
Lecture 15: Additional topics in robust deep learning

November 19, 2019

In this lecture, we cover a number of topics that we won’t have time to cover in more depth.

1 Adversarial examples for other perturbations

While we’ve mostly focused on `∞, `2, and, to a lesser extent, `1 perturbations, the problem
is still very interesting—and arguably, more interesting—when we consider other norms.
Recall that ultimately the set of perturbations we care about is the set of “semantically
meaningless” perturbations. As we’ve previously discussed, it is clear that `p perturbations
do not fully capture this notion. There is a lot of room for interesting work on this general
question: while researchers have demonstrated attacks for a number of settings, defenses for
many non `p settings are much less well-understood.

`0 adversarial examples A type of perturbation which is (in some sense) technically an `p
perturbation but which has drastically different qualitative properties are `0 perturbations.
Formally, the `0 “norm” of a point x ∈ Rd, denoted ‖x‖0, is the number of nonzero entries
of x. Thus we can also define the `0 perturbation set:

P0,ε(x) =
{
y ∈ Rd

≥0 : ‖x− y‖ ≤ ε
}
.

Note that we may assume WLOG that ε is integer-valued.
The crucial difference between this and `p for p ≥ 1 is that of course `0 is not in fact a

norm—it is not convex. Hence finding adversarial examples requires a very different tech-
nique than just PGD, as the projection is non-convex and unlikely to be meaningful. Instead,
algorithms such as JSMA [1] use heuristics to select which pixels appear to be the most im-
portant to changing the decision boundary. This heuristics appear to work quite well.

On the defense side, there has been recent work on certifiable defenses against `0 at-
tacks, however, the state of the art is quite weak. In particular, to the best of the author’s
knowledge, no certifiable defense is able to do much better than ε roughly 5 or 6.

1



Wasserstein adversarial examples A type of perturbation which arguably captures a
larger set of semantically meaningless perturbations than `p perturbations are perturbations
which have bounded Wasserstein distance (also known as earth mover distance) to the true
image.

Formally, let x, y ∈ Rd be so that xi, yi ∈ [0, 1] for all i. Let Rd×d
≥0 denote the set of

non-negative matrices. Let C ∈ Rd×d be a fixed cost matrix. Intuitively, Cij is how much it
costs to transport one unit of mass from index i to index j. Then, we define the Wasserstein
distance between x, y to be

dW(x, y) = min
Π∈Rd×d

≥0

〈Π, C〉 (1)

s.t. Π1 = x, 1>Π = y . (2)

It can be verified (see HW) that this is indeed a norm over nonnegative vectors. Given this,
we can define the Wasserstein perturbation set as:

PW,ε(x) =
{
y ∈ Rd

≥0 : dW(x, y) ≤ ε
}
.

The problem for scaling this up to neural networks is that solving this efficiently is nontrivial.
While the problem of computing Wasserstein distance can be done in polynomial time (as
it is an LP), this is too slow to scale up to large tasks. However, there are efficient methods,
such as Sinkhorn iteration, which allow us to compute these projections more efficiently. This
allows these algorithms to scale to neural networks on CIFAR-10. See [2] for more details.
However, in that paper they only give empirical defenses. An excellent open question is to
give meaningful certified defenses for Wasserstein distance perturbations.

Defending physical world attacks As mentioned in previous classes, there have been
many attacks that work on real world image recognition systems. Despite this, work on
corresponding defenses has been quite slow to catch up. This is because these attacks are
quite slow to run: often taking on the order of hours to days. In particular, this precludes
the possibility of using traditional adversarial training as a defense, as it is simply too slow.

2 Backdoor attacks

Backdoor attacks are a different type of attack from “traditional” adversarial examples in
two ways. First, they are are mixed train-test attack, meaning that we assume that the
adversary can manipulate both the train and test set. Moreover, the goal of the attack is
not to cause degradation to test accuracy. Rather, the goal is to implant a “backdoor” or
“watermark” into the network.

Let’s make this formal. As usual, we will present this in the context of image classification
but it is not hard to imagine similar attacks in the setting of e.g. speech recognition. The
adversary has some (unknown) fixed perturbation p ∈ Rd, which we think of as very sparse.
Given two vectors x, p, where p is very sparse, we let x� p denote the vector which is equal
to x outside the support of p, and equal to p inside.

2



We assume that we are given an ε-corrupted training set (X1, y1), . . . , (Xn, yn) drawn from
the true data distribution D, where the adversary creating the corrupted training set knows
p. The goal of the adversary is the to simultaneously achieve the following two objectives.
Suppose the estimator takes in S = {(X1, y1), . . . , (Xn, yn)} and outputs f̂ . Then we say
that the adversary succeeds if:

• The clean accuracy of the model is good, that is, E(X,y)∼D

[
`(f̂ , X, y)

]
is low.

• The backdoored accuracy of the model is bad, that is, E(X,y)∼D

[
`(f̂ , X � p, y)

]
is high.

That is, the model looks completely normal on clean data. However, if the adversary is
allowed to add their pre-determined “backdoor” or “watermark”, then the classifier is fooled.

