
Lecture 16: Basics of differential privacy

November 21, 2019

1 Differential Privacy

In this lecture we begin our final unit of the class on private machine learning. However, before we can get
into the development of private algorithms for machine learning problems, we’ll first need to cover a bit of
background on the basics of differential privacy. Intuitively, privacy should ensure that the output of the
algorithm should be similar on similar data points. Differential privacy has emerged as arguably the most
commonplace way of rigorously arguing about privacy.

We first require some notation. Let X be a set, and let X,X ′ ∈ Xn. We let ‖X −X ′‖0 denote the
number of indices where Xi ∕= X ′

i. Then, differential privacy can be defined as follows:

Definition 1.1 ((ε, δ)-differential privacy, [1]). A randomized algorithm A : Xn → Y is (ε, δ)-differentially
private if for all X,X ′ ∈ Xn so that ‖X −X ′‖0 ≤ 1, and any S ⊆ Y , we have that

Pr [A(X) ∈ S] ≤ eε · Pr [A(X ′) ∈ S] + δ ,

where the probability is over the internal randomness of A. When δ = 0 we will refer to this as ε-differential
privacy, or pure differential privacy. When δ > 0, we refer to this as approximate differential privacy.

Notice by symmetry this also implies that

Pr [A(X ′) ∈ S] ≤ eε · Pr [A(X) ∈ S] + δ .

When X,X ′ satisfy ‖X −X ′‖0 ≤ 1 we say that X,X ′ are adjacent. There are also other notions of adjacency
that are sometimes considered in the differential privacy literature, especially in the private ML literature,
but for now we will stick to the classic definition.

In the definition above, ε is a privacy loss parameter. It is not hard to see that if we wish for perfect
privacy (i.e. ε = δ = 0), then nothing non-trivial is possible, and so we quantify how much privacy we
sacrifice with this parameter. It asks that any event of probability at least O(δ) is almost equally likely when
the algorithm takes X or X ′. In contrast, robust statistics asks for much less: only that the output of the
algorithm is close to the truth with good probability. However, this comes at a cost: typically, in robust
statistics, we think of corrupting a constant fraction of the data points, whereas in differential privacy, the
guarantees tend to become meaningless after one has corrupted more than a constant number of data points.

1.1 Properties of differential privacy

One reason why differential privacy is such a popular notion is that it turns out to have very nice proper-
ties. Below we will list a number of these properties, and omit the proofs because they are standard and
straightforward. The first property is that it is preserved under post-processing:

Fact 1.1 (Differential privacy is preserved under post-processing). Let A : Xn → Y be a (ε, δ)-differentially
private algorithm, and let f : Y → Z be an arbitrary random function. Then f ◦ A is (ε, δ)-differentially
private.
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Another useful fact is composition:

Fact 1.2 (Basic composition of differential privacy). Let Ai : Xn → Y be (εi, δi)-differentially private for
i ∈ [k]. Then the algorithm A : Xn → Y k defined by A(x) = (A1(x), . . . ,Ak(x)) is (

!
εi,

!
δi)-differentially

private.

As we’ll see later on, this is not the full picture for composition: for approximate DP we can actually
get privacy loss which scale sublinearly with the number of things we are composing together. Finally, a
similar-looking (but different) statement is that we also get privacy for larger distances:

Fact 1.3 (Group privacy). Let A : Xn → Y be ε-differentially private. Then, for any X,X ′ ∈ Xn so that
‖X −X ′‖0 ≤ k, and any event S ⊆ Y , we have

Pr [A(X) ∈ S] ≤ ekε · Pr [A(X ′) ∈ S] .

