Problem 1:

Problem 2:

Homework 1

October 22, 2019

Completing the picture for univariate Gaussian robust mean estimation. Recall that in
Lecture 1 we showed that the median recovered the mean of a Gaussian with additively corrupted
samples from a Gaussian N (p,1) to error O(e), and in Lecture 2 we showed that no algorithm can
do better than Q(e) given corrupted samples from N(u,1). Here we’ll extend these bounds, and show
that ©(e) is the right answer, for all these models of corruption.

(a) Verify that for e sufficiently small, the median still achieves O(g) error to p with high probability,
given e-corrupted samples from A (p, 1).

(b) Show that for any ¢ < 1/2 and any two distributions Dy, D, if drv (D1, D2) = €/(1 — ¢), then
there exists a distribution U so that U = (1 — ¢)D; + eNy = (1 — €)Ds 4+ €Ny for some noise
distributions N7, Na. Conclude that no algorithm can learn the mean of a Gaussian with variance
1 given e-obliviously additively corrupted samples to error better than (e).

Population level spectral signatures. In this problem we will prove Lemma 4.1 from Lecture 4,
step-by-step. We reproduce the lemma below for completeness.

Lemma 0.1. Let ¢ € [0,1/2), and let § > 0. Let D be a distribution over R with mean p and
covariance X X I. Let X1,..., X, ~ D be i.i.d random variables. Then, there exist universal constants
¢, so that with probability 1 — § — exp(—S(em)), there exists a set Sgooa C [m] so that |S| > (1 —e)m

and:
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where I = Saood] ZieSgwd X;.

The set Sgo0q We will take is actually quite simple. For some constant o > 0, define the event
d
E={X: X —pll, </ =}
Qe

(a) Show that with probability 1 — exp(—Q(em)), we have that |Sgoed| > (1 — €)m.

(b) Show that |E[(X — u)Ixer]ll, < ve. Conditioned on |Sgooa| > (1 — €)m, conclude that with
probability 1 — 4, (1) holds.

(c) Conditioned on [Sgood| > (1 — €)m, prove (2) holds with probability 1 — é. The following matrix
Chernoff bound will be useful, and you may use it without proof:

and let Sgo0qa = {X; : X; € E}.
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Fact 0.2. Let My, ..., M, € R™? be a sequence of independent random PSD matrices. Assume
that | Mi]|y < L for alli = 1,...,n almost surely, and suppose that |[E[>°" | M;l|l, < n. Then,
for all t > 2, we have
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Breakdown points. The breakdown point of an estimator is the largest ¢ so that for any d, there is
n = f(d) so that given a set of e-corrupted data of size n from a distribution D with bounded second
moments (or more generally, from any given class of distributions), the estimator achieves bounded
error as d — oo with probability at least 9/10 (this constant is arbitrary). In Lecture 5 we argued that
the breakdown point of the filter was at least € = 0.134.

Change the invariant preserved by the filtering algorithm for bounded second moments to
o Z w;T; < Z W;T;
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for o € [0, 00).

(a) Demonstrate that by changing constants in the algorithm, we can maintain this more general
invariant.

(b) By optimizing «, how large of a breakdown point can you achieve?

From TV to Frobenius norm. Let X5 = 0. Prove that
dTV(N(OaI)aN(O722)) S HI - EQ”F .
Hint: Use Pinsker’s inequality.

Completing the picture for robustly learning Gaussians. Let ¢ > 0 be sufficiently small, and
let 3 > 0. Throughout this problem, suppose you have an polynomial-time estimator which, given

e-corrupted samples S from N(0,X), outputs S so that HZ — EHE < 4.

(a) Give an polynomial-time estimator which, given e/2-corrupted samples from N (i, X) for g and X
both unknown, outputs S so that HE -3 ’2 <.

(b) Verify that the Gaussian filter presented in Lecture 7 still can achieve non-trivial recovery, if the
covariance X of the Gaussian is unknown but satisfies | X — I||, < . What is the final error you
get, as a function of € and 67

(¢) Using parts (a) and (b), give an polynomial-time algorithm which, given an e-corrupted set of
samples from N (u,Y), outputs @ and 3 so that

Aoy (N (1, D), N (7, %)) S 0+ /zlog1/e .

As a remark, the best efficiently achievable 6 is O(elog1/¢), and so this yields an algorithm which
achieves overall error O(elog1/e).



