
Lecture 19: Additional topics in private machine learning

December 5, 2019

1 Efficient algorithms for estimation with pure DP in high dimensions

We’ve shown in the last couple of lectures that in high dimensions there are efficient algorithms for estimating
the mean and covariance of a Gaussian in high dimensions under relaxed versions of differential privacy such
as zCDP. While we’ve mostly focused on sample complexity during those lectures, one can also go back and
check that all of these algorithms are also efficient, i.e. run in time which is polynomial in the dimension
and the number of samples.

It turns out that the situation is more delicate when we instead ask for pure differential privacy. Consider
the setting of mean estimation. The algorithm we sketched was the following: apply our 1D algorithm
coordinate-wise, and then use advanced composition to argue that we don’t lose too much in terms of
privacy when we combine the outputs. To be more concrete, recall that to get ℓ2 error α, we need to solve
each univariate problem to accuracy α′ = α/

√
d. Then, since we apply advanced composition to d sub-

routines, we need to set ε′ = ε/
√
d if we use to obtain (ε, δ)-DP. As discussed in the previous lecture this

yields an overall sample complexity of

!Ω
"

d

α2
+

d

αε

#
,

where we have suppressed the dependence on δ for clarity.
However, if we insist upon pure differential privacy, we can no longer use advanced composition, and this

yields a private sample complexity of

!Ω
"

d

α2
+

d3/2

αε

#
,

in particular, the dependence on d is no longer linear. This sort of gap also seems to appear for covariance
estimation, even in the well-conditioned setting. Here the main problem is that the Laplace mechanism adds
entrywise noise which is proportional to the ℓ1-sensitivity of the estimator, whereas the Gaussian mechanism
adds entrywise noise which is proportional to the ℓ2-sensitivity. However, the ℓ1 sensitivity of the (truncated)
empirical covariance is of order Θ(d2), as opposed to Θ(d) for ℓ2. This correspondingly causes a Frobenius
loss of Θ(d3) as opposed to Θ(d2). In general, this is problematic, as generically ℓ1-sensitivity will typically
be larger by dimension-dependent factors than the ℓ2-sensitivity.

It not trivial that this is avoidable, but recently, [1] gave pure DP algorithms for these problems that
essentially match the runtime achieved for approximate differential privacy. However, these algorithms are
not efficient—they run in time which is exponential in the dimension. A great open question is to resolve
this gap:

Open Question 1.1. Give a polynomial time (ε, 0)-DP algorithm which given samples from a Gaussian
with unknown mean and known covariance (resp. known mean and unknown covariance), estimates the mean
(resp. unknown covariance) at a rate that matches the rate for approximate DP.

1

2 Local differential privacy

One potential drawback of differential privacy is that the users must still send their data to a central entity,
and the privacy guarantee is satisfied only if this entity runs the private algorithm that they claim to run.
In particular, if the data curator itself may be untrustworthy, then differential privacy may be insufficient.
Local differential privacy [2, 3, 4], or LDP for short, is an attempt to rectify this problem. LDP is a
stronger privacy guarantee, where, for any data point X, we release A(X), where A is a differentially private
algorithm. The data curator then gets to see this privatized view of the data, and can output whatever it
wants. By post-processing of differential privacy, the output of this algorithm will also preserve the privacy
of the individual data points. Intuitively, we imagine that each user has local data (i.e. on their personal
computer or smartphone), and then sends a privatized view of the data to the server, which may not be
trustworthy. This way, the privacy-leaking data never leaves the user’s local device.

Unsurprisingly, there is often a price that one must pay for LDP. As this is a stronger notion of privacy, the
rates one is able to achieve are typically worse. For instance, consider the simple setting of mean estimation
of a univariate Gaussian. Assume we have samples X1, . . . , Xn ∼ N (µ, 1), and let’s even assume that |µ| ≤ 1,
that is, we have a pretty decent estimate of µ. Then, to preserve (ε, 0)-LDP, we have to add noise to each
Xi in a way which is (ε, 0)-differentially private. Since |Xi| ≲

√
log n with high probability, we can release

Yi = Xi · 1[|Xi| ≲
√
log n] + Zi, where Zi ∼ Lap(

√
logn
ε), and the algorithm which takes Xi to Yi will be

(ε, 0)-differentially private (and this is essentially the best you can do). Given the Yi, the best estimator is
still essentially the empirical mean !µ = 1

n

$n
i=1 Yi. The cost of privacy is the magnitude of 1

n

$n
i=1 Zi. Since

this is a sum of n mean zero i.i.d. sub-exponential random variables with standard deviation ≈
√
logn
ε , this

will be of magnitude roughly ≈
√
logn
ε
√
n

, and so the rate of convergence of the overall algorithm is

|µ− !µ| = Θ

%&
1

n
+

√
log n

ε
√
n

'
,

with high probability, and moreover, one can show that this rate is optimal, up to logarithmic factors. In
contrast, recall that for traditional (ε, 0)-differential privacy, we can achieve

|µ− !µ| = Θ

%&
1

n
+

√
log n

εn

'
,

with high probability, for the same problem. The difference between these rates represents an additional
price to pay for LDP as opposed to DP. Such a difference also manifests itself in high dimensional settings,
see e.g. [5].

