Homework 2

December 5, 2019

- Problem 1: **Trying out adversarial examples.** We're obviously not going to grade this one, but if you have the resources, try making an adversarial example for a standard neural network! This library is a good starting point: https://github.com/MadryLab/robustness.
- Problem 2: Certifying classical learning algorithms. For the following binary classification models, give an efficient (i.e. polynomial time) certification algorithm. If you can't find an exact one, give a convex relaxation, as best as you can:
 - The classifier is a linear model, i.e. $f(X) = \operatorname{sgn}(\langle X, \theta \rangle)$ for some $\theta \in \mathbb{R}^d$, and the perturbation set is $\mathcal{P}_{2,\varepsilon}$.
 - The classifier is a linear model, i.e. $f(X) = \operatorname{sgn}(\langle X, \theta \rangle)$ for some $\theta \in \mathbb{R}^d$, and the perturbation set is $\mathcal{P}_{\infty,\varepsilon}$.
 - The classifier is a linear model with a polynomial kernel, i.e. f(X) = sgn(p(X)), where p is a degree k polynomial, for some constant k, and the perturbation set is $\mathcal{P}_{2,\varepsilon}$.
 - The classifier is a nearest neighbor classifier, i.e. we have two datasets S_0, S_1 , and our classifier is $f(X) = \arg\min_i \min_{x' \in S_i} ||x x_i||_2^2$, and the perturbation set is $\mathcal{P}_{2,\varepsilon}$. Here efficient means time which is polynomial in the dimension and in the size of S_0 and S_1 .
- Problem 3: Histograms with approximate DP. Let $f : \mathcal{X}^n \to \mathbb{R}^S$ be a histogram over a potentially infinite range S. Consider the following algorithm. Given $x \in \mathcal{X}^n$, construct $a \in \mathbb{R}^S$ as follows:
 - If $f(x)_S = 0$ for some $S \in S$, then set $a_S = 0$.
 - If $f(x)_S \neq 0$, then:
 - (a) Set $a'_S = f(x)_S + \operatorname{Lap}(\frac{2}{\varepsilon n})$.
 - (b) If $a'_S < \frac{2\ln(2/\delta)}{\varepsilon n} + 1/n$, then let $a_S = 0$. Otherwise, let $a_S = a'_S$.
 - (a) Show that with probability ≥ 0.99 , $||f(x) a||_{\infty} \lesssim \frac{\log 1/\delta}{\varepsilon}$.
 - (b) Show that the map x → a is (ε, δ)-differentially private. Hint: Let x, x' be adjacent datasets, and decompose S into four subsets, namely, sets S where both f(x)_S and f(x')_S are non-zero, sets S where only one of f(x)_S, f(x')_S are nonzero, and sets where both are zero. What can you say about the privacy guarantee on each type of set?