
Lecture 14: Certified Defenses III: Randomized Smoothing

November 13, 2019

In this lecture we present the final of the certified defenses we will consider in this class,
namely randomized smoothing [1, 2, 3]. We will follow the presentation of [4], which simplifies
the proofs in the previous papers.

1 Randomized smoothing, a.k.a. the Weierstrauss transform

Randomized smoothing is a transformation of a classifier. It is most naturally stated for
soft classifiers. Recall that a soft classifier is a map F : Rd → P(Y), where P(Y) is the set
of probability distributions over Y . That is, a soft classifier, instead of just assigning each
data point a class, assigns each point a distribution over classes, which indicates how likely
it thinks each class is. Observe that neural networks are naturally soft classifiers, as the
mapping from a data point to the output of the last layer (before we read off the most likely
class) is a soft classifier. This will become important later on.

Moreover, note that any hard classifier f has an associated soft classifier F (x) = ef(x),
where for any y ∈ Y , we let ey be the probability distribution which is 1 at y and zero
everywhere else. Conversely, we can transform any soft classifier F into a hard classifier f
by the mapping f(x) = arg maxy F (x)y, although observe that this transformation is lossy.

Given a soft classifier F , we say that its associated smooth classifier with parameter
σ > 0 is the soft classifier

G(x) =
(
F ∗ N (0, σ2I)

)
(x) = E

δ∼N (0,σ2I)
[F (x+ δ)] . (1)

Here ∗ denotes the convolution operator between two functions, defined by:

f ∗ g(x) =

∫
Rd

f(t)g(x− t)dt .

This is also known in mathematics as the Weierstrauss transform of F . The reason why this
transformation is interesting to us is because of the following theorem. Recally that Φ is the
cumulative distribution function of the standard normal Gaussian.
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Theorem 1.1 ([3]). Let F : Rd → P(Y) be any soft classifier, let σ > 0, and let G be its
associated smooth classifier. Let

a = arg max
y∈Y

G(x)y and b = arg max
y∈Y\{y∗}

G(x)y (2)

be the two most likely classes for x according to G. Then, we have that arg maxy∈Y G(x′)y = a
for all x′ satisfying

‖x′ − x‖2 ≤
σ

2

(
Φ−1(pa)− Φ−1(pb)

)
. (3)

In other words, the most likely class for any point x′ within the `2 radius as specified
by (3) will have the same most likely class as x. Therefore, if we use G’s associated hard
classifier, it is provably robust within some `2 radius, which depends on the gap between pa
and pb. The larger the gap, the larger the associated radius. In the limit, if pa = 1, then
observe that the radius is infinite, which makes sense, as this can only happen if the original
soft classifier was deterministically a, outside of a set of measure zero.

1.1 Implementing randomized smoothing

Before we prove Theorem 1.1, let’s see how to use implement randomized smoothing in
practice. The main difficulty is that if F is a soft classifier coming from e.g. a neural
network, it is not obvious how to exactly compute its associated soft classifier G. However,
by its very nature, it is very easy to approximate via sampling. In particular, we simply
need to estimate a, b, pa, pb as defined in Theorem 1.1. To do so, we can simply sample
δ1, . . . , δk ∼ N (0, σ2I), and compute F (x + δ1), . . . , F (x + δk), to compute an empirical

estimate of G(x), namely, Ĝ(x) = 1
k

∑k
i=1 F (x + δi). We then compute p̂a, p̂b by taking the

two largest entries of Ĝ(x), and we can use them as proxies for pa and pb, to give us a certified
radius.

Note that each coordinate of Ĝ(x) is a sum of independent [0, 1]-valued random variables

and thus Ĝ(x) converges very quickly to G(x) in `∞ norm, by Chernoff-style tail bounds.
Therefore if we take k = 10000, we can be quite confident that our estimates of pa, pb are
very close to the truth, and we can be very confident that our guarantees are correct with
extremely high probability. In this class, for the sake of time, we’ll omit some of the details,
see [3, 4] for more details.

1.2 Comparison to previous techniques

Randomized smoothing is a bit different than the previous ones we’ve covered, for a number
of reasons, which we’ll discuss later.

• It is probabilistic in nature, meaning that it only provides guarantee on the certifiable
robustness with high probability.

• It actually changes the classifier, as opposed to simply certifying the original deep
network, and it is this altered classifier which will have certifiable guarantees.
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• It depends much less on the structure of the actual classifier, as opposed to previous
methods which are heavily dependent on the structure of the network as a feedforward
ReLU network. Indeed, as we’ll see, we can make any classifier into one with certifiable
guarantees.

• It is much more scalable than previous certification algorithms, scaling up to CIFAR-10
and ImageNet, and offers very competitive accuracy numbers as well.

