
Lecture 17: Differentially private estimation I: univariate estimation

November 26, 2019

In this lecture, we’ll show how to use some of the techniques presented in the previous lecture (as well as
some additional ones) to get estimation procedures for univariate estimation tasks which are differentially
private, and which pay only a minor cost when it comes to sample complexity.

Specifically, following [1], we will consider the task of learning a Gaussian to small total variation distance
error under differential privacy. As in the case of robust estimation, we’ll do this by decomposing the overall
problem into two sub-problems, namely, private mean estimation and private covariance estimation. Before
we will do so, we’ll need a couple of additional private mechanisms.

Notation As a bit of notation, in this lecture (and as is relatively standard in private ML), we will use α
to denote the accuracy parameter, i.e. the error to which we learn the quantities. This is just because ε is
unfortunately already taken.

1 Private histograms

Recall that a histogram over a domain X has the following form. We have some partition of X = B1∪. . .∪Bk

where the Bi are disjoint, and a function f : Xn → Rk where f(X)i = |{j : Xj ∈ Bi}| is simply the histogram
of how many samples land in each bucket. More generically, we can ask for a potentially infinite partition of
X . Formally, let S ⊂ 2X so that for all S, S′ ∈ S we have that S ∩ S′ = 0, and moreover ∪S∈SS = X . Then
I can define a function f : Xn → RS analogously, namely, f(X)S = |{j : Xj ∈ S}|. Given such a partition,
we will call f the associated histogram function. Clearly this generalizes the notion of histogram queries as
defined before.

Recall from last class that when the partition is finite, then the Laplace mechanism gives us the following
utility and privacy guarantees:

Theorem 1.1. Let B1, . . . , Bk be a partition of X . Let f : Xn → Rk be the associated histogram, and let
ε, η > 0. Then MLap

f,ε is (ε, 0)-differentially private, and moreover,

Pr

!"""f(x)−MLap
f.ε (x)

"""
∞

≥ 2

ε
log

k

η

#
≤ η .

However, notice that the utility of this algorithm scales to ∞ as k → ∞ (albeit logarithmically). It turns
out that if we are okay with approximate differential privacy, this can be avoided, which allows us to take
potentially infinitely many buckets:

Theorem 1.2 ([2, 3]). Let S ⊂ 2X be a (potentially infinite) partition of X . Let f : Xn → RS be the
associated histogram function, and let ε, δ > 0. Then there is an algorithm A which is (ε, δ) differentially

private, and moreover, with probability at least 0.99, outputs $f so that
"""f − $f

"""
∞

≲ log 1/δ
ε .

The proof of this is deferred to the homework.
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2 Private mean estimation

Let’s first consider the case when we know the variance exactly, and all we must do is learn the mean of the
Gaussian. WLOG, by scaling, we may assume that the variance is 1. Then recall that to learn a Gaussian
to total variation distance α, it was equivalent to learn the mean to error α:

Fact 2.1. Let µ, µ′ ∈ R. Then

min(|µ− µ′| , 1) ≲ dTV(N (µ, 1),N (µ′, 1)) ≲ |µ− µ′| .

In this section, we’ll see several algorithms for this problem, in both the pure and approximate DP setting.
As we’ll see, the guarantees you can achieve for these two settings are somewhat different.

2.1 Pure DP algorithms

It turns out that for pure differential privacy, we will require some additional information about the unknown
mean. Specifically, we will require that it lives within a known interval. WLOG let us assume that this
interval is centered at 0 and has radius R, i.e. we know that µ ∈ [−R,R], where µ is the unknown mean.
When given an interval not centered at zero, we can clearly simply shift it to be centered at zero, so this is
without loss of generality.

Our first attempt will be relatively naive. Let X1, . . . , Xn be our data set. Suppose that X1, . . . , Xn ∼
N (µ, 1), where µ is unknown but µ ∈ [−R,R]. We simply observe that in this case, then by standard
Gaussian concentration, we know that with extremely high probability, we have |Xi| ≤ R+O(

√
log n) for all

i ∈ [n]. Thus, removing all points that exceed this threshold will remove no points in this case. Concretely,
for some constant C > 0 sufficiently large, consider the estimator

%µ(X1, . . . , Xn) =
1

n

n&

i=1

Xi · 1
'
|Xi| ≤ R+ C

(
log n

)
.

