
Lecture 6: Stronger spectral signatures for Gaussian datasets

October 16, 2019

In the past couple of lectures, we saw how to use spectral signatures to build the filtering algorithm
for robust mean estimation when you assume that your dataset has bounded second moment. In the next
couple of lectures, we’ll show how to get stronger guarantees when your dataset satisfies stronger regularity
conditions. This happens for instance when your data is Gaussian. Before we do so, it will be helpful to
understand exactly what these stronger regularity conditions should look like.

1 Regularity of Gaussian datasets

At a high level, the key fact we will use is that small subsets of points cannot cause very large variance
in any one direction. This is already true for the setting we considered before: if S is a set of points with
empirical mean µg satisfying ∥∥∥∥∥ 1

n

n∑
i=1

(Xi − µg)(Xi − µg)>

∥∥∥∥∥
2

≤ 1 ,

then for all unit vectors v ∈ Rd, we have that 1
n

∑n
i=1 〈Xi − µg, v〉2 ≤ 1 , which in turn implies for any that

T ⊆ S of size |T | = εn, we have that 1
|T |
∑

i∈T 〈Xi − µg, v〉2 ≤ 1
ε , for all unit vectors v, or in other words,∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µg)(Xi − µg)>

∥∥∥∥∥
2

≤ 1

ε
. (1)

However, when the data comes from a Gaussian distribution, we will be able to show a much stronger fact.
Recall that given a set of points S, for any set T ⊂ S, we let µ(T ) denote the empirical mean of the points
in T .

Theorem 1.1. Let X1, . . . , Xn ∼ N (µ, I), and let ε ∈ (0, 1/2) and δ ∈ (0, 1). Then, with probability 1− δ,
we have that for all T ⊂ S with |T | = εn,

‖µ(T )− µ‖2 ≤ β1 , and

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ) (Xi − µ)
> − I

∥∥∥∥∥
2

≤ β2
1 , (2)

where

β1 .
√

log 1/ε+

√
d+ log 1/δ

εn
.

Before we prove Theorem 1.1, we need the following standard tail bounds for Gaussians.

Fact 1.2 (see e.g. [1]). Let X1, . . . , Xm ∼ N (µ, I). Then there exist universal constants A, c > 0 so that:

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

Xi − µ

∥∥∥∥∥
2

> t

]
. exp

(
Ad− cmt2

)
Pr

[∥∥∥∥∥ 1

m

m∑
i=1

(Xi − µ) (Xi − µ)
> − I

∥∥∥∥∥
2

> t

]
. exp

(
Ad− cmmin(t, t2)

)
.

1



We can now prove Theorem 1.1:

Proof of Theorem 1.1. We’ll just prove the concentration of the empirical mean of subsets. The correspond-
ing proof for the covariance follows from exactly the same technique while substituting the appropriate tail
bound. Note that for any fixed subset T ⊂ S with |T | = εn, Fact 1.2 immediately implies that

Pr [‖µ(T )− µ‖2 > t] . exp
(
Ad− cεnt2

)
.

The difficulty with this proof is to get this bound to hold simultaneously for all subsets T . We will do so
by union bounding over all sets T of size εn. This is a bit unusual: that as we take n larger, the number of
things over which we union bound also increases. As we’ll see, this is the technical reason why we will never
be able to achieve error that is asymptotically better than

√
log 1/ε.

Formally, there are
(
n
εn

)
subsets T of size εn, and so therefore

Pr [∃T : |T | = εn and ‖µ(T )− µ‖2 > t] .
(
n
εn

)
exp

(
Ad− cεnt2

)
.

We now use the estimate that log2

(
n
εn

)
≤ nH(ε), where H(y) = y log 1/y+ (1− y) log 1/(1− y) is the binary

entropy function. Since H(ε) ≤ 2ε log 1/ε for ε ∈ (0, 1/2), we have that

Pr [∃T : |T | = εn and ‖µ(T )− µ‖2 > t] . exp(2εn log 1/ε+Ad− cεnt2) .