We note that there are many variants of this problem specification. For instance, there
are targeted attack models, where instead of simply trying to mess up the classification
accuracy, the attacker additionally has classes ytarget, ytrue ∈ Y , and the goal of the adversary

is so that if (X, y) is drawn from D conditioned on y = ytrue, then f̂(X) = ytarget with high
probability. However, as far as the writer is aware, the qualitative behavior of both the
attacks and defenses do not change between these different models.

It turns out that if the classifier is a deep neural network trained via standard SGD,
then such attacks are trivial. One can verify experimentally that the following attack works:
given a clean training set, choose a fixed class y∗ ∈ Y , randomly choose an ε-fraction of the
data points T ⊂ S conditioned on the label not being y∗, and let the corrupted training set
be the same outside of T , but replace every (X, y) ∈ T with (X � p, y∗).

Heuristically, this is not surprising. We expect that deep networks can “memorize” train-
ing data. That is, we expect that the network will achieve perfect training accuracy, and
indeed, it does, even on the corrupted data. To do so, the network must realize that the
presence of p overrides any other signals for classification. As a result, the learned represen-
tation will, when given x � p, heavily amplify the signal of p. It must do so, as otherwise
x� p would have been classified according to the true representation of x, which means that
from the perspective of the training data, the network would be misclassifying it. But then
when we are given a fresh sample containing the backdoor, the learned representation boosts
the signal of the backdoor, resulting in misclassification.

While there has been quite a bit of work recently on the problem of defending backdoor
attacks, it is not clear if there is a well-vetted defense yet. However, we note a cute connection
to robust statistics (which should not be claimed to be a full defense). Suppose S is our ε-
corrupted dataset, and f̂ is a learned representation, learned via vanilla SGD (non-robustly).
Then let S ′ = f̂(S). If the intuition about how the work proceeds is correct, then one should
notice that S ′ has two distinct sub-populations. Namely, the learned representations for the
points in T will be activating much different parts of the representation space than those
outside of it. In particular, they are sufficiently separated that empirically (at least with
this naive attack), the largest eigenvalue of the empirical covariance of f̂(S) is substantially
larger than the largest eigenvalue of f̂(S \ T ). Thus, we can use the technology of spectral
signatures as developed previously in this course to help with this attack [3]. There are

3



(somewhat weaker) attacks that fool this defense [4, 5], but it is nice that there is such a
clean connection.

3 Data poisoning attacks on deep networks

Finally, we turn our attention back again towards train-time corruptions, which in the deep
learning literature is often referred to as data poisoning attacks. Here, we consider attacks
where the adversary is allowed to corrupt an ε-fraction of the training data, and the goal is

to decrease test accuracy; that is, to decrease E(X,y)∼D

[
`(f̂ , X, y)

]
, where f̂ is the learned

model. While many data poisoning attacks have been demonstrated against convex models
such as SVM, logistic regression, linear regression, etc., to date there have been no “non-
trivial” attacks against deep neural networks, trained with vanilla non-robust SGD.

The baseline attack for data poisoning a neural network is the random label-flipping
attack. As the name suggests, the attack works by taking an ε-fraction of the data points,
and flipping their labels randomly. Empirically, this appears to cause the test accuracy for
0/1 loss to decrease by ε, for ε relatively small. In contrast, note that data poisoning attacks
for SVM, logistic regression, ridge regression, etc, are often able to (at least when there are
no defenses), degrade the test accuracy by much more, often to zero.

The design of such an attack is a great open question. In the context of data poisoning,
there appears to be a major difference between the behavior of simple models such as linear
regression, and overparameterized models, such as neural networks. Consider the case where
we are doing linear regression, that is, we have data points (X1, y1), . . . , (Xn, yn) so that
y = (θ∗)>X, and suppose we add in εn copies of the point (Z, a). Then, if we run least
squares on this noisy data, it is attempting to optimize the following loss:

L(θ) =
n∑
i=1

(θ>Xi − yi)2 + εn(θ>Z − a)2 .

Then if we let a = 0, the gradient of L is given by

∇θL = ∇true + εn 〈θ, Z〉Z ,

where ∇true is the gradient on clean data. In particular, it is supposed to be close to zero
at θ∗. However, notice that we can trivially design Z so that the gradient is massive at θ∗.
Thus the data poisoning attack has been able to “entangle” the bad data with the good
data, causing an almost-complete degradation of test accuracy.

Intuitively, the difficulty with constructing such an attack for deep nets is precisely the
fact that neural networks empirically seem to be able to memorize the training data. As a
result, even if we mix the training data with a small fraction of corrupted data, the neural
network seems to be able to separate these two sub-populations out. As a result, it will only
suffer ε loss in test accuracy on clean data. Any attack that is able to improve upon this
rate must somehow circumvent this barrier.

4



References

[1] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016
IEEE European Symposium on Security and Privacy (EuroS&P), pages 372–387. IEEE,
2016.

[2] Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via pro-
jected sinkhorn iterations. In International Conference on Machine Learning, pages
6808–6817, 2019.

[3] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks.
In Advances in Neural Information Processing Systems, pages 8000–8010, 2018.

[4] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor at-
tacks.

[5] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accurate
approach to inspecting and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019.

5