2.1 Shuffled differential privacy

One interesting attempt to bridge this gap, while still maintaining privacy without trusting the central
party too much is an interesting notion called shuffled differential privacy [6]. In this paper, they show
that much less noise needs to be added to each data point, if the central algorithm promises to perform a
permutation invariant statistic, such as the kinds of statistics we’ve been considered like the empirical mean
or the empirical covariance. In other words, if the central algorithm promises to perform a uniformly random
shuffle of the data before performing its actual computation, then the individual users can get away with
adding much less noise and still maintaining strong privacy guarantees. Of course, this still requires some
degree of trust on the part of the users, but perhaps less so. Moreover, it is not implausible that the fact
that such a permutation has been applied could be verified by some cryptographic protocol.

3 Private stochastic optimization

We have so far focused primarily on unsupervised learning tasks. This raises the following natural question:
what about supervised learning? As in the case for robust statistics, we can study this largely through

2

the lens of stochastic optimization. Recall that stochastic optimization is the following problem: we have a
distributionD over functions f(w), and given samples from this distribution (which is our data), the goal is to
minimize R(w) = Ew∼D[f(w)], i.e. the expected loss of our model w. As it turns out, in many settings, noisy
SGD gives optimal rates. Formally, consider the following algorithm: suppose we have samples {f1, . . . , fn},
and suppose that w ∈ W for some convex set W ⊆ Rd. Choose a starting point w0 ∈ W arbitrarily. Then,
for t = 1, . . . , T iterations:

• Sample a batch Bt by sampling each point with probability m/n with replacement.

• Let

wt+1 = ΠW

(

)wt − η ·

(

) 1

m

*

j∈Bt

∇fj(wt) · 1
+
‖∇fj(wt)‖2 ≤ L

,
+ gt

-

.

-

. ,

where ΠW is projection onto W, η is a step-size parameter, L is a bound on the Lipschitz constant of
the functions, and gt ∼ N (0,σ2I) are independent, where σ > 0 is the privacy parameter.

To be precise, let us call this algorithm SGD(m, η,σ, T, L). Then, we have the following theorems:

Theorem 3.1 ([7]). Let ε ∈ (0, 1), δ ≤ 1/n2, and T ≥ 1. Let f be L-Lipschitz for all f ∈ supp(D), and let

σ ≳ L
√

T log 1/δ

nε . Then, for any m, η, we have that SGD(m, η,σ, T, L) is (ε, δ)-DP.

Moreover, this noisy SGD algorithm is still guaranteed to converge, as the gradient estimates are still unbiased
estimates of the true gradient (as we are simply adding zero-mean gaussian noise). In [8], the authors work
out precise and optimal rates by combining Theorem 3.1 with techniques from stochastic optimization. To
prove Theorem 3.1, [7] develop a new method for accounting for privacy loss they call moments accountant
method. However, we can get a slightly sloppier bound by essentially only using techniques we already know:

Theorem 3.2. Let ε ∈ (0, 1), δ ≤ 1/n2, and T ≥ 1. Let f be L-Lipschitz for all f ∈ supp(D), and let

σ ≳ L
√

T log 1/δ log T/δ

nε . Then, for any m, η, we have that SGD(m, η,σ, T) is (ε, δ)-DP.

We do need one, relatively straightforward tool, namely, that subsampling improves privacy:

Lemma 3.3 ([4]). Let S be a dataset, and let T be a dataset formed by sampling each element of S indepen-
dently with probability p. Suppose A is an (ε, δ)-DP algorithm when given T . Then the algorithm A′ which
(1) first subsamples T from S, then (2) outputs A(T) is (qε, qδ)-DP for S.

Proof of Theorem 3.2. Each mini-batch gradient has ℓ2 sensitivity at most L/m. As a result, by our choice

of parameters, each individual gradient plus Gaussian noise is

"
nε

m
√

T log 1/δ
, δ/T

#
-DP for Bt. By combining

this with Lemma 3.3 and advanced composition, we obtain that the overall algorithm is (ε, δ)-DP.

3.1 Better iterative guarantees for DP

An unattractive phenomena of these bounds is that our privacy loss scales poorly with the number of
iterations we take, which is a problem for many real-world algorithms. However, one could hope that this
is not really the case. Intuitively, one shouldn’t pay very much (or at all) in terms of privacy for many
iterations of iterative methods, as all the information gets “smushed” together, and so iterating an algorithm
should have the effect of not compounding privacy loss, but perhaps amplifying it. This is unfortunately
not true in general, as far as we can tell, however, in the case of contractive algorithms, [9] demonstrates
that this is true for a slightly non-standard notion of privacy. A great open question is to characterize more
generally when this sort of phenomena occurs.

3

References

[1] Mark Bun, Gautam Kamath, Thomas Steinke, and Zhiwei Steven Wu. Private hypothesis selection.
arXiv preprint arXiv:1905.13229, 2019.

[2] Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 60(309):63–69, 1965.

[3] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 211–222. ACM, 2003.

[4] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

[5] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical minimax rates.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 429–438. IEEE, 2013.

[6] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2468–2479.
SIAM, 2019.

[7] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 308–318. ACM, 2016.

[8] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic convex
optimization with optimal rates. In Advances in Neural Information Processing Systems, pages 11279–
11288, 2019.

[9] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification by it-
eration. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
521–532. IEEE, 2018.

4