Therefore, by a choice of β1, we have that 2 log 1/ε < ct2/2, and therefore

Pr [∃T : |T | = εn and ‖µ(T )− µ‖2 > β1] . exp
(
Ad− c

2
εnβ2

1

)
≤ δ ,

as claimed. The bound for the covariance follows from the same proof, except by plugging in the correspond-
ing tail bound for the covariance, and since β1 > 1 and so we get subexponential-style tails (i.e. exp(−cεnt)
rather than exp(−cεnt2)), and so we only get non-trivial estimates at β2

1 rather than β1.

Motivated by Theorem 1.1, let us make the following definition.

Definition 1.1. A set of points S is ε-good with respect to µ if it satisfies the following conditions:

• we have that

‖µ(S)− µ‖2 . ε
√

log 1/ε , and

∥∥∥∥∥ 1

|S|
∑
i∈S

(Xi − µ) (Xi − µ)
> − I

∥∥∥∥∥
2

. ε log 1/ε , (3)

• for all T ⊂ S with |T | = εn we have

‖µ(T )− µ‖2 .
√

log 1/ε , and

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ) (Xi − µ)
> − I

∥∥∥∥∥
2

. log 1/ε . (4)

Notice that by Theorem 1.1 and Fact 1.2, if S is a set of n = Ω
(

d
ε2 log 1/ε

)
samples from N (µ, I), then

they are ε-good with respect to µ with high probability. In the definition, unlike in Theorem 1.1, we don’t
subtract the identity for the spectral norm bounds in (4), but since the identity only has spectral norm 1,
the result still follows immediately from Theorem 1.1 by a triangle inequality. We now show that such a
regularity condition yields a strong notion of spectral signatures:

Theorem 1.3. Let µ ∈ Rd and let ε ∈ (0, 1/2). Let S = Sgood ∪ Sbad \ Sr be an ε-corrupted set of points
where Sgood is ε-good with respect to µ. Let w ∈ WS,ε. Then

‖µ(w)− µ‖2 . ε
√

log 1/ε+
√
ε (‖Σ(w)− I‖2 + ε log 1/ε) .
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We note two key differences between this theorem and the theorem presented in an earlier lecture giving
spectral signatures assuming bounded covariance. First, the additive term out in front is ε

√
log 1/ε rather

than
√
ε. Second, the term involving the covariance has the identity subtracted out, whereas the previous

theorem did not subtract the identity. This is crucial to get the sorts of bounds we wish to obtain in this
setting, as the deviations of Σ(w) from I will be much smaller than Σ(w) itself. To see this, it’s not hard
to show that ‖Σ(w)‖2 = Ω(1) with high probability, for any w ∈ WS,ε. In contrast, Definition 1.1 allows
us to hope that the deviations from the identity can have norm which is much smaller. In particular, if
‖Σ(w)− I‖2 . ε log 1/ε, we have that ‖µ(w)− µ‖2 . ε

√
log 1/ε. Recall that the Tukey median obtained

error O(ε), and this error is asymptotically optimal. Up to log factors, this allows us to certify down to the
same threshold, using an efficient algorithm.

Before we prove the theorem, we note the following two facts. The first states that no set of weights over
the good points that has small mass can induce a large second moment. Formally:

Lemma 1.4. Let ε ∈ (0, 1/2) and µ ∈ Rd. Let Sgood be a set of points of size n which are ε-good with
respect to µ. Then, for all w ∈ Γn so that wi ≤ 1

n for all i ∈ Sgood and
∑

i∈Sgood
wi ≤ ε, we have∥∥∥∥∥∥

∑
i∈Sgood

wi (Xi − µ) (Xi − µ)
>

∥∥∥∥∥∥
2

. ε log 1/ε .

