
Lecture 2: Total variation, statistical models, and lower bounds

October 2, 2019

In the first lecture we saw two algorithms for robustly learning the mean of a univariate Gaussian with
known covariance. One of these two algorithms, the median, was able to achieve an asymptotic error of
O(ε), given an ε-corrupted set of samples from the Gaussian. The second, the truncated mean, attains error
O(
√
ε) when the distribution has bounded second moment. In this lecture, we will show that in fact both

error rates are optimal for their respective problems. To do so we will need to introduce a statistical notion
of ε-corruption, and some notions of distances between distributions which will be very useful throughout
this class.

1 Total variation distance

As it turns out, the notion of learning in the presence of gross corruption is very intimately related to
the notion of total variation distance. For any probability distribution P and any event A, let P (A) =
PrX∼P [X ∈ A] denote the probability mass that P puts on A.

Definition 1.1 (Total variation distance). Let P,Q be two probability distributions over a shared probability
space Ω. Then, the total variation distance between them, denoted dTV(P,Q), is given by

dTV(P,Q) = sup
A⊆Ω
|P (A)−Q(A)| . (1)

It is left to the reader to check that this is in fact a metric over probability distributions. There are many
equivalent formulations of total variation distance that we will use interchangeably throughout this class.
Before we state them, we first recall the definition of coupling, an important concept in probability theory:

Definition 1.2 (Coupling). Let P,Q be two probability distributions over probability spaces Ω1,Ω2, re-
spectively. A random variable Z = (X,Y ) on Ω1 ×Ω2 is a coupling of P and Q if the marginal distribution
of X is distributed as P and the marginal distribution of Y is distributed as Q.

We now have the following theorem. It is stated for distributions over Rd but also holds more generally:

Theorem 1.1. Let P,Q be two probability distributions over Rd, with probability distribution functions p, q,
respectively. Then:

(i) We have
dTV(P,Q) = sup

A⊆Rd

P (A)−Q(A) = sup
A⊆Rd

Q(A)− P (A) . (2)

(ii) We have

dTV(P,Q) =
1

2

∫
|p(x)− q(x)|dx . (3)

(iii) We have dTV(P,Q) = inf(X,Y ) Pr[X 6= Y ], where the supremum is taken over all (X,Y ) which are
couplings of P and Q.
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Proof. We first prove (i). To do so, we observe that the set A which achieves the supremum in the definition
of total variation distance is given by the set

S+ = {x ∈ Rd : p(x) ≥ q(x)} ,

as well as the set

S− = {x ∈ Rd : q(x) < p(x)} .

It is then easily verified that S+ also achieves the supremum for the middle expression in (2), and S− achieves
the supremum for the last expression in (2). Moreover, observe that∫

|p(x)− q(x)|dx =

∫
S+

p(x)− q(x)dx+

∫
S−

q(x)− p(x)dx

= P (S+)−Q(S+) +Q(S−)− P (S−) = 2 dTV(P,Q) ,

which proves (ii). We now prove (iii). If dTV(P,Q) = 1, the claim is obvious (why?). Thus without loss of
generality we may assume that dTV(P,Q) < 1 (Notice that dTV is always bounded between 0 and 1). We
first demonstrate a coupling (X,Y ) so that Pr[X 6= Y ] = dTV(P,Q). We do so as follows. Let r(x) = p(x) for
x ∈ S−, and r(x) = q(x) for x ∈ S+. This function is well-defined, non-negative, and moreover r(x) ≤ p(x)
and r(x) ≤ q(x) for all x ∈ Rd. Moreover, define p1(x) = p(x)− r(x) and q1(x) = q(x)− r(x). Then, these
two functions are also non-negative. We have

∫
p1(x)dx =

∫
q1(x)dx = dTV(P,Q), and

1−
∫
r(x)dx =

∫
p(x)− r(x)dx =

∫
S+

p(x)− q(x)dx = dTV(P,Q) .

Therefore 1
1−dTV(P,Q)r(x) is a valid pdf for a distribution R, and 1

dTV(P,Q)p1(x) and 1
dTV(P,Q)q1(x) are valid

pdfs for probability distributions P1 and Q1, respectively. The coupling is now given as follows: we draw
X,Y as follows: with probability 1 − dTV(P,Q), we sample Z ∼ R, and let X = Y = Z. Otherwise, we
sample X ∼ P1 and Y ∼ P2. Then it is clear that Pr[X 6= Y ] = dTV(P,Q), and it is a simple calculation to
check that this is indeed a valid coupling.

We have now shown that dTV(P,Q) ≥ inf(X,Y ) Pr[X 6= Y ]. We now show the opposite inequal-
ity. Let (X,Y ) be any valid coupling of P and Q, and let α = Pr[X 6= Y ]. Consider the four events
E++, E+−, E−+, E−−, defined by

Eab = {X ∈ Sa, Y ∈ S−} , a, b ∈ {+,−} .

