Lecture 8: Additional topics in robust statistics

October 21, 2019

The study of learning given corrupted data is a very rich field of study, and we will not have time in this
class to cover all the topics there. The goal of this lecture is simply to list a number of interesting directions
that have recently received attention in this field, to give a number of good open questions in this area, and
to also present the reader with sources where they can go into these topics in more detail, if interested.

1 Robust mean estimation via higher moments, sum-of-squares proofs, and
lower bounds

Throughout this class so far, we have focused on finding deviations by looking at large directions of the
second moment. This is very nice computationally, as we can find eigenvalues/eigenvectors of the second
moment very efficiently via SVD / PCA and approximate versions thereof. However, from a statistical
perspective, it is also natural to consider large directions of k-th moment tensors. Specifically, suppose we
have a set of samples Sgo0q4 With mean p so that in all unit directions v, we have

LS X <0, (1

for some (even) t > 2, and some function C(t). Note that when ¢ = 2 this exactly corresponds to Sgood
having bounded covariance in spectral norm. It is then not difficult to generalize the proof of the geometric
lemma (Lemma 3.2 in Lecture 4) to demonstrate the following:

Lemma 1.1. Let S = Sgood U Sbaa \ S be e-corrupted, so that Sgooa satisfies (1). Then, for all w € W,
we have
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where

At = sup 1 Z (w, X; — p(w))" . (2)
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In other words, a large deviation in the empirical mean (asymptotically larger than !~/ ) will manifest
itself as a super-constant ;. This \; is the injective tensor norm of the empirical ¢-th moment tensor. It is
not hard to see than when ¢t = 2 we directly recover Lemma 3.2 from Lecture 4.

If we could recover the unit vector v which achieved the supremum in (2), then we could define scores

7i = (0, Xi — p(w))" (3)

and through similar arguments to what we did in Lecture 5, we could argue that the univariate filter makes
progress until A; = O(1), at which point Lemma 1.1 guarantees we have learned the true mean to error
O.(e' /), where the O;(-) hides factors that depend only on t. Unfortunately, the injective norm of a
tensor is notoriously hard to compute in the worst case [1] under well-studied complexity assumptions. This



proof was simplified and adapted to this specific setting in [2] to demonstrate that even in this statistical
setting, computing ); is likely hard. More directly, [2] gives some complexity-theoretic evidence that achieving
0(/?) just from assuming (1) is hard, although from somewhat non-standard assumptions. A good open
question is if the hardness of robust mean estimation can be derived from relatively standard assumptions
such as the “Small Set Expansion” hypothesis.

Open Question 1.2. Demonstrate that it is SSE-hard (or ETH-hard) to achieve o(e'/?) error while only
assuming that the uncorrupted data satisfies (1).

More ambitiously, one could ask the more general question of whether or not we can characterize which
distributions allow for efficient robust mean estimation beyond o(¢'/2). For instance, we know that we can
do so for Gaussians with identity covariance, by leveraging this additional structure. However, this is a
relatively strong distributional assumption.

We can somewhat interpolate between these extremes. Specifically, if we assume that the natural “Sum-of-
squares” relaxation of (1) is satisfied, then there exist efficient estimators which achieve error O, (e'~1/?) [3, 4]
by lifting this problem into the sum-of-squares hierarchy. We will not define what these words mean (although
they will come up repeatedly throughout this lecture!) since they are somewhat complicated to define.
However, this assumption is fairly mild: [4] demonstrates that this relaxation holds for any distribution
satisfying the so-called Poincaré inequality, which includes almost all natural distributions we like to consider,
including for instance Gaussians. One notable exception for which we do not know if this works is the class
of log-concave distributions. Unfortunately, establishing the Poincaré inequality for log-concave distributions
is equivalent to the notorious KLS conjecture from convex geometry. This does not rule out the possibility
of establishing the sum-of-squares relaxation of (1) directly for log-concave distributions, which would in
turn establish a polynomial time algorithm for robust mean estimation for log-concave distributions beyond
€'/2. This yields a nice open question:

Open Question 1.3. Can we prove (1) in the sum-of-squares hierarchy, when the points X; are drawn
i.i.d. from a log-concave distribution? Alternatively, give any polynomial time algorithm for robust mean
estimation for log-concave distributions which achieves rate e'=/t, for t > 2.