Proof. Without loss of generality, we may assume that
∑

i∈Sgood
wi = ε. Otherwise, we can form w′ ≥ w by

adding mass on coordinates which are less than 1/n so that
∑

i∈Sgood
w′

i = ε and w′
i ≤ 1/n for all i ∈ Sgood.

Then, since

0 �
∑

i∈Sgood

wi (Xi − µ) (Xi − µ)
> �

∑
i∈Sgood

w′
i (Xi − µ) (Xi − µ)

>
,

a spectral norm bound on Σ(w′) would also immediately imply the same spectral norm bound on Σ(w). But
now observe that the set of matrices ∑

i∈Sgood

wi (Xi − µ) (Xi − µ)
>

: wi ≤ 1/n,
∑

i∈Sgood

wi = 1


is convex, and the vertices of this set are given by

1

n

∑
i∈T

(Xi − µ) (Xi − µ)
>
,

for T ⊂ S with |T | = εn. Therefore the desired result follows from ε-goodness and convexity.

We note a couple of consequences of this:

Corollary 1.5. Let ε, w, Sgood be as in Lemma 1.4. Then
∥∥∥∑i∈Sgood

wi(Xi − µ)
∥∥∥
2
. ε
√

log 1/ε.

Proof. For any unit vector v, we have〈
v,

∑
i∈Sgood

wi(Xi − µ)

〉2

=

 ∑
i∈Sgood

wi 〈v,Xi − µ〉

2

(5)

≤ ε
∑

i∈Sgood

wi 〈v,Xi − µ〉2 (6)

. ε
√

log 1/ε , (7)

where the second line follows from Hölder’s inequality, and the final inequality follows from Lemma 1.4. The
desired result follows by taking a supremum over all v.

3



Corollary 1.6. Let Sgood be an ε-good set of points with respect to µ of size n. Let w be a set of weights so
that wi ≤ 1/n for all i ∈ S and ‖w − w(S)‖1 ≤ ε. Then there is some universal constant c > 0 so that∥∥∥∥∥∥

∑
i∈Sgood

wi (Xi − µ) (Xi − µ)
> − I

∥∥∥∥∥∥
2

≤ cε log 1/ε ,

and furthermore ∑
i∈Sgood

wi (Xi − µ(w)) (Xi − µ(w))
> − (1− cε log 1/ε)I � 0 .

Proof. We first observe that∑
i∈Sgood

wi (Xi − µ(w)) (Xi − µ(w))
>

=
∑

i∈Sgood

wi (Xi − µ) (Xi − µ)
> − ‖w‖1 · (µ− µ(w)) (µ− µ(w))

>
. (8)

We first bound the spectral norm of the second term on the RHS:∥∥∥‖w‖1 · (µ− µ(w)) (µ− µ(w))
>
∥∥∥
2
≤ ‖µ− µ(w)‖22 . (9)

Let δi = 1
n − wi. Then, by Corollary 1.5, we have

‖µ− µ(w)‖2 ≤ ‖µ− µ(Sgood)‖2 +

∥∥∥∥∥∥
∑

i∈Sgood

δi(Xi − µ)

∥∥∥∥∥∥
2

. ε
√

log 1/ε .

Simultaneously, we have∑
i∈Sgood

wi (Xi − µ) (Xi − µ)
>

=
∑

i∈Sgood

1

n
(Xi − µ) (Xi − µ)

> −
∑

i∈Sgood

δi (Xi − µ) (Xi − µ)
>
. (10)

By the ε-goodness of S, the first term can be written as I + N1 where ‖N1‖2 ≤ ε, and by Lemma 1.4, the
second term has spectral norm at most cε log 1/ε. Hence overall the LHS of (8) can be written as I + N2,
where ‖N2‖ ≤ cε log 1/ε. Therefore the smallest eigenvalue of the LHS of (8) is at least 1− cε log 1/ε, from
which the claim follows.

We now have the tools necessary to prove Theorem 1.3.