Observe that Pr[E+−] ≤ α. Then we have

dTV(P,Q) = P (S+)−Q(S+) = (Pr[E++] + Pr[E+−])− (Pr[E++] + Pr[E−+])

= Pr[E+−]− Pr[E−+] ≤ α .

Thus dTV(P,Q) ≤ inf(X,Y ) Pr[X 6= Y ], which completes the proof.

2 Models of corruption

Let us now more formally define some notions of corruption that we will consider rather extensively for the
next several classes.

2.1 Replacement corruption

The strongest form of adversary, and the one that we will spend most of our time on, is the full or replacement
corruption model. Roughly speaking, given a dataset X1, . . . , Xn, the full adversary is allowed to inspect
the data points, then change an ε-fraction of these points arbitrarily. We will call such a set of points
ε-corrupted:
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Definition 2.1 (ε-corruption). A set of points S of size n is ε-corrupted from a distribution D if it is
generated via the following process:

1. First, n samples Y1, . . . , Yn are drawn i.i.d. from D.

2. Then, these points are given to an adversary, and the adversary is allowed to inspect them.

3. Based on the inspection, the adversary is allowed to change an ε-fraction of the Yi arbitrarily.

4. The corrupted set of points are then returned to us in any order.

Equivalently, we say that S is ε-corrupted if S = Sgood ∪ Sbad \ Sr where Sgood is a set of n i.i.d. samples
from D, we have Sr ⊂ Sgood, and |Sbad| = |Sr| = εn. Given such a set S, we say (Sgood, Sbad, Sr) is the
canonical decomposition of S.

In a slight abuse of notation, we will often simply write S = Sgood ∪ Sbad \ Sr, and it should be understood
that we always mean the canonical decomposition. Note that while this canonical decomposition is very
useful from an analytic perspective, it is unknown to the algorithm. As an additional shorthand, if |S| = n,
we will often use identify S with it [n], that is, we will identify S = {X1, . . . , Xn} with its indices. For
instance, we will often write µ̂ = 1

n

∑
i∈S Xi to be the empirical mean of the points in S. We will similarly

index into Sgood, Sbad, and Sr. The meaning should hopefully be clear from context.
This adversary is an adaptive adversary, that is, it is allowed to inspect the data before choosing the

corruptions. Alternatively, we can consider non-adaptive versions of the adversary. It turns out that this
naturally corresponds to a statistical notion of corruption, coming from the TV distance. In particular,
Theorem 1.1 (iii) says that independent samples from a distribution P can be well-simulated by ε-corrupted
samples from another distribution with small total-variation distance to P . Formally:

Corollary 2.1. Let P,Q be so that dTV(P,Q) = ε, and let c > 0. Let (X1, . . . , Xn) be independent samples
from P . With probability at least 1− exp(−Ω(c2εn)), these are (1 + c)ε-corrupted samples from Q.

Proof. For each i, let (Xi, Yi) be the coupling between P and Q so that Pr[Xi 6= Yi] = dTV(P,Q). Then, by
a Chernoff bound, with probability 1− exp(−Ω(c2εn)), we have that the number of indices i so that Xi 6= Yi
is at most (1 + c)εn. Since the Yi are independent draws from Q, this completes the proof.

This motivates the following statistical model of corruption:

Definition 2.2. We say that a set of samples (X1, . . . , Xn) are an ε-obliviously corrupted set of samples
from P if the samples are drawn independently from Q, where dTV(P,Q) ≤ ε.

In this language, the above corollary states that, up to sub-constant factors in the loss, and exponentially
small success probabilities, ε-corruption can simulate ε-oblivious corruption.

It is a natural question as whether or not the two models of corruption are equivalent. It is not hard to
see that ε-corruption is, at least formally, strictly stronger than ε-oblivious corruption (why?). Intuitively,
ε-oblivious corruption corresponds to the model where the adversary must (in a distributional sense) specify
the corruptions they wish to make to the samples, ahead of time, by specifying the corrupting distribution.
In other words, the corruptions that the adversary chooses can only depend on the distribution of the data,
not the data points themselves. This motivates the name of the corruption model. However, for the purposes
of this class, and indeed, more or less all of the results in the field, the two models are essentially equivalent.

The main utility of introducing this statistical notion of corruption will be for demonstrating lower bounds.
We begin by noting that the following problem is almost vacuously impossible: given two distributions P,Q
with dTV(P,Q) = ε, and (X1, . . . , Xn), decide if (X1, . . . , Xn) are ε-obliviously corrupted from P or from
Q. Combining this with the above corollary yields:

Corollary 2.2. Let P,Q be so that dTV(P,Q) = ε, and let c > 0. Consider the following distinguishing
problem: given X1, . . . , Xn, distinguish if they are (1 + c)ε-corrupted set of samples from P or Q. Then, no
algorithm can succeed at this distinguishing task except with probability 1− exp(−Ω(c2εn)).
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2.2 Additive corruption

In the full corruption model we are considering, the adversary is allowed to change an ε-fraction of points
arbitrarily. This can be thought of as a two-step process. First, the adversary removes an ε-fraction of the
good points, then they add in an ε-fraction of corrupted points.