• Finally, as opposed to the previous methods, which are naturally suited for `∞ pertur-
bations, randomized smoothing is most naturally considered for `2, although one can
consider other norms as well.

2 Proof of Theorem 1.1

We now prove Theorem 1.1. We’ll first prove a weaker theorem, and then see how to change
this proof to get the tight bounds as in Theorem 1.1.

2.1 A warmup

Recall that a function h : Rd → R is L-Lipschitz in a norm ‖·‖ if

|h(x)− h(x′)| ≤ L ‖x− x′‖ .

If h is differentiable, then h is L-Lipschitz if ‖∇h(x)‖∗ ≤ L for all x, where ‖·‖∗ is the dual
norm to ‖·‖.

We start with the following observation:

Lemma 2.1. Suppose that F : Rd → P(Y) is a soft classifier, and moreover, the function
x 7→ F (x)y is L-Lipschitz in a norm ‖·‖, for each y ∈ Y. Let a, b, pa, pb be as (2). Then, we
have that arg maxy F (x′) = a for all x′ so that ‖x′ − x‖ < 1

2L
(pa − pb).

Proof. By the Lipschitz-ness of the map x 7→ F (x)a, we know that for any for any x′ within
this ball, we have

|F (x′)a − F (x)a| = |F (x′)a − pa| ≤ L ‖x′ − x‖ < 1

2
(pa − pb) .

In particular this implies that F (x′)a >
1
2
(pa + pb). However, for any y 6= a, by the same

logic,

F (x′)y < F (x)y +
1

2
(pa − pb) ≤

1

2
(pa + pb) < F (x′)a ,

as desired.

In fact we can trivially generalize this lemma to allow for certain nonlinearities:
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Lemma 2.2. Let m : R → R be a monotone, invertible function. Suppose that F : Rd →
P(Y) is a soft classifier, and moreover, the function x 7→ m(F (x)y) is L-Lipschitz in a norm
‖·‖, for each y ∈ Y. Let a, b, pa, pb be as (2). Then, we have that arg maxy F (x′) = a for all
x′ so that ‖x′ − x‖ < 1

2L
(m(pa)−m(pb)).

The proof of this lemma is essentially identical to that of Lemma 2.1 and so we omit it.
These lemmata touch upon a general principle for certified defenses that we actually

haven’t discussed too much: namely, that classifiers which are Lipschitz will be robust.
There have been attempts to directly make neural networks Lipschitz to the input, however,
typically these don’t work very well. As we’ll see, randomized smoothing does something
else: rather than trying to make the base neural network Lipschitz, which is hard to do while
preserving accuracy, it simply takes any neural network classifier, and postprocesses it to
make it Lipschitz.

Before we prove our warm-up lemma, we’ll also need the following analytic form of the
gradient of a smoothed function, a fact known as Stein’s lemma:

Lemma 2.3 (Stein’s lemma, c.f. [5]). Let σ > 0, let h : Rd → R be measurable, and let
H = h ∗ N (0, σ2I). Then H is differentiable, and moreover,

∇H(x) =
1

(2πσ2)d/2

∫
Rd

h(t)
t− x
σ2

exp

(
1

2σ2
‖x− t‖2

2

)
dt =

1

σ2
E

X∼N (0,σ2I)
[X · h(x+X)] .

Proof. The author does not feel like doing the (standard) real analysis that proves that the
function H is differentiable and will therefore skip that argument. But assuming this, then
we have:

∇H(x) = ∇
(

1

(2πσ2)d/2

∫
Rd

h(t) exp

(
− 1

2σ2
‖x− t‖2

2

)
dt

)
=

1

(2πσ2)d/2

∫
Rd

h(t)∇
(

exp

(
− 1

2σ2
‖x− t‖2

2

))
dt

=
1

(2πσ2)d/2

∫
Rd

h(t)
t− x
σ2

exp

(
− 1

2σ2
‖x− t‖2

2

)
dt , (4)

as claimed. The final equality follows from the definition of expectation and a change of
variables.

Lemma 2.4. Let σ > 0, let h : Rd → [0, 1] be measurable, and let H = h ∗ N (0, σ2I). Then

H is
√

2
πσ2 -Lipschitz in `2.

Proof. As `2 is self-dual, it suffices to show that the gradients of H are bounded in `2. Now,
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for any unit vector v ∈ Rd, by Stein’s lemma (Lemma 2.3), we have

|〈v,∇H(x)〉| =
∣∣∣∣ 1

(2πσ2)d/2

∫
Rd

h(t)

〈
v,
t− x
σ2

〉
exp

(
− 1

2σ2
‖x− t‖2

2

)
dt

∣∣∣∣
≤ 1

(2πσ2)d/2

∫
Rd

∣∣∣∣〈v, t− xσ2

〉∣∣∣∣ exp

(
− 1

2σ2
‖x− t‖2

2

)
dt (5)

=
1

σ2
E

Z∼N (0,σ2)
[|Z|] =

√
2

πσ2
. (6)

Here (5) follows from the triangle inequality and since h is bounded by 1, and (6) follows
since projections of Gaussians are Gaussians, and from a classical Gaussian integral. Taking
a supremum over all unit vectors v immediately yields the claim.