2 Private mechanisms

Here we will go over some of the basic ways to convert a non-private algorithm into a private algorithm. We
will focus primarily on numeric problems, namely, ones where the range is Y = Rd. Let f : Xn → Rd. Our
goal is to convert f into a random function which is differentially private, while not distorting it too much.
It is not hard to see that this is not easy to do for all functions; for instance, consider the function f which
is very large at a specific x ∈ Xn and zero elsewhere; then since f is not very smooth, converting it into a
private function will have to distort f a lot. To quantify this, for any p ∈ [1,∞), we define the parameter

∆p(f) = sup
‖X−X′‖0=1

‖f(X)− f(X ′)‖p

to be the ℓp-sensitivity of f . Intuitively, if ∆p is small, then f is smoother, and it should be easier to make
f private. This is exactly what the Laplace and Gaussian mechanisms achieve.

2.1 The Laplace mechanism

We start with the following definition:

Definition 2.1 (The Laplace distribution). Let b > 0. Then the (univariate) Laplace distribution (centered
at 0) with scale b is the distribution over R with probability density function given by

p(x) =
1

2b
exp

"
− |x|

b

#
.

With this definition, we can now define the Laplace mechanism:

Definition 2.2. Given any function f : Xn → Rd, the Laplace mechanism with parameter ε > 0 is the
random function Mf,ε : Xn → Rd defined by

Mf,ε(X) = f(X) + Y ,

where Y ∈ Rd is a random vector whose coordinates are drawn independently from Lap(∆1(f)/ε).

Often times we will just refer to this as the Laplace mechanism and denote it Mf , when the parameter ε > 0
is understood. The Laplace mechanism satisfies the following privacy guarantee:

Theorem 2.1. Let f : Xn → Rd. Then Mf,ε is ε > 0 is (ε, 0)-differentially private.
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Proof. Let X,X ′ be adjacent. Let pX denote the pdf of Mf,ε(X), and similarly let pX′ denote the pdf of

Mf,ε(X
′). Then at any point y ∈ Rd, we have

pX(z)

pX′(z)
=

d$

i=1

%

&
exp

'
− ε

∆1(f)
|f(X)i − zi|

(

exp
'
− ε

∆1(f)
|f(X ′)i − zi|

(

)

*

= exp

"
ε

∆1(f)
(‖f(X ′)− z‖1 − ‖f(X)− z‖1)

#

≤ exp

"
ε

∆1(f)
‖f(X ′)− f(X)‖1

#
= eε ,

as claimed.

On the other hand, we also know that (as long as ∆1(f)) is not too large, that this is still pretty close to
the true value of f , with good probability. This follows as a corollary of the following standard fact:

Fact 2.2. Let Y ∼ Lap(b). Then for all t ≥ 0, we have Pr [|Y | ≥ tb] = exp(−t).

By combining this with a union bound, we immediately obtain:

Corollary 2.3. Let f : Xn → Rd. Then, for all η ∈ (0, 1], we have:

Pr

+
‖f(x)−Mf.ε(x)‖∞ ≥ ∆1(f)

ε
log

d

η

,
≤ η .

Example: Histogram queries As an example which will be somewhat useful later on, consider the
setting where we have subdivided X into disjoint subsets A1, . . . , Ak, and f : Xn → Rk simply reports the
number of samples we see in each subset, i.e. f(X)j = |{i : Xi ∈ Aj}|. It’s not hard to see that ∆1(f) ≤ 2,
and hence the Laplace mechanism gives us an (ε, 0)-differentially private algorithm which reports each

coordinate of f to accuracy O
'

log d
ε

(
with high probability. In particular, if n ≳ log d

εα , then this gives us a

(1 + α)-multiplicative approximation to the true counts.

2.2 The Gaussian mechanism

A similar mechanism to the Laplace mechanism is the Gaussian mechanism:

Definition 2.3 (The Gaussian mechanism). Given any function f : Xn → Rd, the Gaussian mechanism
with parameter σ > 0 is the random function Mgauss

f,σ : Xn → Rd defined by

Mgauss
f,σ (X) = f(X) + Y ,

where Y ∼ N (0,σ2 · I).

