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In the last lecture, we discussed exact certification defenses, which definitively tell you if
your model has an adversarial perturbation at any given point. Unfortunately, as we saw,
exact certification is very computationally expensive, and although there are optimizations
which have been able to scale it to models on CIFAR-10, it is unclear how to hope to
scale it up much further. To address this, researchers have developed a number of relaxed
certification methods, which are much more scalable, but do not yield tight certification
guarantees. Recall that, given a classifier F : Rd → Y , a labeled point (X, y), and a
perturbation set P , a relaxed certification algorithm A is allowed to return one of three
options:

• YES: Here, we must have that for all X ′ ∈ P(X), we have that F (X) = F (X ′) = y.

• NO: Here, there must exist X ′ ∈ P(X) so that F (X ′) 6= F (X).

• MAYBE: In this case we have no guarantees.

For a classifier f , a distribution over data D, a perturbation set P , and a relaxed certification
algorithm A, we define its certified accuracy to be

Cert(f,D,P ,A) = Pr
(X,y)∼D

[A(f,X, y) = YES] . (1)

That is, while the algorithm is always allowed to output MAYBE, it does not count towards
its certifiable accuracy.

In this class, we will focus on approaches for certifiable defenses based on convex re-
laxations. Again these defenses are mainly focused on certifying feedfowards ReLU neural
networks. Recall from last lecture that these are specified by a sequence of functions (the
layers) f1, . . . , f` so that fi(x) = σ(Wix + bi), where Wi is a weight matrix (or tensor) the
bi are a set of biases, and σ is the entrywise ReLU operation, i.e. σ(x)i = max(xi, 0). The
overall network representation will be given by F : Rd → Rm by

F (x) = W`+1f` ◦ f`−1 ◦ . . . ◦ f1(x) ,

Let f = f` ◦ f`−1 ◦ . . . ◦ f1, that is everything but the last layer. Convex relaxation based
approaches attempt to find an efficiently computable convex set which contains f(P(X)),
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which is typically a non-convex set. If they can do so, then they can just check if this convex
hull crosses any of the decision boundaries, which is easy to do as this is a further convex
problem. If it does not, then they can safely output YES, and otherwise they output MAYBE.
The main difficulty is to find a convex relaxation of f(P(X)) which is as tight as possible,
to avoid outputting MAYBE as much as possible. In this lecture, we will discuss two such
approaches that trade off between scalability and tightness of the relaxation.

1 LP Relaxations

The first approach we will discussed is based on linear programming. Recall that a linear
program is specified by a linear objective function, as well as linear constraints on the
variables, which can be either equalities or inequalities. To start with writing down an LP
relaxation for this problem, let’s first write out the certification problem more explicitly.

First, rather than considering the problem whether or not we can flip the label to any
other label, we’ll consider the problem of whether we can flip the label of X to a given label
y′ 6= y. To go from this to the first problem, one can simply iterate over all y′ ∈ Y and check
them each one-by-one. Let’s also introduce some notation for the transformations encoded
at every layer of the network. We will call the input to our network x1, and inductively, we
will define the variables

zi = Wixi + bi , and xi+1 = σ(zi) , (2)

for i = 1, . . . , `, and finally let z`+1 = W`+1x` + b`+1. Then, when the constraint set is the `∞
ball, the certification problem at (X, y) can be thought of as simply giving an upper bound
on the value of the following mathematical program:

min
x1,z1,...,x`+1,z`+1

c>y′z`+1 s.t. ‖X − x1‖∞ ≤ ε , and x1, z1, . . . , x`+1, z`+1 satisfy (2) , (3)

where cy′ is the vector which is 1 at position y and −1 at position y′. In particular, if the
solution to this problem is negative, then we can make class y′ look more probable than y,
and otherwise, we cannot.

Current LP based approaches for relaxed certification proceed by relaxing (3) layer-by-
layer, i.e. by relaxing (2). Suppose we are at layer i. As was the case for exact certification,
the main difficulty is formulating a way to encode the non-linearity, i.e. the ReLU constraint.
The issue is that the set {(x, z) : z = σ(x)} is not a convex subset of R2, where σ(x) =
max(0, x) here denotes the univariate ReLU function. However, there is a natural relaxation
of it. In particular, suppose we can get a convex function σ and a concave function σ so that

σ(x) ≤ σ(x) ≤ σ(x) .