A weaker notion of corruption is that of additive noise, which is what we considered in the previous
lecture. Morally speaking, in such models of corruption, the adversary is only allowed to add corruptions,
but cannot delete points. We can define this both in the adaptive and in the oblivious setting. In the
adaptive case, the definition is straightforward:

Definition 2.3 (Additive corruption). Let P be a distribution over Rd and let ε > 0. We say that a set of
points X1, . . . , Xn is ε-additively corrupted from P if it is generated through the following process:

(i) First, (1− ε)n points are drawn i.i.d. from P .

(ii) Then, an adversary is allowed the inspect these points, and can add εn points arbitrarily to this set.

(iii) The points are then returned in an arbitrary order.

As with the general corruption model, there is also a distributional model of additive corruption:

Definition 2.4 (Oblivious additive corruption). Let P be a distribution over Rd and let ε > 0. We say that
a set of points X1, . . . , Xn is ε-obliviously additively corrupted from P if they are drawn independently from
Q, where Q = (1− ε)P + εN for some arbitrary distribution N .

We leave it to the reader to demonstrate that the same sorts of simulation properties between additive and
oblivious additive noise exist as in the general model we considered above. It is also a useful exercise to find
instances where additive noise cannot simulate the full oblivious adversary.

As a historical note, this model of corruption was the first to be considered by statisticians in the 60s,
specifically Huber [1]. As a result, this is also known as Huber’s contamination model in the statistics
literature.

3 Lower bounds for robustly learning Gaussians

We now return to the problem we considered in the first lecture, namely, learning the mean of a Gaussian,
and we use our new machinery to demonstrate that in fact the median is optimal. To do so, it now suffices
to prove the following:

Theorem 3.1. Let ε > 0 be sufficiently small, let σ > 0, and let µ1, µ2 be so that |µ1 − µ2| = σε. Then

dTV(N (µ1, σ
2),N (µ2, σ

2)) =

(
1√
2π

+ o(1)

)
ε .

Before we prove this theorem, note that this theorem in conjunction with Corollary 2.2 implies that Ω(εσ)
is impossible to improve upon for the problem of learning the mean of a univariate Gaussian.

Proof of Theorem 3.1. Since TV distance is scale-invariant, we may assume without loss of generality that
σ = 1. Now let p1 be the pdf of N (µ1, 1), and similarly p2 be the pdf of N (µ2, 1), and assume without loss of
generality that µ1 ≤ µ2. By explicit calculation, we have that p1(x) ≥ p2(x) if and only if x ≤ (µ1 + µ2)/2.
Therefore

dTV(N (µ1, σ
2),N (µ2, σ

2)) =

∫ (µ1+µ2)/2

−∞
p1(x)− p2(x)dx = Pr

X∼N (0,1)
[X ∈ [−α, α]] ,

where α = (µ2 − µ1)/2 = ε/2. For ε small, this quantity is
(

1√
2π

+ o(1)
)
ε, as claimed.
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This lower bound, as written, only holds in the (full) oblivious adversary setting. However, the analysis of
the median we had before was for the additive adversary setting, so this doesn’t quite complete the picture
for this problem. In the homework, we will do so: we will first show that the median also works with
replacement corruptions, and we will see a lower bound for additive corruption.

4 Lower bounds for robustly learning the mean with bounded second moment

Here we also show that the truncated mean is optimal up to constants for the other setting considered in
the previous lecture. In particular, we will show:

Theorem 4.1. There exist two distributions D1, D2 so that:

(i) both distributions have variance at most σ2

(ii) we have D2 = (1− ε)D1 + εN for some distribution N

(iii) if µ1, µ2 are the means for D1, D2, respectively, then |µ1 − µ2| > σ
√
ε.

In particular, this implies that samples from D2 are ε-obliviously corrupted samples from D1. Since they
could also be ε-corrupted samples from D2 itself, no algorithm can achieve error for this problem better than
the gap between the means, which is &

√
ε.

Proof of Theorem 4.1. By scaling the distributions, it will suffice to demonstrate this for σ = 1. The two
distributions will be as follows: D1 is simply the point mass at 0, and D2 is (1− ε)D1 + εN , where N is a
point mass at 1/

√
ε. Clearly by construction, (ii) holds. We now check (i) and (iii). The distribution D1 has

mean 0 and variance 0. The distribution D2 has mean
√
ε and variance 1− ε. These things together imply

(i) and (iii), by a straightforward calculation.
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