Lemmata 2.1 and 2.4 immediately imply the following robustness for a smoothed classifier,
but which is weaker than what we’ll eventually prove:

Corollary 2.5. Let F be a smooth classifier with parameter σ > 0, and let a, b, pa, pb be as

in (2). Then arg maxy F (x′) = a for all x′ satisfying ‖x′ − x‖2 ≤
√

1
2σ2 (pa − pb).

This is essentially the sorts of bounds proved in [1, 2], however, it is weaker than the bound
that we’ll eventually use. The main difference between the two bounds is that this bound
lacks the nonlinearity Φ−1. For instance, if pa = 1, this bound still only certifies a constant
radius, whereas Theorem 1.1 is able to certify an infinite radius.

2.2 The main course

We now actually prove Theorem 1.1. The key lemma is the following, stronger Lipschitz
property of the Weierstrauss transform:

Lemma 2.6. Let σ > 0, let h : Rd → [0, 1] be arbitrary, and let H = h ∗ N (0, σ2I). Then
the function Φ−1(H(x)) is σ-Lipschitz.

Proof. Let’s first assume that σ = 1. Then, we have that

∇Φ−1(H(x)) =
∇H(x)

Φ′(Φ−1(H(x)))
.

Thus we need to show that for any unit vector v, we have that

〈v,∇H(x)〉 ≤ Φ′(Φ−1(H(x))) =
1√
2π

exp

(
−1

2
Φ−1(H(x))2

)
.

By Stein’s lemma (Lemma 2.3), the LHS is simply

E
X∼N (0,I)

[〈v,X〉 · h(x+X)] . (7)
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and we need to bound the maximum of this quantity subject to the constraint that h(x) ∈
[0, 1] for all x and Ex∼N (0,I)[h(x+X)] = p. Let f(z) = h(z + x), so that the problem simply
becomes

max E
X∼N (0,I)

[〈v,X〉 · f(X)]

s.t. f(x) ∈ [0, 1] and E
X∼N (0,I)

[f(X)] = p .

We claim the solution to this optimization problem is given by the halfspace

`(z) = 1
[
〈u, z〉 > −Φ−1(p)

]
.

To see this, first observe that it’s easy to show that ` is a valid solution. Let f be any
other possible solution. Let A be the support of `. Then by assumption we have that
EX∼N (0,I)[`(X)− f(X)] = 0, so in particular we must have that

E
X∼N (0,I)

[(`(X)− f(X))1A] = E
X∼N (0,I)

[(f(X)− `(X))1Ac ] .

However, for any z ∈ A and z′ ∈ Ac, we have that 〈v, z〉 ≥ 〈v, z′〉, and hence

E
X∼N (0,I)

[〈v,X〉 (`(X)− f(X))1A] ≥ E
X∼N (0,I)

[〈v,X〉 (f(X)− `(X))1Ac ] ,

where this uses that `(z) ≥ f(z) if z ∈ A and f(z) ≥ `(z) otherwise. Rearranging, yields

E
X∼N (0,I)

[〈v,X〉 `(X)] ≥ E
X∼N (0,I)

[〈v,X〉 f(X)] ,

as claimed. Now, we simply observe that

E
X∼N (0,I)

[〈v,X〉 `(X)] = E
Z∼N (0,1)

[Z · 1Z>−Φ−1(p)]

=
1√
2π

∫ ∞
−Φ−1(p)

xe−x
2/2dx

= exp

(
−1

2
Φ−1(p)2

)
= exp

(
−1

2
Φ−1(H(x))2

)
,

as claimed.
To demonstrate the Theorem for general σ, note that we can take the auxiliary function

h̃(z) = h(z/σ), and the corresponding smoothed function H̃ = h̃ ∗ N (0, 1). Then H̃(σx) =

H(x). By the same proof as before, Φ−1 ◦ H̃ is 1-Lipschitz, and this immediately implies
that Φ−1 ◦H is σ-Lipschitz.

Combining this with Lemma 2.2 yields Theorem 1.1.
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3 Training for randomized smoothing

We now turn our attention to how to actually train for randomized smoothing. This is
crucial for randomized smoothing to be effective. For instance, if I take a standard neural
network, trained via vanilla training, its associated smoothed classifier won’t in general even
get good clean accuracy, much less robust accuracy. Indeed, this holds true even if I take
an adversarially trained neural network. So making sure that your base classifier has good
performance when smoothed will turn out to be very important. Moreover, we will also want
the smoothed classifier to be robust, as after all, if it’s not robust, then we cannot certify its
robustness.

