the results in Figure F-1.

Similar results occurred for most noise patterns we tried. We found that only our

algorithm and LRVCov were able to reasonably reconstruct Europe, in the presence

of this noise. It is hard to judge qualitatively which of the two maps generated is

preferable, but it seems that ours stretches the picture somewhat less than LRVCov.
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F.2 Full table for watermarking experiments

Table F.1: Full table of accuracy and number of poisoned images left for different
attack parameters. For each attack to target label pair, we provide a few experimental
runs with different watermarks.

Sample Target Epsilon Nat 1 Pois 1 # Pois Left Nat 2 Pois 2 Std Pois

bird
5% 92.27% 74.20% 57 92.64% 2.00%

1.20%
10% 92.32% 89.80% 7 92.68% 1.50%

bird
5% 92.49% 98.50% 0 92.76% 2.00%

1.90%
10% 92.55% 99.10% 0 92.89% 0.60%

bird
5% 92.66% 89.50% 14 92.59% 1.40%

1.10%
10% 92.63% 95.50% 2 92.77% 0.90%

cat
5% 92.45% 83.30% 24 92.24% 0.20%

0.10%
10% 92.39% 92.00% 0 92.44% 0.00%

cat
5% 92.60% 95.10% 1 92.51% 0.10%

0.10%
10% 92.83% 97.70% 1 92.42% 0.00%

cat
5% 92.80% 96.50% 0 92.77% 0.10%

0.00%
10% 92.74% 99.70% 0 92.71% 0.00%

dog
5% 92.91% 98.70% 0 92.59% 0.00%

0.00%
10% 92.51% 99.30% 0 92.66% 0.10%

dog
5% 92.17% 89.80% 7 93.01% 0.00%

0.00%
10% 92.55% 94.30% 1 92.64% 0.00%

horse
5% 92.38% 96.60% 0 92.87% 0.80%

0.80%
10% 92.72% 99.40% 0 93.02% 0.40%

horse
5% 92.60% 99.80% 0 92.57% 1.00%

0.80%
10% 92.26% 99.80% 0 92.63% 1.20%

cat
5% 92.68% 97.60% 1 92.72% 8.20%

7.20%
10% 92.59% 99.00% 4 92.80% 7.10%

cat
5% 92.86% 98.60% 0 92.79% 8.30%

8.00%
10% 92.29% 99.10% 0 92.57% 8.20%

deer
5% 92.68% 99.30% 0 92.68% 1.10%

1.00%
10% 92.68% 99.90% 0 92.74% 1.60%

deer
5% 93.25% 97.00% 1 92.75% 2.60%

1.10%
10% 92.31% 97.60% 1 93.03% 1.60%

frog
5% 92.87% 88.80% 10 92.61% 0.10%

0.30%
10% 92.82% 93.70% 3 92.74% 0.10%

frog
5% 92.79% 99.60% 0 92.71% 0.20%

0.20%
10% 92.49% 99.90% 0 92.58% 0.00%

bird
5% 92.52% 97.90% 0 92.69% 0.00%

0.00%
10% 92.68% 99.30% 0 92.45% 0.50%

bird
5% 92.51% 87.80% 1 92.66% 0.20%

0.00%
10% 92.74% 94.40% 0 92.91% 0.10%
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Figure F-1: Comparison with other robust methods on the Europe semi-synthetic
data. From left to right, top to bottom: the original projection without noise,
what our algorithm recovers, RANSAC, LRVCov, the ADMM method proposed by
[CLMW11], the SDP proposed by [XCS10] with subsampling, and the SDP proposed
by [CLMW11] with subsampling. 365
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Appendix G

Additional Experimental Results for

Sever

In this section, we provide additional plots of our experimental results, comparing

with all baselines considered.
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Figure G-1: 𝜀 vs test error for baselines and Sever on synthetic data and the drug
discovery dataset. The left and middle figures show that Sever continues to maintain
statistical accuracy against our attacks which are able to defeat previous baselines.
The right figure shows an attack with parameters chosen to increase the test error
Sever on the drug discovery dataset as much as possible. Despite this, Sever still
has relatively small test error.
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Figure G-2: 𝜀 vs test error for baselines and Sever on synthetic data. The left
figure demonstrates that Sever is accurate when outliers manage to defeat previous
baselines. The right figure shows the result of attacks which increased the test error
the most against Sever. Even in this case, Sever performs much better than the
baselines.
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Figure G-3: 𝜀 versus test error for baselines and Sever on the Enron spam corpus.
The left and middle figures are the attacks which perform best against two baselines,
while the right figure performs best against Sever. Though other baselines may
perform well in certain cases, only Sever is consistently accurate. The exception is
for certain attacks at 𝜀 = 0.03, which, as shown in Figure 7-6, require three rounds
of outlier removal for any method to obtain reasonable test error – in these plots, our
defenses perform only two rounds.
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In this love scenario that we made

All the lights are now turned off

And when you flip the last page

The curtains will quietly fall—
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