2 List-decodable learning

So far in this class we have universally assumed that £ < 1/2. In the classical sense of robust statistics, this
is unavoidable. For instance, assume that I have an 1/2-corrupted set of samples from A (p, I), and I wish
to learn the mean pu. If the adversary then simply generates points distributed as N (¢, I), then it is clearly
impossible to choose between p and p’ as the “correct” answer. More generally, suppose I have a (1 — «)-
corrupted set of samples from AN (u, I). Then, the adversary could choose m = 1/a — 1 alternative means
[T/ 7//1/0471’ and make the corruptions be distributed as N(u}, I) with probability 1/m. The resulting
dataset is (roughly speaking) distributed as the uniform mixture over N (p, I), N'(¢, I), ..., N u'., I, and so
clearly we each one of the p, u, ..., p, are equally valid-looking candidates to be the true mean.

However, one could hope that this is essentially the only way that the adversary can mess us up when
e =1— «is large (i.e. « is small). In particular, one could hope to output a succinct list of “candidate”
means, so that at least one of these candidates is close to the true mean. This is the list-decodable learning
problem, introduced by [5] in a slightly different setting, and [6] in this current form. The above instance
says that the size of the list needs to be at least (1/«), and in fact this is achievable:

Theorem 2.1 ([6]). Let D be a distribution with mean p and covariance ¥ =< I. Let S be an (1—a«)-corrupted
set of samples from D of size n 2, g. Then, there is an algorithm which runs in time poly(n,d, 1/a) which
outputs a list of m < 1/a means pui, ..., fim s0 that || — pilly = O(1/\/a) for some i € [m], with probability
1 —exp(—Q(an)).

As you'll show in the homework, the rate O(1/4/a) is statistically unavoidable for this problem, and so this
gives the right answer up to logarithmic factors. Later work (partly using the Sum of Squares hierarchy)
also showed how to achieve something similar when the distribution is Gaussian:



Theorem 2.2 ([7, 4]). Let t > 2 be even. Let S be an (1 — a)-corrupted set of samples from N (u, I) of size
n 2 poly(d,1/a)t. Then, there is an algorithm which runs in time poly(n,d,1/a)t which outputs a list of
m < 1/a means i, ..., fim s0 that || — pilly S f(t)a™/?t for some i € [m], with probability at least 99/100,
and some function f that depends only on t.

Another recent line of work has shown that regression tasks can also be performed in a list-decodable learning
setting, see e.g. [8, 9].

3 Robust covariance estimation, robust distribution learning

So far in this class we have only really considered robust mean estimation. Another natural question is
whether we can learn the covariance of the distribution, in the presence of errors. Let us consider the
simplest form of this question, namely, learning the covariance of a mean-zero Gaussian, given outliers. It
turns out this problem becomes significantly more involved, and indeed, will necessarily leverage a lot of the
structure of Gaussian distributions.

The first step will be to establish what error metric we can hope to achieve. Recall from Lecture
2 this is dictated by how the total variation distance between two Gaussians depends on their covari-
ance matrices. Ideally, given two covariance matrices X1, Yo, we would like some metric m(-,-) so that
drv(N(0,%1),N(0,%2)) = m(X1,X5). We will not achieve this, but we will get close enough.

First, when X1 = I, as you'll (partly) show in the homework, it turns out that the Frobenius norm distance
between the two matrices essentially captures the total variation distance between the two matrices. Recall
that the Frobenius norm of a symmetric matrix A, denoted ||Al| ., is defined to be the square root of the

sum of the squares of the entries of A, i.e. ||Ap| = (Z A?j)l/z, or equivalently, is the ¢ norm of the vector
of eigenvalues of A.

Fact 3.1. We have that
min(1, |7 - Zs|[z) S drv(N(0,1),N(0,%2)) < ([T — Zoll - -

To generalize this to arbitrary ¥, Y9, we now simply observe that total variation distance is rotationally
invariant. That is, we have two distributions D1, Dy, and if A is a (full-rank) linear transformation, and
we let D] and D) be the distribution of AX; and AX,, where X; ~ D; and Xy ~ D5 respectively, then
drv (D1, D2) = drv (D1, D3).

