
Lecture 12: Certified Defenses I

November 7, 2019

In Lecture 9 we saw a number of settings where adversarial attacks exist against neural
networks, and in Lecture 10 we saw a number of proposed empirical defenses against these
attacks. With one notable exception—adverarial training—these defenses have been broken.
To ensure this doesn’t happen, an alternative line of work has focused on defenses with
provable robustness, that is, one can, given a model f and new test point (X, y), the defense
can (hopefully) prove that f(X ′) = f(X) = y for all X ′ in the allowed perturbation set.
These defenses typically split into two categories, with further sub-categories amongst them:

• Exact certification. Exact certification techniques try to truly answer the question
of whether or not there exists an adversarial perturbation to f at (X, y). In other
words, their output is either YES, in which case there does not exist an adversarial
perturbation, or NO, in which case there does exist an adversarial perturbation.

• Relaxed certification. Relaxed certification techniques allow for an alternative out-
put: MAYBE, which the certification algorithm is always guaranteed to output. How-
ever, if it outputs YES, then it must be true (perhaps with some caveats we’ll talk
about later) that there does not exist any adversarial perturbations of X. And of
course, the algorithm should not output MAYBE or NO too often.

In this lecture, we’ll primarily focus on exact certification, near the end we’ll also discuss some
of the techniques for relaxed certification. In particular, we will (mostly) assume we are given
a neural network, and our only job will be to certify whether or not it is robust. However,
certification techniques often need to be paired with an companion training algorithm, that
encourages robustness; after all, if your algorithm is not robust, then it certainly cannot be
certified as such. This will be less of a problem for exact certification techniques. This is
because it seems that adversarial training is in fact truly robust (at least, to some extent),
and so if you have an exact certificate, you can just certify that an adversarially trained
model is robust. On the other hand, for relaxed certification techniques we will often need
to design training algorithms that complement the certification procedure.

We’ll primarily focus on deep, feed-forward ReLU networks in this class (and in the next
couple of classes), as they are the most common form of neural network, and moreover these
methods, as we’ll see, are naturally well equipped to deal with the combinatorial structure of
ReLU networks. Formally, our networks will defined by a sequence of functions (the layers)

1



f1, . . . , f` so that fi(x) = σ(Wix + bi), where Wi is a weight matrix (or tensor) the bi are a
set of biases, and σ is the entrywise ReLU operation, i.e. σ(x)i = max(xi, 0). The overall
network representation will be given by F : Rd → Rm by

F (x) = W`+1f` ◦ f`−1 ◦ . . . ◦ f1(x) ,

which gives produces the logits of the final representation. We will usually ignore issues such
as max-pooling, batch normalization, skip connections, etc. Some of these are naturally
incorporated into these frameworks; others are not.

1 Exact certification

This is perhaps the dream goal for certified defenses, and indeed, for any defense overall:
provably demonstrate whether or not the network is robust at a point X. The main difficulty
with exact certification is that for neural networks, the problem is provably hard:

Theorem 1.1 ([1]). Exact certification of a neural network with ReLU activations at a point
(X, y) and for the perturbation set P∞,ε(X) is coNP-complete.

So that’s some bad news. However, it is not the end of the story: as SAT-solvers become
increasingly powerful, one could hope that by leveraging some of these efficient algorithms
for NP-complete problems, one could still manage to verify real neural networks, on real
datasets. Unfortunately, we are not really at this point, however, also not as far away as one
might naively expect.

Exact certification techniques usually take one of two forms. Either, they are based on
satisfiability modulo theories (SMT) [1], or mixed integer-linear programming (MILP) [2].
In this lecture we’ll primarily focus on the latter, following presentation from [3, 4], because
it provides the state of the art numbers, and requires less background in SAT solvers and
proof complexity theory (that the author doesn’t possess) to understand.

2 Mixed Integer Linear Programming

We first define what MILPs are. First, recall that linear programs (LPs) can be written in
the following generic form (although the exact form won’t be super important to us later
on):

maximize c>x

subject to Ax ≤ b

x ≥ 0 .

