
Lecture 11: The four worlds hypothesis: models for adversarial examples

October 28, 2019

In this lecture, we’ll try to address the following ill-formed question:

Why do adversarial examples for samples from natural distributions exist?

In this class, we’ll see a number of explanations of why adversarial examples exist, of varying plausibility.
Underlying all of these settings are different toy generative models which exhibit different behaviors under
adversarial perturbations. Roughly speaking, these toy models live in one of four worlds:

1. Adversarial examples are statistically inevitable. This first world is the most pessimistic: it
says that we should never exist that we can ever get adversarially robust estimators.

2. Robust classifiers require more data. This second world suggests another, but less fatal, statistical
bottleneck: that we can get adversarially robust estimators, but we are currently limited by the amount
of data we have.

3. Robust classification is computationally intractable. The third possibility suggests a different
problem: that there exist classifiers that are robust, but that it may be hard to find them efficiently.

4. Efficient robust classifiers exist. The final world suggests that we are just dumb, and there exist
robust classifiers, but we just haven’t found the right algorithm.

In the rest of this lecture, we’ll go into depth into these settings. Since there’s not much to say about the
fourth world, we’ll omit it, but in the rest of the lecture we’ll see examples for the first three. All of these
settings will be a huge oversimplification of the actual generative model we care about (i.e. the distribution
over natural images). The question is whether they still shed any light on the real-world phenomena.

Notation Let us first recall some notation from last lecture. Recall that given a distribution D over labeled
examples (X, y), a set of defined perturbations P(x) for each x ∈ Rd, a classifier f , and a loss function `, we
defined

R(f) = R(f,D,P, `) = E
(X,y)∼D

[`(f(X), y)]

Rrob(f,P) = Rrob(f,D,P, `) = E
(X,y)∼D

[
sup

X′∈P(X)

`(f(X ′), y)

]
.

A special case of this which we will consider extensively throughout this class is the case where ` = `0/1 is
the zero-one loss. We will also focus in this class on the case where the perturbation sets P are bounded `p
balls. Recall that for every x ∈ Rd, we let Pp,ε(x) to be the `p ball of radius ε around x.
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1 Adversarial examples are statistically inevitable

Here we’ll give some examples where it is impossible to avoid adversarial examples. The simplest setting is
one we’ll revisit, so we’ll give it a name:

Definition 1.1 (The (θ∗, σ)-Gaussian model). Let θ ∈ Rd, and let σ ∈ (0,∞]. We say a sample (X, y) ∈
Rd×{±1} is drawn from the (θ, σ)-Gaussian model, denoted F(θ, σ), if it is produced as follows: first, draw
y ∈ {±1} uniformly at random, then let X ∼ N (yθ, σ2I).

Then, we have:

Theorem 1.1. Let θ ∈ Rd be the vector whose coordinates are θi =
√

log d√
d

for all i ∈ [d]. Let S =

{(X1, y1), . . . , (Xn, yn)} be a set of n i.i.d. samples from F(θ, 1). Then:

(a) if n & d, there exists an estimator fS(x) so that R(fS ,F , `0/1) ≤ 1/poly(d).

(b) for any estimator f , and any δ > 0 we have

Rrob

(
f,F ,P∞,2

√
log d√
d

, `0/1

)
≥ 1

2
.

Roughly speaking, this theorem states that in this setting, given enough data, there is an estimator that
succeeds at the non-robust version of the classification task with extremely high probability. However, there
is no classifier that can succeed at the robust version of the classification task, even given a vanishing amount
of coordinate-wise noise. Note that the trivial estimator (i.e. guess ±1 deterministically) achieves risk 1/2,
so the lower bound says beating the trivial bound is impossible.

