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1 Robustness at test time

So far in this course, we have focused on corruptions to the data at training time. We now turn our attention
to a different yet similarly problematic scenario, where the data corruption occurs at test time. We will define
what this means formally now.

Let us first define the type of problems we will consider. We consider a classification task over Rd to a
discrete set of classes Y. That is, we are given samples (X1, y1), . . . , (Xn, yn) drawn from some distribution
D over Rd×Y, and our goal is to learn some classifier f : Rd → Y minimizing the expected 0/1 loss over D.
Formally, the 0/1 loss is given by `0/1(y, y′) = I[y 6= y′], and the (non-robust) classification task simply is
to, given samples, find a f minimizing the expected loss

R(f) = E
(X,y)∼D

[
`0/1(f(X), y)

]
.

A case of special interest is where f is a neural network.
The robust version of this problem can be stated as follows: for each x ∈ Rd, we now additionally specify

a perturbation set Px, which should be thought of as perturbations to x, which, when applied to x, should
not change the classification of X. For instance, if X is a natural image, we can think of PX as the set
of “imperceptible” perturbations to X which should not change its semantic content, and hence should not
change its classification. Our goal is to develop classifiers which are similarly robust to such perturbations.
To that end, we define the robust expected loss of a classifier f to be

Rrob(f) = E
(X,y)∼D

[
sup

X′∈PX

`0/1(f(X ′), y)

]
,

and our goal is to, given samples from D, find an f which minimizes Rrob(f).
Given a particular classifier f , and a specific point (X, y), we say that a point X ′ is an adversarial example

for f at (X, y) if f(X) = y, that is, f correctly classifies X, but X ′ ∈ P and f(X ′) 6= y, that is, X ′ is a
small perturbation of X on which f fails to correctly classify.

The study of such adversarial examples in ML dates back to at least 2004 [1, 2], and was first investigated
for neural networks in [3, 4].

What P should we consider? A very important question to ask in defining this problem is what per-
turbation set we should allow. Recall that ideally P should capture the set of semantically meaningless
perturbations to my input X. Let’s use the recurring example of image classification on e.g. CIFAR-10 or
ImageNet, so that X is an image, and y is a label (e.g. dog, cat, airplane, etc). In different domains, the
allowable set of perturbations should of course also change.

A relatively natural family of perturbations, that we will also focus on quite a bit in this class, are the `p
bounded perturbations. Specifically, for any p ∈ [0,∞], and any ε > 0, we can consider the perturbation set

Pp,ε(x) =
{
x′ ∈ Rd : ‖x− x′‖p < ε

}
. (1)
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For neural networks, adversarial examples were first demonstrated for `∞ [3, 4], and still today it is considered
a standard benchmark for adversarial robustness. However, there is also a lot of work on robustness in other
p-norms, in particular p = 0 and p = 2.

But robustness against `p-bounded adversaries is a bit unsatisfactory. While it is arguably true that
perturbations of small `p norm are all semantically meaningless (and indeed, to humans, the pictures typically
look unchanged after perturbation), it is not true that the set of such perturbations captures the set of all
semantically meaningless perturbations. For instance, a small rotation of a picture of a dog is obviously
still a dog, but the `p norm between the two pictures can be very large. Alternative definitions have been
proposed to try to account for this, but ultimately it is likely just an ill-posed and impossible question to
define the “correct” set of perturbations to consider.

Despite this, because we still lack satisfactory robust classifiers against `p perturbations, the study of
adversarial examples in `p-norms is still interesting. Such a classifier could be viewed as the first step towards
a truly robust classifier.

Why do we care? A good question is why we might care about adversarial examples in the first place.
Let us continue with the recurring example of image classification. There are two major reasons why one
should care:

1. Real-world risks. As we are using image classification for more security sensitive things, the fact
that they can be fooled by otherwise imperceptible changes presents a real threat to many of these
applications. For instance, if we’re using deep networks for computer vision in self-driving cars, if the
network can be fooled to believe that a car in front of you is not there, then this presents a major flaw
to the self-driving car. As we’ll see in a bit in this lecture, this is not just some fantastical scenario:
similar attacks have already been demonstrated against Tesla’s autopilot technology.

