
Homework 1

October 22, 2019

Problem 1: Completing the picture for univariate Gaussian robust mean estimation. Recall that in
Lecture 1 we showed that the median recovered the mean of a Gaussian with additively corrupted
samples from a Gaussian N (µ, 1) to error O(ε), and in Lecture 2 we showed that no algorithm can
do better than Ω(ε) given corrupted samples from N (µ, 1). Here we’ll extend these bounds, and show
that Θ(ε) is the right answer, for all these models of corruption.

(a) Verify that for ε sufficiently small, the median still achieves O(ε) error to µ with high probability,
given ε-corrupted samples from N (µ, 1).

(b) Show that for any ε < 1/2 and any two distributions D1, D2, if dTV(D1, D2) = ε/(1 − ε), then
there exists a distribution U so that U = (1 − ε)D1 + εN1 = (1 − ε)D2 + εN2 for some noise
distributions N1, N2. Conclude that no algorithm can learn the mean of a Gaussian with variance
1 given ε-obliviously additively corrupted samples to error better than Ω(ε).

Problem 2: Population level spectral signatures. In this problem we will prove Lemma 4.1 from Lecture 4,
step-by-step. We reproduce the lemma below for completeness.

Lemma 0.1. Let ε ∈ [0, 1/2), and let δ > 0. Let D be a distribution over Rd with mean µ and
covariance Σ � I. Let X1, . . . , Xm ∼ D be i.i.d random variables. Then, there exist universal constants
c, c′ so that with probability 1− δ− exp(−Ω(εm)), there exists a set Sgood ⊆ [m] so that |S| ≥ (1− ε)m
and:
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The set Sgood we will take is actually quite simple. For some constant α > 0, define the event

E =

{
X : ‖X − µ‖2 ≤

√
d

αε

}
,

and let Sgood = {Xi : Xi ∈ E}.

(a) Show that with probability 1− exp(−Ω(εm)), we have that |Sgood| ≥ (1− ε)m.

(b) Show that ‖E [(X − µ)IX∈E ]‖2 .
√
ε. Conditioned on |Sgood| ≥ (1 − ε)m, conclude that with

probability 1− δ, (1) holds.

(c) Conditioned on |Sgood| ≥ (1 − ε)m, prove (2) holds with probability 1 − δ. The following matrix
Chernoff bound will be useful, and you may use it without proof:
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Fact 0.2. Let M1, . . . ,Mn ∈ Rd×d be a sequence of independent random PSD matrices. Assume
that ‖Mi‖2 ≤ L for all i = 1, . . . , n almost surely, and suppose that ‖E [

∑n
i=1Mi]‖2 ≤ n. Then,

for all t ≥ 2, we have

Pr
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≥ tn

]
≤ d exp (−Ω(tn/L)) .

Problem 3: Breakdown points. The breakdown point of an estimator is the largest ε so that for any d, there is
n = f(d) so that given a set of ε-corrupted data of size n from a distribution D with bounded second
moments (or more generally, from any given class of distributions), the estimator achieves bounded
error as d→∞ with probability at least 9/10 (this constant is arbitrary). In Lecture 5 we argued that
the breakdown point of the filter was at least ε = 0.134.

Change the invariant preserved by the filtering algorithm for bounded second moments to

α
∑

i∈Sgood

wiτi <
∑

i∈Sbad

wiτi ,

for α ∈ [0,∞).

(a) Demonstrate that by changing constants in the algorithm, we can maintain this more general
invariant.

(b) By optimizing α, how large of a breakdown point can you achieve?

Problem 4: From TV to Frobenius norm. Let Σ2 � 0. Prove that

dTV(N (0, I),N (0,Σ2)) . ‖I − Σ2‖F .

Hint: Use Pinsker’s inequality.

Problem 5: Completing the picture for robustly learning Gaussians. Let ε > 0 be sufficiently small, and
let Σ � 0. Throughout this problem, suppose you have an polynomial-time estimator which, given

ε-corrupted samples S from N (0,Σ), outputs Σ̂ so that
∥∥∥Σ− Σ̂

∥∥∥
Σ
≤ δ.

(a) Give an polynomial-time estimator which, given ε/2-corrupted samples from N (µ,Σ) for µ and Σ

both unknown, outputs Σ̂ so that
∥∥∥Σ− Σ̂

∥∥∥
Σ
≤ δ.

(b) Verify that the Gaussian filter presented in Lecture 7 still can achieve non-trivial recovery, if the
covariance Σ of the Gaussian is unknown but satisfies ‖Σ− I‖2 < δ. What is the final error you
get, as a function of ε and δ?

(c) Using parts (a) and (b), give an polynomial-time algorithm which, given an ε-corrupted set of

samples from N (µ,Σ), outputs µ̂ and Σ̂ so that

dTV(N (µ,Σ),N (µ̂, Σ̂)) . δ +
√
ε log 1/ε .

As a remark, the best efficiently achievable δ is O(ε log 1/ε), and so this yields an algorithm which
achieves overall error O(ε log 1/ε).
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