Proof of Theorem 1.1. We will first prove (a). The estimator is simple: given S, let θ̂ = 1
n

∑
yiXi, and let

fS(x) = sgn
(〈
θ̂, x
〉)

. That is, simply learn the direction of θ, project onto this direction, and check if

the projection is positive or negative. We now prove that this satisfies the desired properties. Note that

θ̂ ∼ N (θ, 1
nI). Hence, by standard Gaussian concentration, we have that Pr

[∥∥∥θ̂ − θ∥∥∥2

2
≥ t · dn

]
. exp(−Ω(t))

for all t ≥ 1. By our choice of n, and since ‖θ‖22 = log d, we have that

Pr

[∥∥∥θ̂ − θ∥∥∥
2
≥ 1

10
· ‖θ‖

]
≤ 1

poly(d)
. (1)

Condition on the complement of the event in (1) holding for the rest of the proof. Denote this good event
E. Now, given a fresh sample (X, y) ∼ F(θ, 1), we wish to demonstrate that conditioned on this event, fS
classifies (X, y) correctly with high probability. Let’s consider the case where y = 1 (the case where y = −1
is symmetric). Then we can assume that X = θ + Z, where Z ∼ N (0, I). We have〈

θ̂, X
〉

=
〈
θ̂, θ
〉

+
〈
θ̂, Z

〉
≥ 9

10
‖θ‖22 +

〈
θ̂, Z

〉
=

9

10
log d+

〈
θ̂, Z

〉
.

Further notice that
〈
θ̂, Z

〉
∼ N (0,

∥∥∥θ̂∥∥∥2

2
). Conditioned on E, this random variable is a Gaussian with variance

at most 2 log d. Hence, by standard Gaussian concentration, the probability that this exceeds 9
10 log d is at

most 1/ poly(d). Hence this random variable is positive with probability 1 − 1/poly(d), conditioned on E.
Combining these two bounds yields the desired result.

We now prove (b). It suffices to show the following: no algorithm can distinguish between the following
two scenarios: (1) X is an i.i.d. draw from N (θ, I), or (2) X ∈ P∞,d−1/2+δ(Z) for Z ∼ N (−θ, I). To do so,

it suffices to construct a coupling (X,Z) between N (θ, I) and N (−θ, I) so that ‖X − Z‖∞ < 2
√

log d√
d

almost

surely (why?). But this is straightforward: the coupling is simply (X,X − 2θ) for X ∼ N (θ, I).

2



This is of course a very simple example for a relatively contrived problem. One can actually prove relatively
strong bounds of this form, at least under some constraints on the smoothness of the data distribution.
Specifically, assume that the data distribution over X Rd is given by g(Z), where Z ∼ N (0, I) is an d′-
dimensional Gaussian. That is, we assume that the data is some transformation of a Gaussian, which is a
typical assumption for generative models. Additionally, let ω : R≥0 → R≥0 be monotone and invertible, and
suppose that the PDF of the marginal distribution over X, denoted p(x), satisfies

‖g(z)− g(z′)‖ ≤ ω (‖z − z′‖2) , (2)

where the norm of the LHS is arbitrary. Then, we have the following theorem:

Theorem 1.2 (Special case of Theorem 1 in [1]). Let D be a distribution over inputs satisfying (2) with
respect to a norm ‖·‖. Let f : Rd → [K] be an arbitrary classification function, and suppose that Pr[f(X) =
i] ≤ 1/2 for all i ∈ [K]. Then, for all η > 0, we have that

Rrob(f,D,P, `0/1) ≤
√
π

2
exp

(
−ω−1(η)2/2

)
,

where P(z) = {z′ ∈ Rd : ‖z′ − z‖ < η}.

In other words, if the data comes from a relatively smooth transformation of a Gaussian, and the classification
is relatively balanced, then there are fundamental limits on the robust accuracy of any classifier for the data.

The main counter-argument against this setting is that we tend to believe there do exist robust classifiers
for the settings we care about. Specifically, we tend to believe that humans are the robust classifier we seek,
almost by definition.

2 Robust classifiers require more data

The second possibility is that robust classification is possible, but our datasets are still too small for us to
achieve it: that getting accurate and robust classifiers will require more data than getting accurate non-robust
classifiers. Here is one setting in which this holds:

Theorem 2.1 (Theorems 5 and 6 in [2]). Let (X1, y1), . . . , (Xn, yn) ∼ F(θ, σ) where θ ∼ N (0, I), and
σ = cd1/4. Then, for an appropriate choice of c, we have:

(a) If n ≥ 1, there exists an estimator fn that achieves R(f) ≤ 0.01.