In our setting, assuming that 3;, Y are full-rank, we observe that if X ~ AN(0,%;), then ZII/QX ~
N(0,1I), where 21_1/ ? is the matrix square-root, which is well-defined for full-rank PSD matrices. Moreover,
if X ~ N(0,%5), then X2 X ~ N0, 57 /25557 /?). Thus, we have that

drv (N(0, 1), N (0, £5)) = dpy (N(0, T), N (0, 57 /25,57 12))

Combining this with the above fact, we have the following corollary:

Corollary 3.2. Let 31 be full-rank. We have that

min (1,[|1 - 2725502 | ) S daey (W0, 50,M0,52) 5 |1 - 502 8es

The quantity HI — 2;1/222251/2)’ is known as the Mahalanobis distance between 31, Y5 although strictly
F

speaking it is not a distance as it is not symmetric. However, it simply acts as a “preconditioned” version
of the Frobenius norm, when you precondition by the geometry of one of the covariance matrices. Indeed, if
we define the norm ||| by [|A]lg = [|[£7/2AL71/2||, then it is easy to sce that

HI B 21_1/22221—1/2”F =% - alg, -

This discussion motivates the following problem:



Problem 3.3. Let ¥ = 0, and let S be an e-corrupted set of samples from N(0,%). Given S,e > 0, output
a S so that with high probability,

Y — EH 1s minimized.
p)

Per the discussion above, one can show that information-theoretically, the best rate one can achieve for
Problem 3.3 is O(e). The natural question is then whether we can match this rate efficiently. It is shown
in [10] that this is in fact possible, up to logarithmic factors:

Theorem 3.4 ([10]). Let &,%,S be as in Problem 3.3, and suppose that n = O(d?/€?), and assume that &
is sufficiently small. Then, there is an algorithm which runs in time poly(n,d,1/¢) and which outputs ¥ so

that with probability > 99/100, we have that HZ - EHE < Oelogl/e).

The approach will be the natural generalization of the approach we have taken for robust mean estimation.
The key step will be again to establish some sort of spectral signatures lemma for this problem. At a high
level, we will show that if our current estimate is off in Mahalanobis distance, then there will exist a large
“eigenvalue” of the fourth moment. However, to get this right is a bit tricky, for two reasons. First off, as
we’ve discussed already, eigenvalues of tensors are hard to compute. To get around this, we will instead work
with a carefully chosen flattening of the fourth tensor from a d x d x d x d-sized 4-tensor to a d? x d?-sized
matrix. Conveniently, this turns out to be the natural object from a statistical perspective anyways.

The second issue is that, unlike for mean estimation, the structure of the fourth moment tensor can change
as we change the (unknown) covariance. To handle this, we will need to use the fact that the fourth moment
of a Gaussian has a nice form in terms of the second moment of the Gaussian, a fact known as Isserlis’
theorem. This will allow us to compensate for this uncontrolled change in the fourth moment enough to still
detect deviations to the fourth moment caused by the outliers. Unfortunately, this renders the algorithm
heavily dependent on the algebraic structure of Gaussian moments (as Isserlis’ theorem heavily depends on
it). This appears to be unavoidable, however, as [4] demonstrates that we need to weaken our notion of
recovery, for more general classes of distributions.

Learning arbitrary Gaussians robustly We’ve shown how to learn the mean of an isotropic Gaussian
robustly, and also how to learn the covariance of a mean-zero Gaussian robustly. It turns out (if we’re willing
to lose some constant factors in ) that these two primitives suffice to robustly learn an arbitrary Gaussian
to total variation distance O(elog1/e). You’ll work through this in the homework.

3.1 Robust distribution learning

More generally, we can ask the following distribution learning question: suppose we have a class of distribu-
tions D, and suppose we are given e-corrupted samples from some D € D. Then, the goal is to output some
D so that drv (D, D) is minimized. Information-theoretically, under mild assumptions on D, error O(g) is
possible, given enough samples. However, the computational question depends heavily on the structure of
this distribution class. Many instances of this have been investigated in recent years. Beyond Gaussians, for
instance, there has been work on robustly learning product distributions [10], mixtures of Gaussians [10],
mixtures of product distributions [10], sparse Gaussian models [11], Ising models [12], batched univariate
distributions [13], amongst many other settings. There is a natural open question in this line of work, of
variable interest:

Open Question 3.5. Let D be your favorite class of distributions. Given an e-corrupted set of samples
from an unknown D € D, give an efficient algorithm which outputs D minimizing drv (D, D).