On the other hand, integer programs (IPs) are problems where, in addition to the constraints
above, we add the constraint x ∈ Z, that is x is integer-valued. Finally, a mixed integer
linear program (MILP) is a program where some of the x variables are constrained to be

2



integers, and others are not. LPs can be solved in polynomial time by methods such as the
ellipsoid method or cutting plane methods, heuristically by simplex methods, and also by
other convex optimization based methods. IPs, on the other hand, are one of Karp’s 21
NP-complete problems. As MILPs contain IPs as a special case, they are also NP-hard (in
fact complete). However, there do exist solvers for MILPs which sometimes work in practice.

2.1 Encoding Robust Certifiability as a MILP

We now turn our attention to encoding robust certifiability as MILP.

Encoding `p constraints First, notice that `∞ perturbations can easily be captured as
an LP by adding an additional variable, as

‖x− x′‖∞ = min ε s.t. ε ≥ xi − x′i and ε ≥ x′i − xi for all i .

Similarly `1 perturbations in Rd can be captured as an LP by adding d auxiliary variables.
Notably `p constraints for p 6∈ {1,∞} cannot be captured as a MILP. However, `2 constraints
can be captured by mixed integer quadratic programming.

Encoding ReLU constraints The `∞ constraints are not so bad; after all, `p norms for
p ≥ 1 are convex and so it’s not surprising that encoding `∞ doesn’t need actual integer
constraints. The main difficulty will arise in attempting to encode the ReLU constraints;
after all, this is where the non-linearity comes it. Suppose that we have a univariate variable
x, and we want to encode that y = σ(x) where σ is the ReLU function. Notice that the
ReLU can in fact be expressed as a convex minimization problem, as after all:

σ(x) = min y s.t. y ≥ x and y ≥ 0 .

However, we want to encode the value of y as a variable within an overarching MILP, that
is, we want y to be defined by a set of inequalities and equalities on x. This will allow us to
use y as a variable in the MILP, however, this becomes a bit more complicated. One naive
approach, which doesn’t quite work, is to introduce an additional variable a ∈ {0, 1}, and
enforce:

a = 1[x ≥ 0] and y = ax .

The reason why this naive approach doesn’t work is twofold: first, the constraint on a is not
naturally enforceable as an MILP, and secondly, the constraint on y has degree 2. To get
around these issues, observe that if we have an lower and upper bounds on x, that is, we
know that x ∈ [`, u], then we can in fact encode y by a set of linear and integer constraints:

Lemma 2.1. Suppose that x ∈ [`, u]. Then we have that

y = σ(x)↔ (y ≤ x− `(1− a)) ∧ (y ≥ x) ∧ (y ≤ u · a) ∧ (y ≥ 0) ∧ (a ∈ {0, 1}) , (1)

and moreover a = 1[x ≥ 0] (where take the convention that a can be either 0 or 1 if x = 0).

3



Proof. The proof proceeds by case analysis. Suppose that a = 0. Then the last two con-
straints in (1) are tight, so y = 0. The second constraint in (1) implies that y ≥ x, which
implies that x ≤ 0. Moreover, the first constraint is loose, as x ≥ ` by assumption. Hence
this system is satisfiable, and y = σ(x) and a = 1[x ≥ 0] in this case. On the other hand,
suppose that a = 1. Then the first two constraints imply that y = x. The third constraint
is loose, and the last constraint implies that x ≥ 0, and again the Lemma holds.

Notice that crucially this construction requires an upper and lower bound on how large x
can be; as we shall see, this will be a recurring theme as well in the convex relaxation based
approaches.

We are almost done: by applying these relationships entrywise for every non-linearity of
the neural network (and using linear relationships to encode the linear transformations), we
can encode all the transformations up until the last layer. To complete the description of the
MILP instance, we need to be able to take the maximum of the logits at the last layer. This
can be done via a similar process to the Lemma above, and we leave this to the homework.

2.2 ReLU stability

Intuitively, the difficulty with solving the MILP will come from the binary variables; in our
case, the a variables. Evaluating these equations and searching over possible choices of a
will be the bottleneck for most applications of the MILP solver. Naively, we will introduce
one binary variable for every non-linearity. However, one can do some optimizations to
improve this. If we can reduce this number from say 10000 to 100, we should expect a huge
improvement in runtime.