Then the following is a convex relaxation of the ReLU:

{(x, z) : z = σ(x)} ⊆ {(x, z) : σ(x) ≤ z ≤ σ(x)} .
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To instantiate this with ReLU, we need a bit more information. This is because if we don’t
restrict the range of x, then no such functions can exist (specifically, no σ(x)) exists. Thus,
suppose (as before with the MILP algorithm), we have lower and upper bounds on x, i.e.
x ∈ [L,U ]. Then, we can take:

σ(x) = σ(x) , and σ(x) =
U

U − L
(x− L) , (4)

and it is easily verified that these are valid choices of σ and σ.
Let’s now instantiate this for layer i of the neural network, rather than just a single

ReLU. Let xi be the variable in our LP which is the input to the ith layer, and let zi be the
variable specified by the linear constraint

zi = Wixi + bi . (5)

Suppose for now we are given vectors Li and Ui so that if xi is any valid input to the i-th
layer, then Li ≤ zi ≤ Ui, where zi is defined as above, and where the inequalities hold
entrywise. Then, the constraints on the input to the next layer xi+1 are given by

xi+1,j ≥ 0 , zij ≤ xi+1,j ≤
Uj

Uj − Lj

(zij − Lj) , for all j . (6)

To complete the picture, observe that the `∞ constraint on x1 is easily encoded by linear
constraints, namely:

xj − ε ≤ x1,j ≤ xj + ε , for all j . (7)

Thus our final LP can be stated as:

max
x1,z1,...,x`+1,z`+1

c>y′z`+1 s.t. xj − ε ≤ x1,j ≤ xj + ε , for all j

zi = Wixi + bi (8)

xi+1,j ≥ 0 , zij ≤ xi+1,j ≤
Uj

Uj − Lj

(zij − Lj) , for all j .

This LP is known often as the primal form of the certification LP, and has appeared (or
something similar has appeared) in a number of papers, see e.g. [1, 2, 3, 4, 5, 6].

All that remains is to find Li and Ui. One way to do this is via interval arithmetic as
described in the previous lecture, but a tighter bound can be derived inductively via our LP.
Suppose we have L1, . . . , Lk and U1, . . . , Uk (the base case is similar). Then, the observation
is that a partial form of (10) can be used to derive lower and upper bounds on zi+1. Indeed,
to derive an upper bound on the jth coordinate of zi+1, one can verify that the following
suffices:

U(k+1)j ≤ max
x1,z1,...,xk,zk,xk+1

W(k+1)jxk+1 + bj

s.t. xj − ε ≤ x1,j ≤ xj + ε , for all j

zi = Wixi + bi (9)

xi+1,j ≥ 0 , zij ≤ xi+1,j ≤
Uj

Uj − Lj

(zij − Lj) , for all j ,
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where W(k+1)j is the j-th row of Wk. In other words, if we simply replace the objective
with the appropriate row of Wk+1, this gives an upper bound for the j-th coordinate of
Uk+1. Doing this for each coordinate yields a fairly tight bound for Uk+1. Replacing the
maximization with a minimization then yields a lower bound on how small each coordinate
of  Lk+1 needs to be.

The full workflow of the algorithm is then very straightforward: first, using (9), induc-
tively compute L1, . . . , L` and U1, . . . , U`, then plug those numbers to feed into (10). This
is, in some sense, the “optimal” layer-wise LP relaxation of the problem, however it can be
quite slow to compute. To alleviate this, many papers apply additional approximations to
simplify the preprocessing time even further.

Dual LP formulations Another way to formulate the certification problem as an LP is to
take the Lagrange dual of the original certification problem, and write an LP which relaxes
this [7]. While it can be shown that the full LP written this way has the same certification
power as the primal LP [6] (which one might expect due to strong duality of LPs), this is
notable because [7] demonstrate that the dual of the LP can be solved (with some additional
approximations) quite efficiently as a single backpropagation step. This is notable because
previous LP formulations are still quite cumbersome to solve, and additionally, the fact that
the dual can be implemented in backpropagation means that they can train to maximize the
certified loss using their certification procedure. By directly training for their certification
technique, this allows them to achieve much better numbers.

Limitations How effective are these methods? There are generally two bottlenecks to
scaling LP-based methods. The first (although [7] makes strides to improve this) is runtime.
In particular, if one wishes the use the full LP 10, this is quite computationally intensive: [6]
is able to evaluate the certified accuracy of the full LP, but only by leveraging extensive
computational resources.