(b) for any ε > 0, and any estimator fn, we have that Rrob(fn,F ,P∞,ε, `0/1) ≥ 1
2 (1− 1/d), so long as

n .
ε2
√
d

log d
.

In particular, if ε = Θ(1), then this theorem says that non-robust classification with high probability can be
achieved with even a single sample, and robust classification requires polynomially many samples.

Proof. The proof of (a) is straightforward and left to the reader (and possibly homework). In this lecture
we’ll focus on the proof of (b). The way to do this will be to play some tricks with order of integration.
Let fn be any classifier that depends on (X1, y1), . . . , (Xn, yn). Observe that Xi = yiZi where yi ∼ {±1}
uniformly at random at Zn ∼ N (θ, I). Then we can write the robust loss of fn as:

Rrob(f) = E
θ∼N (0,I)

E
y1,...,yn∼{±1}

E
Z1,...,Zn∼N (θ,σ2I)

[
E

y∼{±1}
Pr

x∼N (yθ,σ2I)
[∃x′ ∈ P(x) : fn(x′) 6= y]

]
,

where fn depends on Z1, . . . , Zn and y1, . . . , yn, but nothing else. We now wish to pull the expectation over
θ inside. Note that θ is clearly independent of the yi, so that is not hard. The main difficulty is switching
the order between the Zi and the θ. To do so, we will use the fact that posterior distributions of Gaussians
are Gaussians. Formally, a straightforward calculation shows:
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Fact 2.2. An equivalent way to generate θ, Z1, . . . , Zn is to draw some θ2 ∼ N (0, 1), let Z1, . . . , Zn ∼
N (θ2, σ

2I), and the define θ given Z1, . . . , Zn to be a Gaussian with mean and covariance given by

µ′ =
n

σ2 + n
Z , Σ′ =

σ2

σ2 + n
I ,

where Z =
∑n
i=1 Zi.

Thus, for some distribution D′, we have that the above is equal to

E
y1,...,yn∼{±1}

E
(Z1,...,Zn)∼D′

[
E

θ∼N (µ′,Σ′)
E

y∼{±1}
Pr

x∼N (yθ,σ2I)
[∃x′ ∈ P(x) : fn(x′) 6= y]

]
.

We can further simplify the expression inside the brackets to

E
y∼{±1}

Pr
x∼N (yµ′,σ2I+Σ′)

[∃x′ ∈ P(x) : fn(x′) 6= y] .

The point of this is now that the expectations inside of the brackets are independent of fn, so that while
bounding this quantity, we can treat it as a fixed function. In particular, suppose that y = 1, and let
A− = {x ∈ Rd : fn(x) = −1} be the set of points where fn decides −1, and let A+ = (A−)c be the set where
fn decides 1. Here is the key point: observe that if y = 1, then there exists an adversarial perturbation of x
if and only if x has `∞ distance at most ε to A−. Now if ‖µ′‖∞ ≤ ε, then µ′ itself is a valid `∞ perturbation,
and hence

Pr
x∼N (µ′,σ2I+Σ′)

[∃x′ ∈ P(x) : fn(x′) 6= y] ≥ I[‖µ′‖∞ ≤ ε] · Pr
x∼N (0,σ2I+Σ′)

[x ∈ A−] .

Similarly,

Pr
x∼N (−µ′,σ2I+Σ′)

[∃x′ ∈ P(x) : fn(x′) 6= y] ≥ I[‖µ′‖∞ ≤ ε] · Pr
x∼N (0,σ2I+Σ′)

[x ∈ A+] .

Combining these two, and using that A− ∪A+ = Rd, we obtain that

E
y∼{±1}

Pr
x∼N (yµ′,σ2I+Σ′)

[∃x′ ∈ P(x) : fn(x′) 6= y] ≥ 1

2
· I[‖µ′‖∞ ≤ ε] =

1

2
· I
[

n

σ2 + n
‖Z‖∞ ≤ ε

]
.

Thus all we need to do is understand the distribution of Z. However, Fact 2.2 immediately implies that Z
is distributed as N (0, (1 + σ2/n)I). Thus, simplifying we get that

Rrob(f) ≥ 1

2
Pr

θ2∼N (0,I)

[√
n

σ2 + n
‖θ2‖∞ ≤ ε

]
.