One trivial but important observation is that if both u and ` are positive or negative,
the problem becomes trivial, and indeed we can remove the a: if they are both positive then
we can just set y = x. We call this case stably active. If they are both negative, we call
this stably inactive, and we can set y = 0. In either case, we have removed the need for the
integer variable here, which is a big win from a runtime perspective. The remaining case,
when ` < 0 < u, is the tricky case, and we call this the unstable case.

The fraction of ReLU activations which are stable will depend on what `, u we can obtain.
In practice, we cannot typically get tight bounds on `, u (except at the first layer), and so
we will need to do some relaxation to compute the best bounds on `, u that we can achieve.
Moreover, these bounds will typically depend on how good of a bound on `, u we could obtain
the previous layers. Thus it’s really important to try to get the tightest bounds on `, u that
we can. The most basic way of doing this is called interval arithmetic, which computes these
bounds in a layerwise way. For any i = 1, . . . , d, let `i and ui be vectors so that `ij is a
lower bound for the jth activation, and similarly assume uij is an upper bound for it First,
at level 0, if the perturbation set is an `1 or `∞ ball, the u0 and `0 upper and lower bounds
are trivial to compute. Then, at level i, we can compute valid bounds on these quantities as
follows. Let our weight matrix be Wi. Let W+ = max(W, 0) and W− = min(W, 0). Then, if

4



we define `i+1 and ui+1 by

ui+1 = W+ui +W−`i + bi`i+1 = W+`i +W−ui + bi , (2)

then it can be verified that ui+1 and `i+1 still are valid upper and lower bounds on how large
the variables at level i+ 1 can be. Note that these bounds are not tight; for the correctness
of the MILP all we need is that they are valid bounds. But the looseness of these bounds
can cause us to mark certain ReLUs as unstable when in actuality, if we used the tightest
possible bounds, they are stable. But the main looseness from this comes from the fact
that when we have stably inactive or stably active activations at degree i, we can actually
get more information about what the values at the next iteration can be; for instance, if
it’s stably inactive we can simply remove that variable from contributing to either of these
products, since we know that in actuality the variable at this level must be zero. Building
on this idea, the paper [4] introduces a technique called improved interval arithmetic, which
allows them to get somewhat tighter bounds.

However, it could be that even with the tightest bounds, most ReLUs are simply not
stable: that there exist perturbations with bounded `∞ so that when we track the changes
all the way to the current non-linearity, the value of the variable could be either negative
or positive. In this case, not even the tightest computation of the bounds will help. To
try to avoid this case, or at least mitigate its effects as much as possible, [4] also proposes
to combine exact certification via this method with a training routine to obtain a neural
network that has few unstable ReLUs. Specifically, if one adds the upper and lower bounds
as variables into the training optimization, then one could hope to regularize for ReLU
stability. For instance, one could add the regularization term R(uij, `ij) = 1− sgn (uij) · `ij
to the optimization objective: then the optimization is penalized for having unstable ReLUs.
However, this objective is clearly highly non-differentiable, and so instead they propose using
the objective

R(uij, `ij) = − tanh (1 + sgn (uij) · `ij) ,

which has a similar behavior (small if their signs agree, and large otherwise), and which is
differentiable. They then add this to the training procedure, and by doing so, decrease the
number of unstable ReLUs that the learned classifier typically has. As a result, they are able
to certify much faster, by a factor of 10× [4]. This of course says nothing about the quality
of the solutions, however, by combining this with adversarial training, it appears that one
gets fairly decent numbers.

Other optimizations There are some other optimizations that have been tried. For
instance, if the weight matrix W is sparse, then MILP solvers tend to run faster, as there
are fewer constraints propagating through the system. Thus, one can also train to encourage
sparsity of the weight matrix, and this also tends to help runtime as well.

Limitations Despite these optimizations, MILP is still severely limited by the runtime,
and can only run on relatively small models for e.g. MNIST and CIFAR, which cannot

5



obtain state of the art robust accuracy. Moreover, larger problems such as ImageNet seem
completely out of the current realm of possibility.

References

[1] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference
on Computer Aided Verification, pages 97–117. Springer, 2017.

[2] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-
forward relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

[3] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.

[4] Kai Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry. Training
for faster adversarial robustness verification via inducing re {LU} stability. In Interna-
tional Conference on Learning Representations, number 2019, 2019.

6