The second issue is the loss in certification accuracy due to relaxation. This appears to be
a major problem: [6] demonstrates that even on MNIST, the bounds that the LP relaxation
are able to achieve are quite loose, even if one takes the optimal layer-wise LP relaxation of
the certification problem, which we described above.

2 SDP Relaxations

The second approach we will discuss is an attempt to produce a tighter relaxation of the
problem, using stronger convex relaxations, namely semi-definite programming (SDP). In
this lecture, we’ll follow the presentation of [8, 9]. Before we begin, let’s first recap what
SDPs are.
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2.1 A crash course on semi-definite programming

Semidefinite programming is a generalization of linear programming to allow for matrix
constraints. The following is a general formulation of SDPs. Recal that if X is a symmetric
matrix, then X � 0 means that all of its eigenvalues are greater than zero.

max
X
〈C,X〉

s.t. 〈Ar, X〉 ≥ bi for r = 1, . . . , k

X � 0 .

Here C,A1, . . . , Ak are matrices, and 〈A,B〉 =
∑

ij AijBij is the trace inner product, and X
is a symmetric matrix. In other words, we allow for linear inequalities and equalities on the
matrix variable X, but we also can enforce that it is positive semi-definite, which is a highly
non-linear constraint.

The key property of SDPs is that they are a generalization of LPs, but which are still
solvable in polynomial time (as opposed to, say, MILP). What we’ll be mostly interested in
is whether or not we can use this additional power to get stronger certification guarantees.
Of course, this does come at some cost: the runtime of these algorithms will be slower than
generic LP solvers.

2.2 A generic way to relax quadratic programs to SDPs

How do we use SDPs to encode certification? It turns out that there is a general way to
take a quadratic program—a program whose constraints can be degree two polynomials in its
variables—and relax it to an SDP. Formally, suppose we are given the following mathematical
program over the variables x1, . . . , xn:

max
x1,...,xn

∑
ij

cijxixj

s.t.
∑
ij

a
(r)
ij xixj ≥ bi for r = 1, . . . , k .

In general, such a program is NP-hard to solve. However, we can always relax it to an SDP
as follows. For every i, j ∈ [n], introduce a variable Xij which is supposed to be xixj. Note
that X is a symmetric matrix, and the constraints are linear in the variables of X. Moreover,
the constraint that Xij = xixj is equivalent to the constraint that X is rank 1 and PSD.
Thus, the solution to the above problem is equivalent to the solution to:

max
X
〈C,X〉

s.t. 〈Ar, X〉 ≥ bi for r = 1, . . . , k

X � 0

rank(X) = 1 ,
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where C is the matrix given by Cij = cij, and Ar is the matrix with entries (Ar)ij = a
(r)
ij .

Now the only non-convex constraint here is the final one, and the SDP relaxation is just to
ignore it, so that the final relaxation is simply:

max
X
〈C,X〉

s.t. 〈Ar, X〉 ≥ bi for r = 1, . . . , k

X � 0 .

2.3 Relaxing certification to an SDP

Per the above discussion, it suffices to write certification of a neural network as a quadratic
program. Again, the main difficulty is encoding the ReLU. We’ll follow the same basic
approach of encoding the problem layer-wise. Suppose the input to level i is xi. As we
before we can write zi = Wixi + b. Then the constraint that xi+1 = σ(zi) it equivalent to
the following set of quadratic constraints:

xi+1 ≥ 0 , xi+1 ≥ zi , xi+1 = xi+1 � zi ,

where � denotes entrywise product between vectors, and all inequalities are taken entrywise.
Therefore we can state the certification problem as the following quadratic program:

max
x1,z1,...,x`+1,z`+1

c>y′z`+1 s.t. xj − ε ≤ x1,j ≤ xj + ε , for all j

zi = Wixi + bi (10)

xi+1 ≥ 0 , xi+1 ≥ zi , xi+1 = xi+1 � zi .

To write this as an SDP, we then simply use the generic reduction described above. We can
also incorporate upper and lower bounds on the inputs to the layers by adding an additional
quadratic constraint.

2.4 Tradeoffs

The obvious limitation to this method is that SDP methods are much slower to compute.
Indeed the current SOTA is only able to scale to MNIST. However, this does present the
potential of circumventing the LP lower bounds in [6]; indeed, [9] shows simple scenarios
where this provably does better than the LP based certification methods.
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