2. Conceptual gaps. The existence of adversarial examples concretely establishes holes in our under-
standing of how neural networks work. Dramatically oversimplified, the typical mantra of deep learning
states that deep networks are able to learn good feature representations which capture semantic un-
derstanding for the image classification task, that is, it learns good reasons why a picture of a cat is
a picture of a cat. However, adversarial examples are a counterexample to this (oversimplified) view:
adversarial perturbations to cats still look like cats to us, and therefore still has the same semantic
meaning as the original image, but the deep network is fooled.

2 Examples of adversarial examples

It turns out that adversarial examples are ubiquitous in deep learning (and beyond!), and to our knowledge,
there are no hacks to prevent them. Here we’ll list a bunch of settings in which researchers have found
adversarial examples.

`p attacks The “classical” setting, which has been studied quite extensively since [3, 4]. In this setting,
adversarial attacks against neural networks that have not been explicitly robustified are extremely
effective: nearly 100% of the images in the test set have adversarial perturbations for relatively small
ε, say ε = 2/255 for `∞ on CIFAR-10.

Other perturbations As mentioned above, we can consider other perturbation sets as well. A surprisingly
simple type of perturbation that can already fool convolutional neural networks is the set of perturba-
tions that consist of a single rotation and a translation [5]. In this paper, they construct attacks of this
form that drop the accuracy on CIFAR-10 down to less than 3%. More recently, more general spatial
notions of robustness have been studied, for instance, adversarial examples in Wasserstein distance [6].

Black-box attacks So far the attacks that we have presented have all assumed knowledge of the underlying
classifier while constructing the attack. One might hope that this is inherent: this way, if we could
somehow obfuscate the model, perhaps we could mitigate the real-world security threat of adversarial
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Figure 1: An adversarial perturbation for `∞ with ε = 0.005 after all the pixels are normalized to be in the
range [0, 1]. Picture taken from http://gradientscience.org/intro_adversarial/

Figure 2: Fooling CNNs with a rotation and a translation. Figure taken from [5]

attacks. Unfortunately, this is not the case: [7] demonstrated that adversarial examples can be made to
transfer across architectures. They design adversarial examples that fool an ensemble of known models,
and demonstrate that these same adversarial examples will also be adversarial for other, unknown, deep
architectures.

Real-world attacks It’s also been demonstrated that adversarial examples are not just a digital phenom-
ena: they also can persist when applied to real-world images [8]. There have been many demonstrations
of this: [9] produced a 3D printed sculptures of a turtle that was consistently misclassified as a rifle
from all angles. The paper [10] designed 3D printed glasses that can fool facial recognition. There
have also been real world attacks on object detection [11, 12]. The list is almost endless.

One notable setting in which real-world attacks have been demonstrated are against self-driving cars.
The paper [13] produced (amongst other things) graffiti-like patches to put on a stop sign that make
it look like a speed limit sign. Recently, researchers at Tencent were able to get Tesla’s autopilot to
either turn on the car’s wipers, or to change lanes [14]. According to Tesla, the former vulnerability
has been patched.

Attacking NLP models The paper [15] demonstrated how to fool reading comprehension systems by
adding distracting sentences to the paragraphs. The problem in NLP is a bit different than in image
comprehension: in NLP the objects are far more discrete, and so it’s not so obvious how to even define
what it means to be a small perturbation. See e.g. [16] for a more extensive survey of recent results in
this area.

Attacking deep RL As one final example, the paper [17] demonstrates adversarial policies for deep RL.
They show that for a number of two player games, where one player plays using an RL strategy, there
exist adversarial policies that look random yet cause the RL policy to fail spectacularly.

Of course there are many more settings as well. This list hopefully makes the point that such attacks are
widespread, and are surprisingly powerful. As we’ll see later on, these attacks are also quite hard to defend.
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3 How to generate attacks

Given a classifier f and a point (X, y), how does one go about finding adversarial examples for f at X? In
other words, how do we find a solution to the following problem:

X∗ = arg max
X′∈PX

`0/1(f(X ′), y) . (2)

Brute force search Of course, the most powerful way to optimize (2) is just brute force search: just
find the perturbation in the set that maximizes it by trying all perturbations, or trying a large net over
possible perturbations. However, typically this is computationally infeasible, as the size of the net would be
exponential in d. But when the family of perturbations can be parametrized by a small set of parameters,
one can sometimes just search over all possible parameters. For instance, in [5], their perturbations were
parametrized by a single rotation and translation. Thus to find their adversarial examples they were able to
simply enumerate over all possible pairs of rotations and translations to the image.

