
Lecture 3: Robust mean estimation in high dimensions

October 2, 2019

1 Introduction

We have so far only considered robust mean estimation for univariate distributions. We now turn our
attention to the much more complicated problem of robust mean estimation for multivariate distributions.
We will consider the natural high dimensional analogs of the two settings we considered previously, and we’ll
see the information theoretic rates we can achieve, as well as some of the difficulties with coming up with
efficient algorithms for these problems that achieve these rates. The two problems we will consider are:

Problem 1.1 (Robust mean estimation for Gaussians in high dimensions). Let µ ∈ Rd, σ > 0, and let
ε ∈ [0, 1/2). Let S = {X1, . . . , Xn} be an ε-corrupted set of samples from N (µ, σ2I). Given S, ε, σ, output µ̂
minimizing ‖µ̂− µ‖2.

One can also ask the question when the covariance is not spherical and not known. If the covariance is
known but non-spherical, one can appropriately rotate the problem and solve the problem in the rotated
space. As we shall see in a future class, when the distribution is truly Gaussian, we can also learn the
covariance to high precision even in the presence of outliers, so that we can also appropriately rotate.

Problem 1.2 (Robust mean estimation with bounded second moments in high dimensions). Let µ ∈ Rd, σ >
0, and let ε ∈ [0, 1/2). Let D be a distribution with mean µ and covariance Σ � σ2I. Let S = {X1, . . . , Xn}
be an ε-corrupted set of samples from D. Given S, ε, σ, output µ̂ minimizing ‖µ̂− µ‖2.

As a remark, note that for both problems, our metric of recovery will be `2 norm. We shall see later that this
is indeed the “correct” metric for closeness. Intuitively, this is because both problems have some underlying
`2-structure: Gaussians are invariant under rotations (an `2-rotation), and spectral properties (including
PSD ordering) is also an `2 property.

As these problems are strict generalizations of the 1D problem, it is not hard to see that Ω(ε) and Ω(
√
ε)

are still lower bounds for Problems 1.1 and 1.2, respectively. In this lecture, we will also show that there
exist inefficient estimators which match these lower bounds. However, a number of naive estimators do not
attain this bound, and have error which get worse as the dimension increases, as we shall see next.

2 Things that don’t work

Here we’ll give two natural estimators which fail to get the right rates. There is a veritable zoo of such
estimators, but these will demonstrate the basic difficulties of designing good estimators for this problem.

Learning coordinate-wise For both problems, one natural attempt would be to simply reduce the prob-
lem to a series of d univariate learning problems. For instance, for Problem 1.1, every projection of a Gaussian
is a Gaussian, and hence we can use the univariate estimator (i.e. the median) to learn each coordinate to
error O(ε). However, aggregating over all d directions yields an error O(ε

√
d), which is not optimal.
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Truncated mean Another try is a truncated mean, as in the univariate case. Probably the most natural
way to do this is to try to find a threshold T , throw away all points X ∈ S so that ‖X − µ‖2 > T , and take
the mean of the remaining points. It is not immediately obvious how one can do something like this, but
even if we could, this will be insufficient. The problem is that this threshold T will necessarily scale with
the dimension:

Fact 2.1. Let X ∼ N (µ, I). Then there is some universal constant c > 0 so that

Pr
[∣∣∣‖X − µ‖22 − d∣∣∣ > t

√
d
]
≤ 2 exp(−ct) .

Proof. Let Yi be the i-th component of X − µ, so that the Yi’s are all i.i.d. as N (0, 1). Then ‖X − µ‖22 =∑d
i=1 Y

2
i . We know that E[Y 2

i ] = 1, and each Yi is a sub-exponential random variable. The result then
follows from sub-exponential concentration bounds.

In particular, this implies that the threshold T must be at least some constant multiple of
√
d. But

if that’s the case, the outliers can all be
√
d far from µ, and it is not hard to see that since there are an

ε-fraction of them, this can cause error Ω(ε
√
d) for Problem 1.1. In contrast, the estimators we will develop

later in this lecture achieve error O(ε) for this problem. When d is large and ε is reasonably sized, say 0.1,
this additional factor can easily render the algorithm statistically useless.