A more ambitious, but likely impossible, question, is to give a broad characterization of what classes of
distributions can be robustly and efficiently learned in the presence of outliers. This is related to the SSE-
hardness-styles of questions presented above.

More generally, we can also consider other forms of corruption. Recall that learning from e-corrupted
data is almost equivalent to learning from e-obliviously corrupted data, which simply means that 1 get



samples from some distribution D’ which has small TV distance to the true D. However, there is no need to
necessarily limit ourselves to perturbations in total variation distance. For instance, we could ask whether or
not we can estimate D given samples from some distribution D’ which has small earth-mover distance to D.
A recent paper [14] study these sorts of questions in more depth, from an information-theoretic perspective.
A great open question is whether or not the estimators in this paper can be made efficient.

4 Robust stochastic optimization

So far all of the problems considered have been unsupervised learning problems: we are given unlabeled
data, and we are asked to recover some information about basic statistics of this data. However, a large
part of modern machine learning is supervised learning, where we are given labeled data, and the goal is to
recover the hidden relationship between the covariates and the labels. A natural question is whether we can
also do supervised learning in the presence of adversarial corruptions to the training data.

The statistical setting that underlies these problems can be stated as follows. We assume there is some
distribution D over covariate-response pairs (X, y), and some class of functions {fy}occ parameterized by
6. We also assume there is some non-negative loss function ¢ which takes X, y, 0 and outputs the loss of the
model fy at the point (X,y). For instance, for regression £(X,y,0) = L(67 X — 4)? is just the square loss.

2
For every 6, we can define the expected loss of this model as

RO)= (E (X.y.0).

In the typical (i.e. non-robust) setting, we simply assume we have a set of i.i.d. samples (X1,91), ..., (Xn,yn)
from D, and our goal is to recover §* = arg min R(#), that is, the model which minimizes the expected loss
under D. Since this is typically impossible, we usually try to find some other 6 with expected risk which is
close to R(6*). A slightly weaker goal would be to find a point where the gradient of R is small, i.e. find 8 so
that [[VR(0)||, < 0. When R is convex, this corresponds to finding an approximate first order minimizer for
the expected loss. Note that this setting is extremely general: it encompasses regression, logistic regression,
SVM, and even learning deep nets.

We can generalize this problem somewhat: we can think of each (X,y) pair as actually generating a
random function f(6) = fx ,(0) = ¢(X,y,0), and now we are actually receiving a set of random functions,
drawn ii.d. from some distribution P over functions. We can still define the expected function R(#) =
Esp[f(#)], and now our goal is to, given an iid. sample from P, to find some 6 which approximately
minimizes R. We can also consider the corresponding robust version of this problem:

Problem 4.1. Let P be a probability distribution over functions f : RY = R. Given an e-corrupted set of
samples from P, output some 8 so that ||[VR(8)]|, is minimized.

Notice that when f comes from the supervised learning setting, this corresponds to when an e-fraction of
(Xi,y;) are arbitrarily corrupted. In the machine learning literature, this setting is often called the data
poisoning setting.

How might one attack this problem? It turns out that here, we can directly use the technology we’ve
developed for robust mean estimation, in an almost black-box manner. We will give two approaches for this
problem, both using this technique, but in slightly different ways.

Robustifying SGD The first approach is to directly use robust mean estimation as a black-box, to robust-
ify (stochastic) gradient descent. This was first introduced in [15, 16]. Recall that stochastic gradient descent
is an iterative method which, given an iterate 0, applies the update

9t+1 =0 — nat ,

where ¢; is any random vector with E[g;] = VR(0;). Given samples fi,..., fi ~ P, a natural choice of g; is
given by the mini-batch gradient g; = % 2?;1 V fi(6;). Tt is well-known that, under reasonable assumptions



on P, SGD with the appropriate choice of step-size will converge to a point ¢’ so that [|[VR(#')]|, is small in
expectation, and typically, the closer the estimate g; is to the true VR(6;), the faster the convergence.

If we only get e-corrupted samples S = Sgood U Sbad \ S from P, we can no longer use the plug-in
estimator for the gradient, as it will be typically far from VR(6;). However, for i € S, if we let X; = V f;(6,),
then observe that E[X;] = VR(6;) for all ¢ € Sgooq. In other words, if we can robustly estimate the mean
of the X;, then we get a pretty decent estimate for VR(6;), even given corrupted samples. There are many
different assumptions made in convex analysis, but one relatively weak one is that the covariance of the
gradients is bounded, i.e.