The main advantage of this is that we only add coordinate-wise Gaussian noise that depends on the ℓ2
sensitivity of f ; often times this can be much smaller than the ℓ1 sensitivity. However, the main downside
of this is that it only provides approximate differential privacy. These two properties are captured by the
following theorem:

Theorem 2.4. Let ε, δ > 0, and let f : Xn → Rd. Let σ = c∆2(f)/ε for some c satisfying c2 ≳ log(1/δ).
Then Mgauss

f,σ is (ε, δ)-differentially private.

The proof of this theorem is slightly annoying (although very similar to the proof above), and we omit it
for simplicity. We note that in fact the Gaussian mechanism satisfies a stronger notion of privacy, namely,
zero-concentrated differential privacy :
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Definition 2.4 (zero Concentrated Differential Privacy, [2]). Let ρ > 0. A randomized algorithm A : Xn →
Y is ρ-zCDP if for all adjacent X,X ′ ∈ Xn, we have that

Dα (A(X)||A(X ′)) ≤ ρα ∀α ∈ (1,∞) ,

where for any α > 1 and two probability distributions P,Q,

Dα(P ||Q) =
1

α− 1
log E

X∼P

+
dQ

dP
(X)α−1

,

is the α-Renyi divergence between P,Q.

The main properties that we’ll need from this definition of privacy are that (1) it is a notion of privacy
formally between pure and approximate differential privacy, and (2) the Gaussian mechanism satisfies zCDP.
These two facts are captured in the following two theorems, whose proofs we will omit for the sake of time:

Theorem 2.5. For any ε > 0, and any randomized algorithm M, we have:

1. If M is (ε, 0)-differentially private, then M is (ε2/2)-zCDP.

2. If M is (ε2/2)-zCDP, then M is (ε2/2 + ε
-
2 log 1/δ, δ)-differentially private for all δ > 0.

Theorem 2.6. Let f : Xn → Rd be arbitrary, let ρ > 0, and let σ = ∆2(f)/
√
2ρ. Then Mgauss

f,σ satisfies
ρ-zCDP.

Additionally, note that as a simple consequence of Gaussian concentration, we have the following analog of
Corollary 2.3:

Fact 2.7. Let f : Xn → Rd. Then, for all η ∈ (0, 1], we have:

Pr

.
‖f(x)−Mf.ε,δ(x)‖∞ ≳ ∆2(f)

ε

/

log
d

η

0
≤ η .

3 Advanced composition theorems

As mentioned before, approximate differential privacy (as well as concentrated differential privacy) satisfy
stronger composition theorems than presented in Fact 1.2. Moreover, in general, all differentially private
algorithms compose well under adaptive composition. Formally, we say that M is an adaptive composition
of M1, . . . ,MT if Mt may depend on the outcomes of M1, . . . ,Mt−1. Then, we have:

Theorem 3.1 (Advanced composition theorems, [1, 3, 2]). Let M be an adaptive composition of M1, . . . ,MT .
Then:

• If Mi is (εi, δi)-differentially private for all i ∈ [k], then M is (
!

εi,
!

δi)-differentially private.

• If Mi satisfies ρi-zCDP for all i ∈ [k], then M is (
!

ρi)-zCDP.

• If Mi is (ε, δi)-differentially private for all i ∈ [k], then for all δ > 0, M is (ε0
-
6T log 1/δ, δ +

!
δi)-

differentially private.

4 Differentially private learning

We now wish to formulate machine learning problems with differential privacy in mind. The slightly incon-
gruous thing about differential privacy for ML is that differential privacy is a worst-case guarantee, whereas
typically in ML we deal with average case data, i.e. data that came from some nice distribution D. However,
it still makes sense to insist upon worst-case privacy guarantees. This is because we don’t know for sure if
the data comes from the distribution we think it comes from. Thus, it is natural to want that the algorithm
is always private, no matter what. Of course, the accuracy of the algorithm will hinge on the fact that the
data satisfies the distributional assumption, but that is inevitable.
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