Attempt #1: Gaussian data augmentation. This is a very natural idea. We want
the network to classify well under Gaussian noise. Thus, instead of training your network
on your dataset, train it on Gaussian perturbations of the dataset. This is what [3] do, and
by doing so were already able to obtain SOTA numbers for certified accuracy, in a number
of setting. See Tables 1 and 2 for more details. However, we can improve upon this.

Attempt #2: Directly train the smoothed classifier. While Gaussian data augmen-
tation is going in the right direction, in some sense, it is optimizing the wrong objective. To
be concrete, suppose we have a loss function `, and if our neural network is Fθ, parameter-
ized by model weights θ, and our labeled dataset comes from a distribution D then what
Gaussian data augmentation is doing is attempting to optimize the following objective:

min E
(X,y)∼D

δ∼N (0,σ2I)

[`(Fθ, X + δ, y)]

Let’s make this more explicit: suppose ` is the cross entropy loss. Then this is exactly

min E
(X,y)∼D

E
δ∼N (0,σ2I)

[− log(Fθ(X + δ))y] . (8)

But what we actually care about is whether or not the associated smoothed classifier Gθ

itself classifies well. This is the (similar-looking) expression

min E
(X,y)∼D

[− log(Gθ(X))y] = min E
(X,y)∼D

[
− log

(
E

δ∼N (0,σ2I)
[Fθ(X + δ)]y

)]
. (9)

The subtle (but important) distinction between these two expression is simply that the loga-
rithm and the expectation have been switched. However, there is a qualitative distinction: (8)
attempts to find a classifier Fθ which has small loss at X + δ, where X is a natural image,
and δ is a Gaussian perturbation. On the other hand (9) asks us to directly find a classifier
Fθ whose associated smoothed classifier has small loss. Since the latter actually optimizes
the smoothed classifier, it should not be shocking that if we train Fθ using (9), then we
should expect that its smoothed classifier to perform better.
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However, it is not quite clear how to optimize (9). Typically, one needs to do SGD on the
objective. Sampling (X, y) is the same as before: simply iterate over your dataset. The main
difficulty is then how to compute the gradient at a point (X, y), i.e. we need to estimate

∇
(
− log

(
E

δ∼N (0,σ2I)
[Fθ(X + δ)]y

))
. (10)

Specifically, because the logarithm and the expectation are switched, it is not obvious how to
get good gradient estimators for (10). There are a number of things one can try: for instance,
Stein’s Lemma actually gives a gradient-free way to try to estimate this gradient. However, [4]
found that the following “plug-in” estimator works quite well in practice, although it does not
have nice theoretical guarantees: simply take δ1, . . . , δk ∼ N (0, σ2I), and use the estimator

∇
(
− log

(
E

δ∼N (0,σ2I)
[Fθ(X + δ)]y

))
≈ ∇

(
− log

(
1

k

k∑
i=1

[Fθ(X + δi)]y

))
.

This estimator is asymptotically consistent (under mild assumptions on Fθ), but it lacks
essentially any other nice property: for instance, it is not unbiased. But it seems to work.

Attempt #3: Adversarially train the smoothed classifier The final optimization
which helps the performance of randomized smoothing considerably is to not just train
the smoothed classifier for standard accuracy, but to adversarially train it. Intuitively, the
smoothed classifier needs to be robust if we have any hope of certifying that it is robust.
Hence, we should just use whatever heuristics we can to try to make it as empirically robust
as possible, and adversarial training is the strongest technique we know of. This is the
algorithm proposed in [4] which significantly boosts the performance of [3]. By directly doing
so, [4] improves upon the robust accuracy on CIFAR-10 by up to 15%, and by combining it
with other techniques which encourage empirical robustness, such as pretraining and semi-
supervision, they achieve accuracy which is better by up to 20%. They also get improvements
of 5− 6% on Imagenet. See Tables 1 and 2 for more details.

Table 1: Certified top-1 accuracy of randomized smoothing for ImageNet classifiers at various
`2 radii. Table reproduced with consent from at least one author from [4].

`2 radius (ImageNet) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

[3] (%) 49 37 29 19 15 12 9
[4] (%) 56 43 37 27 25 20 16
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Table 2: Certified top-1 accuracy of randomized smoothing for CIFAR-10 classifiers at various
`2 radii. Table reproduced with consent from at least one author from [4].

`2 Radius (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[3] (%) 61 43 32 22 17 13 10 7 4
[4] (%) 73 58 48 38 33 29 24 18 16
+ Pre-training (%) 80 62 52 38 34 30 25 19 16
+ Semi-supervision (%) 80 63 52 40 34 29 25 19 17
+ Both(%) 81 63 52 37 33 29 25 18 16
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