E_[(VF(0) = R(0) (V1) - R©O)) '] <1, (4)

f~P

for all 6. But this is exactly the setting in which the filter algorithm gives good guarantees! Thus a natural
algorithm is as follows: at every iteration, robustly estimate VR(6;) from fresh corrupted samples to obtain
some vector g;, and update 6; along this direction. While this will not produce an unbiased estimator for
the gradient, it will produce one which is sufficiently close that one can still derive non-trivial convergence
guarantees. Since the conditions under which this algorithm succeed and the actual guarantee is a bit tricky
to state, we will refer the interested reader to [15, 16] for more details.

Robustifying a black-box learner The above approach has two main disadvantages. The first is that it
only works with SGD. For many ML problems, there exist specialized solvers which use additional structure
of the problem which are much faster than SGD, and so it would be advantageous if we could take any
black-box learning algorithm for the problem, and somehow make it robust. The second is that it is quite
slow. In particular, to get strong guarantees for the robust mean estimation step, we need to take a very
large minibatch at every step of SGD. In the vanilla non-robust setting, typically we can take the batch size
to be m = O(1). However, to get strong guarantees for the robust mean estimation algorithm we perform
at every iteration, we would need m = Q(d/e) at every iteration, and so we would run in time which is
still at best Q(d?/e) per iteration even with the nearly-linear time robust mean estimation algorithms. This
represents a substantial slowdown, and renders this not so useful in practice.

To circumvent these difficulties, [16] proposes the following alternative approach.! Suppose we are given
a black-box empirical risk minimizer, that is, an algorithm ERM which takes as input any set of functions S,
and outputs 6 so that § = argmin} g f;(6;) (the arguments will also work with approximate ERM but we
will not consider that for simplicity). Suppose furthermore that this ERM also allows minimizes weighted
combinations of S, i.e. it takes as input (S,w), where w € I's, and outputs 6 = argmin) , g f;(6;). This
assumption is somewhat non-standard but most ERM algorithms can easily be adapted to this setting as
well.

The algorithm will proceed as follows: initially, maintain the uniform distribution over S, i.e. wo = w(.S).
At iteration ¢t = 0,...,T, let ; = ERM(S,w;). Then, for each i € S, let X; = Vf;(0;), and apply one
iteration of the filtering algorithm to these X; to obtain new weights w;y1. Formally, if the top eigenvalue
of the covariance of the X; is under some threshold, terminate and output 6;. Otherwise, let 7; be as if we
were doing the filter on X;, i.e.

7= (X — fv)?

where [1 is the average of the X; and v is the top eigenvector of the covariance of the X;, and let w1 =
IDFILTER({ X1, ..., X, }, w), and we repeat.

We sketch at a high level why we might expect that this algorithm to succeed (handwaving away many
details, see [16] for a full exposition). Recall that we proved that the filter satisfies the following invariant:
in every iteration, either we terminate, and the empirical mean of the X; with the current set of weights is
close to the true mean of the X;, or we remove more mass from the bad points than from the good points. If
the filter terminates, i.e., then the filter guarantees that the empirical mean of the gradients is close to the
true mean of the gradients. However, since we are filtering at the output of the ERM, we know the at the

1The algorithm presented there uses a randomized version of the filter, which does not maintain weights but rather removes
points from the set S with some probability. However, the analyses of these two algorithms are essentially the same.



empirical mean of the gradients is 0. Then the filter guarantee implies that the true mean of the gradients is
small, i.e., we are at an approximate local minima. On the other hand, if we do remove mass, then we remove
more mass from outliers than inliers, and so we preserve the safety conditions of the algorithm. Since the
filter always decreases the size of the support, we cannot run for too many iterations before we terminate.

While this approach does usually empirically perform better than the approach presented before, it is
still far from optimal. In particular, for technical reasons it requires that S is quite large, and moreover, in
the worst case the analysis can only prove that it requires O(en) calls to the ERM oracle, as it is possible
that it only removes one point from the support in each iteration. A great open question is whether these
dependencies can be improved:

Open Question 4.2. Give an algorithm which takes an e-corrupted set of functions of size n = 6(d/5)
from a distribution P satisfying (4), and outputs a 0 so that ||[VR(0)||, = O(y/e) in expectation, using only
poly log(n,d, 1/¢) calls to an ERM oracle.
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