Projected gradient descent A very popular type of adversarial attack against deep networks go via
projected gradient descent (PGD for short). Let’s take the case where P is the `∞ ball around x.

We wish to apply a gradient operator to do a first order update to the above objective. However, the
0/1 loss is far from continuous. To get around this, notice that a neural network is secretly a soft classifier.
That is, not only does it predict the most likely class of X in Y, but it also gives a likelihood for every
y ∈ Y. In other words, f can be thought of as a map from Rd to ∆(Y), where ∆(Y) is the set of probability
distributions over Y. This corresponds to the output of the last layer of the neural network, after the softmax
has been applied to the raw logits. Moreover, the neural network is trained to minimize the logistic loss L
of (X, y). So a natural replacement for the above loss is to simply find a perturbation which maximizes the
logistic loss of X, subject to the constraint that it lives within PX :

X∗ = arg max
X′∈PX

L(f(X ′), y) . (3)

The nice thing about this objective is that it is now differentiable as a function of X ′. Therefore, a natural
heuristic for maximizing it, subject to the constraint that X ′ ∈ PX , is simply gradient ascent, projected so
that every step lies within P. Formally, let Π be the projection onto PX . Then, for some step-size schedule
ηt, we can define the sequence of updates x0 = X, and

xt+1 = Π (xt + ηt∇xL(f(xt+1), y)) . (4)

The update (4) is the PGD update. To find an adversarial example, we simply apply this update some
(relatively small) number of steps, and often the resulting xt will be an adversarial example. While this
does work well in practice, notice that we cannot typically prove anything about the convergence of this
algorithm, as the objective is highly non-concave.

When the perturbation set is the `2 or `∞ ball, the projection step is quite easy to handle. For more
general sets, this can be trickier. In the case of `∞, the update

xt+1 = Π (xt + ηt · sgn (∇xL(f(xt+1), y))) (5)

is often called the PGD update, where sgn (·) is the function which takes a vector v, and maps every entry
to its sign. This is a slight abuse of terminology as it is more properly a non-linear form of PGD, but the
name has become widespread. As another remark, if one only applies the update (5) once, this is known
as the fast gradient sign method (FGSM for short) [18]. Unsurprisingly, this method typically works worse
than PGD, but the main advantage is that it is substantially faster, since it only does one iteration.
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Convex surrogate-based techniques A more general type of attack replaces (2) with a nice surrogate
function that is more well-suited for optimization, as proposed in [19]. That is, we replace `0,1 with some
function L(x, y) which is negative if and only if `0/1(f(X), y) = 1. One can then consider the objective

min
x′
D(x, x′) + λ · L(x′, y) . (6)

As before, this objective is minimized via first order methods. Here D is some regularization term that is
large when x′ is very far from Px. For instance, for `p norms this can literally be the `p distance (usually
raised to the p-th power to make optimization easier) between x and x′. In the context of image classification,
one often adds the constraint that x′ ∈ [0, 1]d, as the pixels are normalized to be within [0, 1] and so any
point outside this domain is not a valid image.

Dealing with real-world noise In physical attacks, an attack trained naively with PGD on digital
examples will not often work as-is. This is because the image that is ultimately captured by the camera
before being processed by the neural network has a lot more noise added to it, because of different angles,
different lighting conditions, etc. To deal with this, [9, 11] propose to simulate this randomly while training
the adversarial perturbation, a technique called Expectation over Transformation (EOT) or RP2. In the
Lagrangian formulation, this corresponds to the maximization problem

min
x′

E
t∼T

[D(t(x), t(x′)) + λ · L(t(x′), y)] , (7)

where T is a distribution over transformations over which we hope that the adversarial perturbation is
robust. This for instance can be different lighting patterns, angles, etc. In other words, the adversary
controls x′, but before it is fed to the network, it is manipulated by a random transformations. Moreover D
can be taken to be a more refined version of closeness than just `p closeness, that captures visual similarity
better. To optimize this objective, we simply apply projected SGD rather than PGD, by randomly sampling
a transformation from T at every iteration.
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