The fact that norm-based statistics are so noisy in high dimensions is quite problematic, and causes many
natural candidate algorithms to suffer a loss which scales as Ω(

√
d), or worse. For instance, even though

the median is robust in one dimension, some natural generalizations of it based on norms such as geometric
median fail to achieve a good error in high dimensions. As we shall see, to avoid this problem, it will be very
important to always try to only consider statistics of projections of our data onto low-dimensional spaces.

3 Tukey median

The Tukey median is a way to make this idea more concrete. Specifically, for any set of points S ⊂ Rd of
size n, and any point η ∈ Rd, define the Tukey depth, or simply depth [1], of this point with respect to S,
denoted depth(S, η) to be

depth(S, η) = inf
‖v‖2=1

|{X ∈ S : 〈X − η, v〉 ≥ 0}|
n

. (1)

In other words, the depth of η with respect to S is the minimum over all half-planes that pass through η of
the fraction of points on any side of that half-space. Intuitively, the larger the depth of η, the more central
the point is with respect to the dataset S. The Tukey median of S, which we will denote Tukey(S), is simply
defined to be the most central point, with respect to this notion of depth:

Tukey(S) = arg max
η

depth(S, η) . (2)

Observe that this is fundamentally a property of projections of the data. Thus this can hope to circumvent
these dimensionality issues that faced the previous estimators we considered. Indeed, we will show:

Theorem 3.1. Let S ⊂ Rd be an ε-corrupted set of samples of size n from N (µ, I), where ε < 1/6. Then,
there exists some universal constant C > 0 so that with probability 1− δ, we have that

‖Tukey(S)− µ‖2 ≤ Φ−1

(
1

2
+ 3ε+ C

√
d+ log 1/δ

n

)
.

In particular, if n is sufficiently large, and ε is relatively small, then the RHS is O(ε). As it turns out, the
rate of convergence here is also minimax optimal, so this algorithm obtains both the right asymptotic error,
as well as the tight rate of convergence.
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Proof sketch of Theorem 3.1. For now, let’s ignore issues of concentration, and see why we should expect
that when we get enough samples, we can get error O(ε). Recall that we can always write our set S using its
canonical decomposition as S = Sgood ∪ Sbad \ Sr, where |Sgood| = n, |Sbad| = εn, and |Sr| = εn. Suppose

for now that for every point η ∈ Rd and all unit vectors v, we had that

|{X ∈ Sgood : 〈X − η, v〉 ≥ 0}|
|Sgood|

= Pr
X∼N (µ,I)

[〈X − η, v〉 ≥ 0] = Φ(〈µ− η, v〉) . (3)

Then the analysis of the Tukey median would be almost identical to the analysis of the univariate median.
First, for any unit vector v, we have that

|{X ∈ S : 〈X − µ, v〉 ≥ 0}| ≥ |{X ∈ Sgood : 〈X − µ, v〉 ≥ 0}|+ |{X ∈ Sbad : 〈X − µ, v〉 ≥ 0}| − εn

≥ 1

2
|Sgood| − εn =

(
1

2
− ε
)
n ,

so in particular depth(S, µ) ≥ 1/2 − ε. On the other hand, consider any point η ∈ Rd that satisfies
‖η − µ‖2 > Φ−1(1/2 + 3ε). Let v = η−µ

‖η−µ‖2
. Then

|{X ∈ S : 〈X − η, v〉 ≥ 0}| ≤ |{X ∈ Sgood : 〈X − η, v〉 ≥ 0}|+ εn

= |Sgood| · Φ(−‖η − µ‖2) + εn

= |Sgood| ·
(

1

2
− 3ε

)
+ εn <

(
1

2
− ε
)
n .

Therefore in particular, no point with distance from µ greater than Φ−1(1/2 + 3ε) can have depth greater
than µ. This in particular implies that the true Tukey median must have distance at most Φ−1(1/2 + 3ε)
from µ.