Then we know that with high probability, if Xi ∼ N (µ, 1), then this will not throw away any point from
out dataset with probability ≥ 0.99 (for C sufficiently large), and so this will behave like the empirical mean
$µ = 1

n

*n
i=1 Xi. We already know how the empirical mean concentrates: from previous lectures, we know

that with probability ≥ 0.99,

|µ− $µ| ≲
+

1

n
.

Moreover, by design, changing one point in the dataset can change %µ by at most 2R+2C
√
logn

n . In particular,

for any dataset, the ℓ1 sensitivity of %µ is 2R+2C
√
logn

n , and thus the randomized estimator

A(X1, . . . , Xn) = %µ(X1, . . . , Xn) + Lap

,
2R+ 2C

√
log n

nε

-

is (ε, 0)-differentially private. By a standard concentration argument for Laplace random variables, we know
that with probability ≥ 0.99, we have

|A(X1, . . . , Xn)− %µ(X1, . . . , Xn)| ≲
R+ C

√
log n

nε
.

Combining this with the argument above, we have proven the following statement:

Lemma 2.2. Let ε > 0, let R > 0, and let X1, . . . , Xn ∈ R. There is an efficient (ε, 0)-differentially private
algorithm A so that if Xi are i.i.d. samples from N (µ, I) for some µ ∈ [−R,R], then with probability at least
0.97, we have

|A(X1, . . . , Xn)− µ| ≲
+

1

n
+

R+
√
log n

nε
.
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In particular, for any α > 0, if

n ≳ 1

α2
+

R

αε
+

.
log 1

αε

αε
, (1)

then |A(X1, . . . , Xn)− µ| ≤ α with probability at least 0.97.

Let’s parse (6) briefly. The first term is simply the rate of regular non-private mean estimation, so the
second and third terms are what we pay for insisting on privacy. Notice that when ε ≈ α, then the third
term disappears (up to log factors), and so we could hope to get privacy “for free” (up to logarithmic factors).
However, the most salient term is arguably the second term: this algorithm pays a linear cost in the range.
In particular, when R is large (as it may be a priori), we pay a lot for privacy, at least with this algorithm.

Luckily, it turns out we can dramatically improve this dependence. The main observation is that we can
first get a relatively poor approximation of the mean, via a histogram, while preserving privacy. Then, we
can use this constant-sized interval as a replacement for [−R,R] in the above bound.

The algorithm proceeds as follows. Assume WLOG that R is an integer. Break up [−R,R] into 2R − 2
intervals, each of length 1. Denote these intervals in increasing order as I−(R−1), . . . , I−1, I1, . . . , IR−1 (do
something arbitrary with the boundaries). The key point is the following: if X1, . . . , Xn are i.i.d. samples
from µ, then with overwhelming probability, in the associated histogram function, the bucket that contains
µ (or one of the ones around it) will contain the most points. As a result, we can run a private histogram
algorithm, i.e. Theorem 1.1, on our input. This gives us a bucket Ij so that µ is close to Ij with high
probability, and then we can simply run Lemma 2.2 with this a much smaller interval, and this will give us a
much better dependence on R. Importantly, note that this process is an adaptive composition of two private
algorithms, as the application of Lemma 2.2 uses the output of Theorem 1.1. However, this is okay, as long
as we’re okay with losing a constant factor in the accuracy, by composition of differential privacy.

Let’s make this discussion formal. The main utility guarantee of the histogram algorithm follows from
the following lemma:

Lemma 2.3. Let f be the associated histogram function for the partition I−(R−1), . . . , I−1, I1, . . . , IR−1.
Let X1, . . . , Xn ∼ N (µ, I), where µ ∈ [−R,R]. Then, with probability ≥ 1 − exp(−Ω(n)), if Ij is the
bucket with the most points in it, then |µ − j| ≤ 5. Moreover, we have that fj(X1, . . . , Xn) ≥ 0.1n, and
fj′(X1, . . . , Xn) < 0.02n for all j′ so that |µ− j| > 5.