Proof of Theorem 1.3. As in the bounded second moment case, we begin with a sequence of equalities. Let
∆ = µ(w)− µ. Then we have

‖w‖1 · ‖∆‖
2
2 = ‖w‖1 · ‖µ(w)− µ‖22 = 〈µ(w)− µ,∆〉

=
∑
i∈S

wi 〈Xi − µ,∆〉

= 〈µ(Sgood)− µ,∆〉+
∑

i∈Sgood

(
wi −

1

n

)
〈Xi − µ,∆〉+

∑
i∈Sbad

wi 〈Xi − µ,∆〉 . (11)

We bound these terms separately. By Cauchy-Schwarz, we have that

|〈µ(Sgood)− µ,∆〉| ≤ ‖µ(Sgood)− µ‖2 ‖∆‖2 . ε
√

log 1/ε · ‖∆‖2 , (12)
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by ε-goodness. We also have ∑
i∈Sgood

(
wi −

1

n

)
〈Xi − µ,∆〉

2

≤

 ∑
i∈Sgood

(
1

n
− wi

) ∑
i∈Sgood

(
1

n
− wi

)
〈Xi − µ,∆〉2

 (13)

≤ ε2 log 1/ε · ‖∆‖22 , (14)

where (13) follows from Hölder’s inequality and (14) follows from the definition of WS,ε and Lemma 1.4.
It remains the control the contribution from Sbad. We first observe that∑

i∈Sbad

wi 〈Xi − µ,∆〉 =
∑

i∈Sbad

wi 〈Xi − µ(w),∆〉+

( ∑
i∈Sbad

wi

)
‖∆‖22 .

As we did for the previous term, we have( ∑
i∈Sbad

wi 〈Xi − µ(w),∆〉

)2

≤

( ∑
i∈Sbad

wi

) ∑
i∈Sgood

wi 〈Xi − µ(w),∆〉2
 (15)

≤ ε

( ∑
i∈Sbad

wi 〈Xi − µ(w),∆〉2
)
. (16)

We now seek to relate the term in (16) to ‖Σ(w)− I‖2. Let w′ be the set of weights so that w′
i = wi for all

i ∈ Sgood, and w′
i = 0 otherwise. Observe that w′

i ∈ WS,ε. By Corollary 1.6, we know that∑
i∈Sgood

wi (Xi − µ(w′)) (Xi − µ(w′))
> − (1− cε log 1/ε) ‖∆‖22 � 0 ,

for some c > 0. Since∑
i∈Sgood

wi (Xi − µ) (Xi − µ)
>

=
∑

i∈Sgood

wi (Xi − µ(w′)) (Xi − µ(w′))
>

+ ‖w‖1 (µ(w′)− µ) (µ(w′)− µ)
>

�
∑

i∈Sgood

wi (Xi − µ(w′)) (Xi − µ(w′))
>
,

we also have that ∑
i∈Sgood

wi (Xi − µ(w)) (Xi − µ(w))
> − (1− cε log 1/ε) ‖∆‖22 � 0 ,

which in particular implies that∑
i∈Sgood

wi 〈Xi − µ,∆〉2 − (1− cε log 1/ε) ‖∆‖22 ≥ 0 .

Therefore we have that∑
i∈Sbad

wi 〈Xi − µ,∆〉2 ≤
∑
i∈S

wi 〈Xi − µ,∆〉2 − ‖∆‖22 + cε log 1/ε · ‖∆‖22

≤ (‖Σ(w)− I‖2 + cε log 1/ε) ‖∆‖22 ,

Plugging this into (14), we obtain that( ∑
i∈Sbad

wi 〈Xi − µ,∆〉

)2

≤ ε (‖Σ(w)− I‖2 + cε log 1/ε) ‖∆‖22 . (17)

By simplifying (12), (14), and (17), and using that ε < 1/2, we obtain the theorem.
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