Combining this with a standard tail bound on Gaussians yields the desired theorem.

How plausible is this world? After all, maybe this is not so bad: if we just spend some time and money and
build a larger ImageNet, perhaps then we can really get robust classifiers? In [2], they give some empirical
evidence that this is the case. In particular, they show that the error curves on CIFAR-10 for robust classifiers
really haven’t plateaued in the same way that non-robust classifiers have, as we limit the size of the dataset.
Moreover, the success of semi-supervision and pre-training for robust classification does suggest that more
data (even unlabeled data) helps with robust accuracy.
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3 Robust classification is computationally intractable

In this section, we’ll give an example of a learning problem which is easy to do non-robustly, easy to do
statistically robustly, but likely impossible to do efficiently, robustly. In fact, all we really need to produce
the most basic example is the following assumption:

Assumption 3.1. There exist two classes of distributions D0,D1 over distributions in Rd so that if D0 ∈ D0

and D1 ∈ D1 so that the following is true: given n samples X1, . . . , Xn from some D ∈ Dα for α ∈ {0, 1}
there exists an estimator fn so that fn(X1, . . . , Xn) = α with probability 99/100 so long as n = poly(d),
however, no efficiently computable fn can achieve Pr[fn(X1, . . . , Xn) = α] ≥ 1/2 + o(1) unless n = dω(1).
Moreover, for any D0 ∈ D0 and D1 ∈ D1, there exist sets S0, S1 so that PrDi [X ∈ Si] ≥ 1 − d−ω(1) for
i ∈ {0, 1}, and ‖x0 − x1‖∞ = ω(1) for all x0 ∈ S0 and x1 ∈ S1.

There are a couple of ways one can go about giving evidence to this (quite reasonable) assumption: [3],
building on work of [4], shows a learning problem which is hard for any SQ algorithm, which is a restricted
class of efficient algorithms. However, we remark that the resulting classes of distributions are always quite
pathological in nature, and it is not clear how much they reflect real-world issues.

Given this assumption, we have:

Theorem 3.1. Grant Assumption 3.1. Then there exists a distribution F so that there exist classifiers
fn, f

′
n so that R(fn) ≤ 0.01, and for which Rrob(f ′n,P∞,ε) ≤ 0.01 for some ε = ω(1), so long as n = poly(d),

but for which Rrob(gn,P∞,ε) ≥ 1/2− o(1) for any efficiently computable gn.

Proof. The reduction is straightforward: we take an instance of the distinguishing problem in the Assump-
tion, so let D0 ∈ D0 and D1 ∈ D1. To form our classification problem, we let β1, . . . , βn ∼ {±1}, and our
samples are given as (Xi, yi), where Xi ∈ Rd+1, so that the first d coordinates of Xi are drawn from Dβi ,
and the last coordinate of Xi is βiε. Similarly let yi = βi.

We now verify that this has the desired properties. It is clear that there is a good non-robust classifier:
simply ignore the first d coordinates of Xi, and use the last coordinate as a perfect classifier. However, in
the robust setting, the adversary can always set the last coordinate of Xi to 0. The information-theoretic
estimator does not care: it can simply use the information from the first d−1 coordinates. It can use this to
learn D0 and D1, and form the sets S0 and S1. Given a potentially corrupted test sample X, it simply takes
the first d coordinates of X, and finds which set they are closer to, and outputs this solution. It is clear that
this estimator succeeds with high probability. However, it is similarly clear that no efficient algorithm can
succeed at this problem, by Assumption.

Later on, [3, 5] also construct another type of classification task with similar (but quantitatively stronger)
bounds, from standard cryptographic primitives.

It is hard to argue that this scenario is impossible. One could argue that human brains have had
significantly more time (and in a different model of computation) to get good at image classification than
say a neural network. However, at the same time, the relative artificial-ness of the examples is a bit worrying.
Moreover, it is essentially impossible to check this hypothesis, so it is not clear how to validate this hypothesis.

4 Efficient robust classifiers exist

To be determined...?
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