Proof. Let A be the event that |X−µ| ≤ 4. Notice that if this occurs, then X lands within one of the buckets
Ij where |µ − j| ≤ 5. Now we know that PrX∼N (µ,1)[A] ≥ 0.99. In particular, if we let Yi = 1 if Xi ∈ A

and 0 otherwise, then by a Chernoff bound, with probability 1− exp(−Ω(n)), we have that 1
n

*
Yi ≥ 0.98.

Condition on this event occurring for the result of the proof. If this happens, then this means that any
bucket Ij so that |j − µ| > 5 can have at most 0.02n points within it. On the other hand, this implies that
0.98n points fall within the 9 intervals I = [j, j + 1] surrounding µ satisfying |j − µ| ≤ 5. This means that
at least one of them must contain at least 0.98n/9 ≈ 0.1n points, which means that the bucket containing
the most points must be one of these 9 intervals, which concludes the proof.

This yields:

Corollary 2.4. Let ε > 0, let R > 0, and let X1, . . . , Xn ∈ R. There is an efficient (ε, 0)-differentially
private algorithm A so that if Xi are i.i.d. samples from N (µ, I) for some µ ∈ [−R,R], then if n ≳ logR

ε ,
then with probability at least 0.99− exp(−Ω(n)), we have that

|A(X1, . . . , Xn)− µ| ≤ 5 .

Proof. The algorithm is straightforward: let f be the associated histogram function for the partition
I−(R−1), . . . , I−1, I1, . . . , IR−1, and let j be the maximum coordinate of MLap

f,ε (X1, . . . , Xn). By Theorem 1.1
and our choice of n, we know that this is (ε, 0)-differentially private, and moreover, if cℓ is the ℓ-th coordinate

of MLap
f,ε (X1, . . . , Xn), then |cℓ − fℓ| ≤ 0.02n for all ℓ, with probability at least 0.99. Combining this with

Lemma 2.3 immediately yields the desired result.
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Combining the output of this algorithm with the Laplace noise-based approach with the ε for both algorithms
internally set to ε/2 and invoking composition of differential privacy yields:

Theorem 2.5. Let ε > 0, let R > 0, and let X1, . . . , Xn ∈ R. There is an efficient (ε, 0)-differentially
private algorithm A so that if Xi are i.i.d. samples from N (µ, I) for some µ ∈ [−R,R], then with probability
at least 0.97− exp(−Ω(n)), if n ≳ logR

ε , then we have

|A(X1, . . . , Xn)− µ| ≲
+

1

n
+

√
log n

nε
.

In particular, for any α > 0, if

n ≳ 1

α2
+

logR

ε
+

.
log 1

αε

αε
, (2)

then |A(X1, . . . , Xn)− µ| ≤ α with probability at least 0.96.

This is much better! In particular, we get privacy “for free” in a much larger range of parameters. However,
one could still ask if this could be improved. Unfortunately, it turns out that for pure differential privacy,
logR is unavoidable:

Theorem 2.6. Suppose A : Rn → R is an (ε, 0)-differentially private algorithm, which, given (X1, . . . , Xn) ∼
N (µ, I) for some µ ∈ [−R,R], outputs µ′ so that with probability ≥ 1/2, we have that |µ′ − µ| < 0.1. Then
n ≳ logR

ε .