However, this analysis only works in an infinite sample regime. To get finite sample guarantees, we need
that these empirical statistics concentrate, i.e. that (3) holds except up to some small error. One can indeed
prove this via empirical process theory:

Fact 3.2 (Theorem 6 in [2]). Let Y1, . . . , Ym ∼ N (µ, I), and let δ > 0. Then, with probability 1− δ, we have∣∣∣∣ |{i ∈ [m] : 〈Yi − η, v〉 ≥ 0}|
m

− Pr
Y∼N (µ,I)

[〈Y − η, v〉 ≥ 0]

∣∣∣∣ .
√
d+ log 1/δ

n
, (4)

for all η and all unit vectors v ∈ Rd simultaneously.

Plugging this bound into the same calculation as above will yield the Theorem.

4 Bounded cores

Tukey median establishes the right minimax rate for robust mean estimation for Gaussians, but it uses
relatively strong properties of Gaussians to do so. Here we will turn our attention to a more recently
introduced notion, namely resilience, which recovers the information-theoretic rates (or close to them) for
robust mean estimation in a much more general setting.

Definition 4.1 (Resilience, see [3]). Let D be a distribution over Rd with mean µ. Let σ, ε > 0. We say
that D is (σ, ε)-resilient if for all events E so that PrD[E] ≥ 1− ε, then∥∥∥E

D
[X|E]− µ

∥∥∥
2
≤ σ . (5)

Given a dataset S of size n, we say that S is (σ, ε)-resilient if the uniform distribution over S is (σ, ε)-resilient.
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In other words, a distribution is resilient if conditioned on any large probability event, the mean cannot
change by much. One can also define a generalization of this to other norms (see [3]). This characterization
is useful because it gives a very simple (inefficient) algorithm to recover the mean, given corruption:

Theorem 4.1. Let σ > 0, and let ε < 1/4. Let S be an ε-corrupted dataset, and let S = Sgood∪Sbad \Sr be
its canonical decomposition. Let µg be the empirical mean of Sgood, and suppose that Sgood is (σ, 2ε)-resilient.
Then, there exists an (inefficient) algorithm which, given S, ε, σ, finds µ̂ so that ‖µ̂− µg‖2 ≤ 2σ.

Proof. First, notice that Sgood \ Sr is (2σ, ε/(1 − ε))-resilient (why?). Given this, the algorithm is simple:
given S, find any subset T of size (1− ε)n which is (2σ, ε/(1− ε))-resilient, and output the empirical mean µ̂
of T . Such a set exists (as Sgood \Sr is a valid solution). We now prove that this has the desired properties.
Let A = T ∩ Sgood. Notice that |A| ≥ (1 − 2ε)n. By the (σ, 2ε)-resilience of Sgood, we know that if µA is
the empirical mean of A, then ‖µA − µg‖2 ≤ σ. On the other hand, by the resilience of T , we know that
‖µA − µg‖2 ≤ σ. The result follows from a triangle inequality.

This result says that given an ε-corrupted version of a resilient dataset, we can recover the empirical mean
of the original data set up to some error. To go from this to learning the mean of the distribution itself, we
would additionally need concentration inequalities which says that the empirical mean is close to the true
mean, and that the empirical distribution is resilient with high probability.

5 Computational complexity

While these estimators are great from a purely statistical perspective, it is not clear how to implement them
efficiently. For instance:

Theorem 5.1 ([4]). Computing the Tukey median of an arbitrary set of points is NP-hard.

In general, the above reference [4] demonstrates the worst-case hardness of computing a number of natural
robust estimators that have good statistical properties. Similarly, it was shown recently:

Theorem 5.2 ([5]). Under the SSE hypothesis, for any c > 0, and ε > 0 sufficiently small, certifying
(ε1/2+c, ε)-resilience is is NP-hard.

Note that the latter theorem only holds for some parameter regimes of resilience. This is because, as we will
discuss in the next lecture, there are related efficiently certifiable bounds which, in some regimes, allow us
to match these bounds efficiently.

This interplay between statistical efficiency and robust statistics is very interesting and will be a recurring
topic throughout this unit. As we shall see, many statistical-computational tradeoffs arise only in the presence
of these worst-case corruptions.
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