Proof. Let Z1, . . . , Zn ∼ N (0, 1). By correctness, we must have that

Pr [|A(Z1, . . . , Zn)| < 0.1] ≥ 1/2 . (3)

On the other hand, suppose that X1, . . . , Xn ∼ N (j, 1) for some j ∕= 0. Then by correctness, we must have
that

Pr [|A(X1, . . . , Xn)− j| < 0.1] ≥ 1/2 . (4)

However, by group privacy (just by replacing all of the Xi with Zi), this implies that

Pr [|A(Z1, . . . , Zn)− j| < 0.1] ≥ e−εn/2 . (5)

Consider the events Ej = {|A(Z1, . . . , Zn)− j| < 0.1}. These events are obviously disjoint, and moreover
Pr[E0] ≥ 1/2, which in particular implies that

*
j ∕=0 Pr[Ej ] < 1/2. Thus, we have that

(2R− 3)
ε−εn

2
≤

&

j ∕=0

Pr[E0] <
1

2
,

which by solving for n immediately implies the desired result.

This turns out to be a special case of a fairly widespread phenomena. In particular, as long as there is a
“packing” of distinct problem instances of size S, the same technique will give you that (ε, 0)-differential
privacy will require Ω(logS) samples. One can also show that the third term in this expression is unavoidable,
up to the log factor:

Lemma 2.7 ([4]). Let P,Q be two distributions over X so that dTV(P,Q) = α. Then, suppose there is an
(ε, 0)-differentially private algorithm A, which, given n samples from either P or Q, correctly classifies if the
samples are from P or from Q, with probability at least 0.99. Then n = Ω( 1

αε ).
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Proof. Recall one definition of total variation distance: that there exists a coupling (X,Y ) of P and Q
so that Pr[X ∕= Y ] ≤ α. Let (X1, Y1), . . . , (Xn, Yn) be n i.i.d. copies of this coupled random vari-
able. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Since X1, . . . , Xn are n i.i.d. samples from P , then
PrA,X [A(X) outputs P ] > 0.99, and similarly PrA,Y [A(Y ) outputs Q] > 0.99. For any z ∈ Xn, and any
R ∈ {P,Q}, let

fR(z) = Pr
A
[A(z) outputs R] .

Then in particular we have EX [FP (X)] ≥ 0.99, so since fR is a [0, 1]-valued function, we have that
PrX [FP (X) > 0.9] ≥ 0.9, and similarly PrY [FQ(Y ) > 0.7] ≥ 0.9. Moreover, we have E [‖X − Y ‖0] ≤ αn,
and hence by Markov’s inequality, Pr [‖X − Y ‖0 > 10αn] < 0.1. Thus, by a union bound, we may assume
that the following three events occur simultaneously with probability at least 0.7:

FP (X) > 0.9 ,

FQ(Y ) > 0.9 ,

‖X − Y ‖0 < 10αn .

Condition on these three events occurring simultaneously. By group privacy, we have

0.9 < FP (X) = Pr
A
[A(X) outputs P ] ≤ ε10αn · Pr

A
[A(Y ) outputs P ] ≤ e10εαn · 0.1 .

Solving this expression for n yields the desired result.

2.2 Approximate DP algorithms

It turns out that in general, a dependence of the form 1
αε is unavoidable for essentially notion of privacy.

However, this term is generally pretty minor: when ε = Θ(1), this is often dominated by the non-private
rate. On the other hand, if we’re willing to compromise a little, and ask for only approximate differential
privacy, then we can avoid any dependence on R. In particular, the only part of the above algorithm which
requires a dependence on R is the first histogramming step. Specifically, if we’re okay with approximate
differential privacy, we can invoke Theorem 1.2 with an infinite decomposition of R into unit length intervals
instead of Theorem 1.1, and then follow the same recipe as before. Straightforward computation yields:

Theorem 2.8. Let ε, δ > 0, and let X1, . . . , Xn ∈ R. There is an efficient (ε, δ)-differentially private
algorithm A so that if Xi are i.i.d. samples from N (µ, I) for some µ ∈ R, then with probability at least

0.97− exp(−Ω(n)), if n ≳ log 1/δ
ε , then we have

|A(X1, . . . , Xn)− µ| ≲
+

1

n
+

√
log n

nε
.

In particular, for any α > 0, if

n ≳ 1

α2
+

log 1/δ

ε
+

.
log 1

αε

αε
, (6)

then |A(X1, . . . , Xn)− µ| ≤ α with probability at least 0.96.
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